
System Identification, Lecture 7

Erlendur Karlsson (IT/UU, 2338)

Course code: 1RT880, Report code: 61800 - Spring 2013
F, FRI Uppsala University, Information Technology

6 March 2013

SI-2013 K. Pelckmans Jan.-March, 2013

Lecture 7

• Recursive Identification Methods.

• Recursive Least Squares.

• Tracking case.

• Variations.

• Common themes.

SI-2013 K. Pelckmans Jan.-March, 2013 1

Why?

Why is recursive identification of interest?

• Online estimation.

• Adaptive systems.

• Time-varying Parameters.

• Fault-Detection.

SI-2013 K. Pelckmans Jan.-March, 2013 2

How?

How do we estimate time-varying parameters?

• Update the model regularly (once every sampling instant)

• Make use of previous calculations in an efficient manner.

• The basic procedure is to modify the batch (offline) method,
e.g. OLS, PEM.

SI-2013 K. Pelckmans Jan.-March, 2013 3

Desirable Properties

• Fast convergence.

• Consistent estimates (time-invariant case).

• Good tracking (time-varying case).

• Computationally simple (perform all calculations during one
sampling interval).

SI-2013 K. Pelckmans Jan.-March, 2013 4

Trade-offs

No free lunch. The design is always based on trade-offs, such
as

• Convergence vs. Tracking.

• Computational complexity vs. accuracy.

SI-2013 K. Pelckmans Jan.-March, 2013 5

Recursive Least Squares Method (RLS)

θ̂t = argmin
θ

Vt(θ) Vt(θ) =

t∑
k=1

ε2k

where εk = yk − ϕTk θ. The solution reads as:

θ̂t = R−1t rt

where

Rt =

t∑
k=1

ϕkϕ
T
k , rt =

t∑
k=1

ϕkyk

• The criterion function Vt(θ) changes every step, so does θ̂t

• A ’simple’ recursive implementation of θ̂t?

SI-2013 K. Pelckmans Jan.-March, 2013 6

RLS, Ct’d

Derivation:

θ̂t = R−1t rt = R−1t

(
t−1∑
s=1

ϕsys + ϕtyt

)
= R−1t Rt−1θ̂t−1 +R−1t (ϕtyt).

And since Rt−1 = Rt − ϕtϕTt , one has

= R−1t
(
Rt − ϕtϕTt

)
θ̂t−1 +R−1t (ϕtyt)

= θ̂t−1 −R−1ϕtϕ
T
t θ̂t−1 +R−1t (ϕtyt)

= θ̂t−1 +R−1t ϕt

(
yt − ϕTt θ̂t−1

)

SI-2013 K. Pelckmans Jan.-March, 2013 7

RLS, Ct’d

Matrix Inversion Lemma: (assume symmetric, invertible Z ∈
Rn×n, z ∈ Rn)

Z+ = Z + zzT

Question: can we write Z−1+ in terms of Z−1?

Z−1+ = Z−1 − Z
−1zzTZ−1

1 + zTZ−1z

SI-2013 K. Pelckmans Jan.-March, 2013 8

Proof:

(Z + zzT)

(
Z−1 − Z

−1zzTZ−1

1 + zTZ−1z

)
= In − Z

(
Z−1zzTZ−1

1 + zTZ−1z

)
+ zzTZ−1 − (zzT)

(
Z−1zzTZ−1

1 + zTZ−1z

)
= In −

(
zzTZ−1

1 + zTZ−1z

)
+

(
zzTZ−1

1 + zTZ−1z

)
(1 + zZ−1z)−

(
zzTZ−1zzTZ−1

1 + zTZ−1z

)
= In +

(
zzTZ−1

1 + zTZ−1z

)
(zzTZ−1)−

(
zzTZ−1zzTZ−1

1 + zTZ−1z

)

Now, note that (zTZ−1z) is a scalar, and thus

= In+

(
zzTZ−1

1 + zTZ−1z

)
(zTZ−1z)−

(
(zTZ−1z)zzTZ−1

1 + zTZ−1z

)
= In.

Q.E.D.

SI-2013 K. Pelckmans Jan.-March, 2013 9

RLS, Ct’d

Recursive algorithm

• At time t = 0, choose initial values of θ̂(0) and P(0)

• For any t > 0, compute ϕt and do
θ̂t = θ̂t−1 +Ktεt

εt = yt − ϕtθ̂t−1
Kt = Ptϕt

Pt =
[
Pt−1 − Pt−1ϕtϕ

T
t Pt−1

1+ϕTt Pt−1ϕt

]

SI-2013 K. Pelckmans Jan.-March, 2013 10

Tracking

How to handle time-varying parameter θ0,t?

• Postulate a time-varying model for the parameters. Typically,
let the parameters vary according to a random walk and use
the Kalman filter as an estimator.

• Modify the cost-function so that we gradually ’forget’ old
data.

θ̂t = argmin
θ

Vt(θ), s.t. Vt(θ) =

t∑
k=1

β(t, k)ε2t .

where the weighting function β satisfies:

{
β(t, k) = λtβ(t− 1, k), 0 < k ≤ t
β(t, t) = 1

SI-2013 K. Pelckmans Jan.-March, 2013 11

A common choice is to let λt = λ with given ’forgetting
factor 0 < λ ≤ 1, such that

β(t, k) = λt−k

In case λ = 1, OLS is implemented.

SI-2013 K. Pelckmans Jan.-March, 2013 12

Weighted RLS

Algorithm

• At t = 0, choose initial values of θ̂0 and P0.

• For each t > 0, do
θ̂t = θ̂t−1 +Ktεt

εt = yt − ϕtθ̂t−1
Kt = Ptϕt

Pt =
1
λt

[
Pt−1 − Pt−1ϕtϕ

T
t Pt−1

λt+ϕ
T
t Pt−1ϕt

]

SI-2013 K. Pelckmans Jan.-March, 2013 13

Initial Conditions

• θ̂0 is the initial estimate (prior).

• View P0 as the covariance matrix of the initial parameter
vector:

– P0 are covariance matrices, must be positive definite.
– Choose P0 = ρIn
– If ρ large, then large initial response. This is good when

initial estimate uncertain.

SI-2013 K. Pelckmans Jan.-March, 2013 14

Forgetting Factor

The forgetting factor λ will set the ’tracking capacity’.

• Consistent if λ = 1.

• λ small: old data forgotten fastly, good tracking.

• λ small: the algorithm is sensitive to noise - bad convergence.

• The memory constant is τ0 =
1

1−λ.

The choice of λ is consequently a trade-off between tracking
capability, and noise sensitivity. A typical choice is λ ∈
[0.95, 0.99[. Also, it is common to let λt tend exponentially
to one (why?)

λt = 1− λt0(1− λ(0))

SI-2013 K. Pelckmans Jan.-March, 2013 15

The Kalman filter

Consider the (MISO) system

{
xt+1 = Fxt +Gut + vt

yt = Hxt + et

where vt and et are independent white noise sources with E[e2s] =
R2 and E[vtv

T
t] = R1.

The optimal predictor of the state variable xt+1 based on xt
and the output observation yt is given by the Kalman filter.

x̂t+1 = Fxt +Gut +Kt+1 (yt+1 −Hxt)

Kt+1 =
FPtH

T

R2+HPtHT

Pt+1 = FPtF
T − FPtH

THPtF
T

R2+HPtHT
+R1

SI-2013 K. Pelckmans Jan.-March, 2013 16

Recursive Least Squares. model:{
θt+1 = θt + vt

yt = ϕTt θt + et

then
θ̂t = θ̂t−1 +Kt

(
yt − ϕTt θ̂t−1

)
Kt =

Pt−1ϕ
T
t

R2+ϕ
T
t Pt−1ϕt

Pt = Pt−1 −
Pt−1ϕtϕ

T
t P

T
t−1

R2+ϕ
T
t Pt−1ϕt

+R1

Let R2 = 1 for simplicity. The tracking capacity is characterized
by the covariance matrix R1 ∈ Rn×n.

• View R1 as a design variable.

• Let R1 be a diagonal matrix.

• Large elements of R1 imply large parameter variations, and
vice versa.

• The Kalman filter gives higher flexibility than the weighted
RLS.

SI-2013 K. Pelckmans Jan.-March, 2013 17

Recursive IVM

As for LS, it is straightforward to find a recursive version of
the IV method.

θ̂t =

(
t∑

k=1

zkϕ
T
k

)−1(t∑
k=1

zkyk

)

which becomes for all t > 0:
θ̂t = θ̂t−1 +Ktεt

εt = yt − ϕtθ̂t−1
Kt = Ptzt

Pt =
[
Pt−1 − Pt−1ztϕ

T
t Pt−1

1+ϕTt Pt−1zt

]
Some comments:

• The influence of the design variables P0, θ̂0 is the same as for
RLS.

SI-2013 K. Pelckmans Jan.-March, 2013 18

• RIV gives consistent estimates for (time-invariant) of A(q−1)
and B(q−1) in an ARMAX model. Consistency can be
obtained even for ’colored’ noise.

• Design of the ’instruments’ recursively.

SI-2013 K. Pelckmans Jan.-March, 2013 19

Recursive PEM

To derive a recursive PEM, the following cost function is
defined

Vt(θ) =
1

2

t∑
k=1

λt−kε2(k, θ)

It is not possible to derive an exact algorithm, and we need some
kind of approximation:

SI-2013 K. Pelckmans Jan.-March, 2013 20

Assume that θ̂t−1 minimizes Vt−1, and that the minimum of
Vt is not (too far) from θ̂t−1, then using a second order Taylor
approximation one gets:

Vt(θ) ≈ Vt(θ̂t−1) + V ′t (θ̂t−1)(θ − θ̂t−1) . . .

+
1

2
(θ − θ̂t−1)TV ′′t (θ̂t−1)(θ − θ̂t−1)

If one minimizes this with respect to θ, one gets

θ̂t = θ̂t−1 −
(
V ′′t (θ̂t−1)

)−1
V ′t (θ̂t−1)

where

• V ′t (θ̂t−1) is the gradient of Vt in θ̂t−1

• V ′′t (θ̂t−1) is the Hessian of Vt in θ̂t−1

SI-2013 K. Pelckmans Jan.-March, 2013 21

Let the choice

ψt = −
∂ε(t, θ̂t−1)

∂θ
The actual implementation depends on the model structure
(ARMAX).

Algorithm

• At t = 0, choose initial values of θ̂0 and P0.

• For each t > 0, do
θ̂t = θ̂t−1 +Ktεt

Kt = Ptψt

Pt =
1
λt

[
Pt−1 − Pt−1ψtψ

T
t Pt−1

λt+ψ
T
t Pt−1ψt

]

SI-2013 K. Pelckmans Jan.-March, 2013 22

Approximate Algorithms

The structure of RPEM is directly related to Newton-Raphson
’s algorithm

θ̂t = θ̂t−1 −
(
V ′′t (θ̂t−1)

)−1
V ′t (θ̂t−1)

• Computation of Hessian
(
V ′′t (θ̂t−1)

)−1
is demanding.

• Approximate algorithms are less demanding. For instance,
ignoring the Hessian altogether gives

θ̂′t = θ̂′t−1 − γtV ′t (θ̂t−1)

gives te gradient descent, steepest descend and Least Mean
Squares algorithm.

SI-2013 K. Pelckmans Jan.-March, 2013 23

Recursive Pseudo-linear Regression

Consider the ARMAX model

A(q−1)yt = B(q−1)ut + C(q−1)et

Rewrite model as
yt = ϕTt θ + et

ϕTt =
(
− yt−1, . . . , ut−1, . . . , êt−1, . . . , êt−nc

)
θ = (a1, . . . , ana, b1, . . . , bnb, c1, . . . , cnc)

T

Comparison between RPEM and RPLR

• Similar computational demand.

• The RPEM converges, while this is not assured for the RPLR
(this depends on C0(q

−1).

SI-2013 K. Pelckmans Jan.-March, 2013 24

• In some cases, the RPLR has a faster/better transient
behavior compared to RPEM.

SI-2013 K. Pelckmans Jan.-March, 2013 25

Common Problems for Recursive Identification

• Lack of PE.

• Estimator windup.

• Pt becoming indefinite.

SI-2013 K. Pelckmans Jan.-March, 2013 26

Excitation

Just as for the batch-case, it is important that the input
is PE of sufficiently high order. This applies during the whole
identification period.

SI-2013 K. Pelckmans Jan.-March, 2013 27

Estimator Windup

Often, some periods of the identification experiment exhibit
poor excitation. This causes problems for the identification
algorithms. Consider the situation where ϕt = 0 in the RLS
algorithm, then {

θ̂t = θ̂t−1

Pt =
1
λPt−1

• Notice that θ̂ remains constant during this period,

• ... and P increases exponentially with time when λ < 1.

When the system is excited again (ϕt 6= 0), the estimation gain
K will be very large, and there will be an abrupt change in the
estimate, despite the fact that the system has not changed. This
effect is referred to as ’estimator windup’.

SI-2013 K. Pelckmans Jan.-March, 2013 28

Pt becoming indefinite.

Pt are covariance matrices, so they must be symmetric
and positive definite (invertible). Rounding errors however may
accumulate and make Pt, and the algorithm may come in
trouble. A solution is based on the observation that any positive
matrix can be written as the product of two arbitrary matrices
(here St), or

Pt = StS
T
t

One can then rederive the algorithm in terms of the recursion
on such an St (Potter’s square root algorithm)

SI-2013 K. Pelckmans Jan.-March, 2013 29

Conclusions

• In practical scenarios, one often needs recursive identification
(time-varying, online identification, fault detection).

• Both the OLS and IVM can be cast in recursive forms, the
PEM can only be approximated by a recursive algorithm.

• The properties of the online methods are comparable to the
offline case.

• Tracking capabilities can be incorporated by using a forgetting
factor, or by modeling the parameter variations explicitly.

• Trade-offs between convergence speed and tracking
properties, as well as between computational complexity and
accuracy.

• In practice, one uses simplifications to make the recursion (i)
cheaper, and (ii) more robust.

SI-2013 K. Pelckmans Jan.-March, 2013 30

