System Identification, Lecture 10

Kristiaan Pelckmans (IT/UU, 2338)

Course code: 1RT880, Report code: 61800 - Spring 2013 F, FRI Uppsala University, Information Technology

13 Mai 2013

SI-2013 K. Pelckmans Jan.-Mai 2013

Overview Part II

- 1. State Space Systems.
- 2. Subspace Identification.
- 3 Further Topics.
- 4. Identification of Nonlinear Models.
- 5. Wider View.

Overview Further Topics

- 1. Design of Experiments.
- 2. Closed Loop Identification.
- 3. Preprocessing.
- 4. User Choices.

1. Design of Experiments

- 1. General.
- 2. Informative Experiment.
- 3. Optimal Experiments.
- 4. Sampling.

General Considerations

- Purpose and Norms.
- Physical versus Black-box.
- Placement of sensors.
- Manipulate Signals?
- Which signals are to be considered in/out?
- Sampling period?
- Operation Point?
- Length n?

Problem: for given $S \in \mathcal{M}$:

$$\max_{\mathbf{u} \in \sqcap} \min_{M \in \mathcal{M}} \mathcal{I}(M) \quad \text{s.t. } M(\mathbf{u}) = \mathcal{S}(\mathbf{u})$$

MINIMAX:

$$\max_{\mathbf{u} \in \sqcap} \min_{\mathcal{S} \in \mathcal{M}} \max_{M \in \mathcal{M}} \mathcal{I}(M) \quad \text{s.t. } M(\mathbf{u}) = \mathcal{S}(\mathbf{u})$$

where

- ullet The system ${\cal S}$ to be identified.
- \mathbf{u} represents the input signal to be injected into \mathcal{S} .
- A class of allowed input signals □.
- ullet The model class ${\mathcal M}$ of candidate models.
- The model $M \in \mathcal{M}$ identified ('=') based on \mathbf{u} and $\mathcal{S}(\mathbf{u})$
- The use (information content) of a model M is $\mathcal{I}(M)$.

A common choice of $\mathcal{I}(M)$ is based on the covariance of the parameters of M.

- $\hat{\theta} \to M$.
- $\theta_0 \to \mathcal{S}$.

•
$$\mathbf{P}_{\theta_0}(u) \propto \left[\mathbb{E} \left(\frac{d\hat{y}_t(\theta_0)}{d\theta_0} \right) \left(\frac{d\hat{y}_t(\theta_0)}{d\theta_0} \right)^T \right]^{-1}$$
.

• $\alpha: \mathbb{R}^{d \times d} \to \mathbb{R}$ measures 'size' of \mathbf{P}_{θ_0} .

Then

$$\min_{\mathbf{u} \in \sqcap} \max_{\boldsymbol{\theta}_0 \in \Theta} \alpha(\mathbf{P}_{\boldsymbol{\theta}_0}(\mathbf{u}))$$

For FIR systems of order d, covariance of $\hat{\theta}$ given as

$$\mathbf{P}_{\theta_0}(\mathbf{u}) = \frac{1}{n} \begin{bmatrix} r_0(\mathbf{u}) & r_1(\mathbf{u}) & \dots & r_{d-1}(\mathbf{u}) \\ r_1(\mathbf{u}) & r_0(\mathbf{u}) & & & \\ \vdots & & \ddots & & \\ r_{d-1}(\mathbf{u}) & r_{d-2}(\mathbf{u}) & & r_0(\mathbf{u}) \end{bmatrix}^{-1}$$

- Invertible ⇔ Informative.
- Independent of $\theta_0, \hat{\theta}!$
- Stochastic Issues.

Crest factor

$$C_r^1(\mathbf{u}) = \frac{\max_t \mathbf{u}_t^2}{\frac{1}{n} \sum_t \mathbf{u}_t^2}$$

minimum 1.

Relation to frequency content.

$$\mathbf{P}_{\theta}^{-1}(\mathbf{u}) \propto \int_{\pi}^{\pi} \mathbf{H}(\omega) \phi_u(\omega) d\omega + \mathbf{H}_e$$

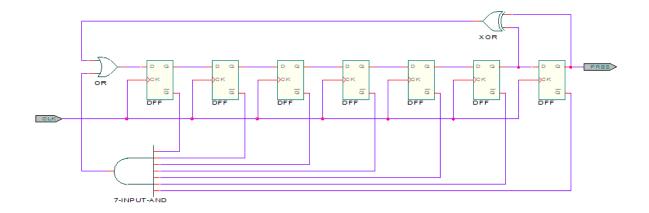
where

- ullet $\mathbf{H}(\omega)$ denotes how sensitive the system $\mathcal S$ is to frequency ω
- $\mathbf{H}_e \propto \int_{-\pi}^{\pi} \frac{1}{\phi_e(\omega)} H'(e^{i\omega}) H'(e^{i\omega})^T d\omega$
- So put frequencies of ϕ_u on places where $\mathbf{H}(\omega)$ is large.
- If a parameter is of interest, vary it, look at where changes bode plot, and put input power there.

- ullet Choice of function lpha
 - $\alpha(\mathbf{P}) = \operatorname{tr}(\mathbf{PW})$ (A-Optimal Design)
 - $\alpha(\mathbf{P}) = \det(\mathbf{P})$ (D-Optimal Design)
 - $\alpha(\mathbf{P}) = -\underline{\lambda}(\mathbf{P})$ (E-Optimal Design)
- Optimize over □.

Common choices:

- 1. White Noise.
- 2. Filtered White Noise.
- 3. PRBS.
- 4. Swept Sinusoids.
- 5. Periodic vs. aperiodic (PE, Averaging, Transient).



Intersample D/A signal u_t from \mathbf{u} .

- ZOH or FOH.
- Trigonometric interpolation (band-limited).

Sampling Period:

- Information content.
- Nyquist.
- Computational.
- Higher model orders and delays.
- 10*T*

Length of Experiment:

- Critical mass.
- Averaging.
- Computational.

Prefiltering:

- Low-pass and differencing.
- Antialiasing.

Outliers and Missing variables:

- Unknown 'parameters'
- Averages.
- Norms.

2. Closed Loop Identification

Consider the system:

$$\begin{cases} y_t = G(q^{-1})u_t + H(q^{-1})e_t \\ u_t = -F(q^{-1})y_t + L(q^{-1})v_t \end{cases}$$

where

- ullet The input u_t is determined through feedback.
- ullet F and L are called regulators.
- The signal v_t can be the reference signal or noise entering the regulator.

Why?

- Many realworld systems have feedback.
- The open-loop system is unstable.
- Feedback is required due to safety reasons.

What

- The input u_t depends on past y_t (and hence on past e_t).
- The aim of control is to apply a u_t which minimizes the deviation between y_t and a reference signal v_t . Good control often requires a u_t of bounded energy.
- ullet SI requires PE, hence substantial energy of u_t .
- ullet The frequency content of u_t is limited by the true system.

An example

System:

$$\begin{cases} y_t + ay_{t-1} = bu_{t-1} + e_t, \ E[e_t^2] = \lambda^2 \\ u_t = -fy_t \end{cases}$$

Model structure:

$$y_t + \hat{a}y_{t-1} = \hat{b}u_{t-1} + \epsilon(t)$$

Estimate by PEM

$$\begin{cases} \hat{a} = a + f\gamma \\ \hat{b} = b - \gamma \end{cases}$$

where γ is any scalar. There is no unique solution, hence the parameters are not estimated consistently.

Closed-loop behavior

Open-loop system:

$$\begin{cases} y_t = G(q^{-1})u_t + H(q^{-1})e_t \\ u_t = -F(q^{-1})y_t + L(q^{-1})v_t. \end{cases}$$

Closed loop system:

$$\begin{cases} y_t = (I + GF)^{-1}GLv_t + (I + GF)^{-1}He_t \\ u_t = (L - F(I + GF)^{-1}GL)v_t - F(I + GF)^{-1}He_t. \end{cases}$$

Some assumptions

- The open loop system is strictly proper: y_t depends only on past values of the input u_s or s < t.
- The closed loop system is asymptotically stable.
- The external signal v_t is stationary and PE of sufficiently high order.
- The external signal v_t and the disturbance e_s are independent $\forall s,t.$

Prediction Error Methods

- ullet In most cases it is not necessary to assume that the external signal v_t is measurable.
- Gives statistically efficient estimates under mild conditions.
- Computationally demanding.

Notation \hat{G} denotes $G(q^{-1}, \hat{\theta})$.

Different Approaches

- *Direct Identification*. Feedback is neglected during identification the system is treated as an open loop system.
- Indirect Identification. It is assumed that v_t is measured and the feedback law is known. First the closed loop behavior is modeled, then the open-loop system is identified by 'subtracting' the effect of the regulators from this model.
- Joint Identification. The signals u_t and y_t are both considered as the outputs of a multivariate system driven by white noise.

Direct Identification

Model structure:

$$\begin{cases} y_t = Gu_t + He_t \\ E[e^2(t)] = \lambda^2 \end{cases}$$

Use the signals $(u_t)_t$ and $(y_t)_t$

Goal: estimate (SISO)

$$\begin{cases} \hat{\theta} = \operatorname{argmin}_{\theta} V_N(\theta) \\ V_N(\theta) = \frac{1}{N} \sum_{t=1}^N \epsilon_t^2(\theta) \\ \epsilon_t(\hat{\theta}) = \hat{H}^{-1} \Big(y_t - \hat{G}u_t \Big) \end{cases}$$

Question: Identifiability? Desired solution $\hat{G} = G$ and $\hat{H} = H$.

Consistency: Analyze the asymptotic cost function:

$$V(\theta) = \lim_{N \to \infty} V_N(\theta) = E[\epsilon(t, \theta)]$$

- Will $\hat{G} = G$ and $\hat{H} = H$ be a global minimum to $V(\theta)$ (system identifiability)?
- ullet Is the solution $\hat{G}=G$ and $\hat{H}=H$ unique (parameter identifiability)?

SI-2013 K. Pelckmans Jan.-Mai 2013 20

An Example

System:

$$y_t + ay_{t-1} = bu_{t-1} + e_t, \ E[e^2(t)] = \lambda^2$$

Model structure:

$$y_t + \hat{a}y_{t-1} = \hat{b}u_{t-1} + \epsilon(t)$$

Input

$$u_t = \begin{cases} -f_1 y_t & \text{for a fraction } \gamma_1 \text{ of the total time.} \\ -f_2 y_t & \text{for a fraction } \gamma_2 \text{ of the total time.} \end{cases}$$

Then (for i = 1, 2) we get

$$\begin{cases} y_t^i + (a + bf_i)y_{t-1}^i = e_t \\ y_t^i + (\hat{a} + \hat{b}f_i)y_{t-1}^i = \epsilon_t^i \end{cases}$$

which gives

$$V(\hat{a}, \hat{b}) = \gamma_1 E[\epsilon_1^2(t)] + \gamma_2 E[\epsilon_2^2(t)]$$

$$= \lambda^2 + \gamma_1 \lambda^2 \frac{(\hat{a} + \hat{b}f_1 - a - bf_1)^2}{1 - (a + bf_1)^2}$$

$$+ \gamma_2 \lambda^2 \frac{(\hat{a} + \hat{b}f_2 - a - bf_2)^2}{1 - (a + bf_2)^2}$$

Consequently

$$V(\hat{a}, \hat{b}) \ge \lambda^2 = V(a, b)$$

we get

- ullet A global minimum is obtained if $\hat{a}=a$ and $\hat{b}=b$
- Unique minimum?
- $\bullet \ \ \mathsf{Solve} \ V(\hat{a},\hat{b}) = \lambda^2$

$$\begin{bmatrix} 1 & f_1 \\ 1 & f_2 \end{bmatrix} \begin{bmatrix} \hat{a} \\ \hat{b} \end{bmatrix} = \begin{bmatrix} a + bf_1 \\ a + bf_2 \end{bmatrix}$$

ullet Unique solution if and only if $f_1 \neq f_2$ (Compare to our previous example).

The General Case

- \bullet The desired solution $\hat{G}=G$ and $\hat{H}=H$ will be a global minimum to $V(\theta)$
- Unique global minimum is necessary for parameter identifiability (consistency). Consistency is assured by
 - Using an external input signal v_t
 - Using a regulator $F(q^{-1})$ that shifts between different settings during the experiment.

Indirect Identification

- Two step approach
 - 1. **Step 1** Identify the closed loop system using v_t as input and y_t as output.
 - 2. **Step 2** Determine the open loop system parameters from the closed loop parameters, using knowledge of the feedback F and L.
- Closed-loop system:

$$y_t = \bar{G}v_t + \bar{H}e_t$$

where

$$\begin{cases} \bar{G} = (I + GF)^{-1}GL \\ \bar{H} = (I + GF)^{-1}H \end{cases}$$

- Estimate \bar{G} and \bar{H} from v_t and y_t with a PEM.
- \bullet From the estimated \bar{G} and \bar{H} , form the \hat{G} and \hat{H}

- Identifiability conditions are the same as for the direct approach.
- Same identifiability conditions do not imply that both direct as indirect approach give the same result.
- ullet Drawback of indirect approach: one needs to know v_t and the regulators.

Joint input-output identification.

• Regard u_t and y_t as outputs from a multivariable system, driven by white noise and the reference input v_t .

$$\begin{cases} y_t = H_{11}(q^{-1,\theta})e_t + H_{12}(q^{-1,\theta})v_t \\ u_t = H_{21}(q^{-1,\theta})e_t + H_{22}(q^{-1,\theta})v_t \end{cases}$$

 \bullet Innovations model: let $z_t = \left(y_t, u_t\right)^T$ and $\bar{e}_t = \left(e_t, v_t\right)^T$, then

$$z_t = \mathbf{H}(q^{-1},\theta)\bar{e}_t$$
 with $E[\bar{e}_s\bar{e}_t^T] = \Lambda_{\bar{e}}(\theta)\delta_{t,s}.$

ullet Use PEM to identify heta in ${f H}$ and $\Lambda_{ar e}.$

Properties

- Same identifiability conditions as for the direct method.
- Both system and the regulator can be identified.
- ullet The spectral characterization of v_t can be identified;
- the drawback is the computational demand.

Conclusions

To remember

- Design of Experiments.
- Closed Loop Identification.
- Preprocessing.