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Project Works

What:

1. Identification of a Multimedia stream.

2. Identification of an industrial Petrochemical plant.

3. Identification of an Acoustic Impulse Response.

4. Identification of Financial Stock Markets.

Before Final Presentation:

1. Report Comp.lab. 5

2. Report Process Lab.

3. Report Project Work.
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Expected:

1. Visualize the data, point out characterizing properties and
state the problem you’re after.

2. Do some simple (SISO) simulations: e.g. what is the best
constant prediction (mean). This can often be done using
the ident tool.

3. What is a proper method for identification of the system
(MIMO) and perform the simulations. Most importantly,
verify the result: why is this result satisfactory? How does it
compare to the naive estimates of (2)?

4. Describe a full identification experiment: why is this (not)
possible in practice? What would be the benefit if it were
possible? What are further important todo’s?

5. Summarize your contribution in an ’abstract’ and ’conclusions’
of your report. Those different steps (sections) should show
up in the report to be handed in.
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6. Report: A well-manicured report describing the achieved
results, motivating the design decisions and verifying the
estimated models. Make sure sufficient care is given to (a)
Avoid Typos. (b) Use of the English language: think about
what you write and how you write it up. (c) Be concise:
reread your own text and throw out what is not needed for
supporting the conclusions. (d) Figures: name axes, and give
units. Add a legend explaining the curves we see, and add a
caption explaining what we see and should conclude from the
present figure. (e) A guideline would be a report of 3-4 single
column, 11pt, letter pages.

7. Presentation: each group is assigned a slot of 10 minutes to
defend their results. Specifically, try to convince the audience
of the following bullets: (a) What are the conclusions of the
effort, and how do you get there?(b) How do you improve over
earlier/simpler solutions? (c) What is the contribution of each
of the groupmembers? (d) What are possible applications for
your work? (e) Suppose I were your manager at a company:
why should I invest 1000$ to implement your model? (f)
Suppose I were your teacher: why would I award you a grade
5 for your work?
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Overview Subspace Identification

1. Deterministic.

2. Stochastic.

3. Extensions.

K. De Cock, B. De Moor, ”Subspace Identification Methods”,
report, 2003.
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Motivation

Why?

• MIMO.

• State space models.

• Inherent identifiability ’up to T’.

• Numerical matching.

• Numerical Robust techniques (perturbations).

• Connection to systems theory.

Least 
Squares

Maximum 
Likelihood

Predicition 
Error 
Methods

Subspace 
Identification

SI-2013 K. Pelckmans Jan.-Mai, 2013 5



State Space System

{
xt+1 = Axt + But

yt = Cxt + Dut,
∀t = −∞, . . . ,∞.

with

• {xt}t ⊂ Rn the state process.

• {ut}t ⊂ Rp the input process.

• {yt}t ⊂ Rq the output process.

• A ∈ Rn×n the system matrix.

• B ∈ Rn×p the input matrix.

• C ∈ Rq×n the output matrix.

• D ∈ Rq×p the feed-through matrix.
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Problem Statement

Problem SI: Given multivariate timeseries {ut}Nt=0 ⊂ Rp
and {y}Nt=0 ⊂ Rq, can you figure out the order n, matrices
(A,B,C,D) and {xt}t ⊂ Rn?

Realization: Given impulse response matrices {Hτ}τ , recover
n and (A,B,C,D).

A first (naive) approach:

(1) Estimate IR matrices {Ĥτ}τ by solving/approximating
yTn
yTn+1

yTn+2
...

yTN

 =


uT1 uT2 . . . uTn
uT2 uT3 uTn+1

uT3 uT4 uTn+2
... ... ...

uTN−n+1 uTN−n+2 uTN



HT
n−1

HT
n−2
...

HT
0



(2) Realization: transform {Ĥτ}τ into n̂ and (Â, B̂, Ĉ, D̂)
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But:

• Computational burdensome.

• Not robust.

• PE...

• Numerically ill-conditioned.

• Process Noise.

• State-Space structure.

That’s why subspace ID:

• N4SID (’enforce it’) (Numerical algorithm for Subspace State-
space System ID)

• MOESP (Multivariate Output Error State sPace)
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The Deterministic Case

(From T. Katayama, 2005) Matrix matching

 yt
...

yt+k−1

 =


C
CA
CA2

...
CAk−1

xt+


D
CB D

... . . .
CAk−2B . . . D


 ut

...
ut+k−1



In shorthand:
yk(t) = Okxt + Ψkuk(t)

This holds for any t = 1, 2, . . . , N , or

[
yk(0) yk(1) . . . yk(i− 1)

]
= Ok

[
x0 x1 . . . xi−1

]
+ Ψk

[
uk(0) uk(1) . . . uk(i− 1)

]
Or in even shorter hand

Yk,0 = OkX0 + ΨkUk,0
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Now the same trick for for data k, . . . , k + i− 1
Yk,s =

[
yk(s) yk(1) . . . yk(s+ i− 1)

]
Uk,s =

[
uk(s) uk(1) . . . uk(s+ i− 1)

]
Xs = (xs, . . . ,xs+i−1)

Hence one has for all s = 0, 1, . . . , N − i.

Yk,s = OkXs + ΨkUk,s.

We will use in our exposition{
Yk,0 = OkX0 + ΨkUk,0

Yk,k = OkXk + ΨkUk,k.

Which we will denote as the matrix input-output relations of
’past’ and ’future’.
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orUk,0 =


u0 u1 u2 . . . ui−1

u1 u2 u3 . . . ui
... ...

uk−1 uk . . . uk+i−2

 ∈ Rkp×i

Yk,0 =


y0 y1 y2 . . . yi−1

y1 y2 y3 . . . yi
... ...

yk−1 yk . . . yk+i−2

 ∈ Rkq×i

Uk,k =


uk uk+1 yk+2 . . . uk+i−1

uk+1 uk+2 yk+3 . . . uk+i
... ...

u2k−1 uk . . . uk+i−2

 ∈ Rkq×i

Yk,k =


yk yk+1 yk+2 . . . yk+i−1

yk+1 y2 y3 . . . yk+i
... ...

y2k−1 y2k . . . y2k+i−1

 ∈ Rkq×i
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Let

W− =

[
Uk,0

Yk,0

]
W+ =

[
Uk,k

Yk,k

]
Now we study the relation of W−,W+ and H. From above,

we have that

W− =

[
Uk,0

Yk,0

]
=

[
Ikp 0
ψk Ok

] [
Uk,0

X0

]
Or

W− =

[
Uk,0

Yk,0

]
=

[
Ikp 0
ψk OkCk

] [
Uk,0

Uk,0

]
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Relation - ex.1.

Let
u = (0, 0, 0, 1, 0, 0, 0, . . . )T

Apply this input signal to a noiseless LTI, and suppose the
outcome is

y = (0, 0, 0, g1, g1, g3, g4, g5, . . . )
T

Let k = 4, i = 8, then we get

W− =



0 0 0 1 |0 0 0 0
0 0 1 0 |0 0 0 0
0 1 0 0 |0 0 0 0
1 0 0 0 |0 0 0 0
0 0 0 g0 |g1 g2 g3 g4
0 0 g0 g1 |g2 g3 g4 g5
0 g0 g1 g2 |g3 g4 g5 g6
g0 g1 g2 g3 |g4 g5 g6 g7


This datamatrix ressembles

[
I4 0
ψ4 O4C4

]
(up to permutation).
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This is a general structure, using a LQ (QR)-decomposition
one can bring any W− into this structure, from which we have
the matrix Hk, and can apply realization. This approach is
taken in MOESP

1. Using LQ to recover matrix OkCk

2. Use realization to recover A,B, and then B,D.

3. Then use Kalman filter to obtain corresponding state
sequence.
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Relation - N4SID

A different road:

• Recover the order and the state subspace by relating W− to
W+,

• Then recover (A,B,C,D) by LS.

How does that work?

Thm. span(W−) ∩ span(W+) = span(Xk), or

Yk,0 = OkX0 + ΨUk,0

So find the subspace by oblique projection (SVD).

Π+
U = I −UT (UUT )−1U

Then Yk,0Π
+
U = OkX0Π

+
U.
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Stochastic Realization

Problem: Given E[YtY
T
t−τ ] = Λ(τ) for τ = 0, 1, 2, . . . , find a

realization (A,B) such that the outcome {Yt} of the system{
X ′t−1 = AX ′t + KDt

Yt = CX ′t +Dt

when driven by white noise {Dt} taking values in Rn has
properties {Λ(τ)}τ . Richer in history: Parzen, Akaike,Kalman,
Faurre, De moor/Van Overschee, but Messier in results

Build up the data matrices Yk,0 and Yk,k, and use those to
reconstruct the internal states. One common way to do that is
using Canonical Correlation Analysis, solving

max
a,b

aTYk,0Y
T
k,kb√

aTYk,0YT
k,0a

√
bTYk,kYT

k,kb

• Solutions given by generalized eigenvalue problem.
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• Detection of n by number of significant eigenvalues of

Σ
−1/2
−− Σ−+Σ

−1/2
++ where


Σ−− = 1

NYk,0Y
T
k,0

Σ−+ = 1
NYk,0Y

T
k,k

Σ−− = 1
NYk,kY

T
k,k

• Basis given by corresponding eigenvectors.

• Again, compute matrices Ok and Ck, and realize a (A,C).
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Extensions

• Innovation representation.

• Reduced Realization.

• Weighting matrices.

• Positive Real and Stable.

• Relation to Kalman filter.

• SVD and LQ are robust and efficient techniques.
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Combined Stochastic - Deterministic

System{
Xt+1 = AXt + But + Vt

Yt = CXt + Dut +Wt,
∀t = −∞, . . . ,∞.

with

• {xt}t ⊂ Rn the state process.

• {ut}t ⊂ Rp the input process.

• {Vt}t ⊂ Rn the process noise with covariance R.

• {yt}t ⊂ Rq the output process.

• {Vt}t ⊂ Rn the measurement noise with covariance Q.

• A ∈ Rn×n the system matrix.

• B ∈ Rn×p the input matrix.

• C ∈ Rq×n the output matrix.

• D ∈ Rq×p the feed-through matrix.

Problem: Given {ut}t ⊂ Rp and {yt}t ⊂ Rq, find
(A,B,C,D,P,Q) and {xt}t.

SI-2013 K. Pelckmans Jan.-Mai, 2013 19



Basic equation

Yk,0 = OkX0 + ΨUk,0 + V

• Razor away U by oblique projection.

• Razor away V using appropriate instruments.

Algorithm:

• Build data matrices.

• Estimate Ok, or {xt}t.

• Recover (Â, B̂, Ĉ, D̂).

• Estimate P,Q from sample covariance of residuals.
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Extensions:

• Feedback - rank conditions.

• Bilinear (States × Inputs) and nonlinear systems
(Hammerstein).

• Recursive.

• Selection of the order.

• Statistical analysis.

• Finite data.
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Conclusions

To remember

• Problem.

• Subspace as extended realization.

• SVD and LQ.

• Stochastic.

• Combined Deterministic - Stochastic.

• Optimality?
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