
Chapter 10

Subspace Identification

”Given observations of m � 1 input signals, and p � 1 signals resulting from those
when fed into a dynamical system under study, can we estimate the internal dynamics
regulating that system?”

Subspace techniques encode the notion of the state as ’bottleneck between past and future’ using
a series of geometric operations on input-output sequences. They should be contrasted to the ideas
governing PEM approaches as described in Chapter 5.

Subspace algorithms make extensive use of the observability and controllability matrices and of
their structure.

10.1 Deterministic Subspace Identification

The class of subspace algorithms found their root in the methods for converting known sequences
of impulse response matrices (IRs), Transfer Function matrices (TFs) or covariance matrices into
a corresponding state-space system. Since those state-spaces satisfy the characteristics as encoded
in IRs, TFs or covariance matrices, they are referred to as ’realizations’ (not to be confused with

Given: An input signal {ut}nt=1

⇢ Rm and output signal {yt}nt=1

⇢ Rp,
both of length n, and satisfying an (unkown) deterministic state-space of
order d, or (

xt+1

= Axt +But

y = Cxt +Dut

(10.1)

where t = 1, . . . , n and x
0

is fixed.
Problem: Recover

(a) The order d of the unknown system.

(b) The unknown system matrices (A,B,C,D)

Figure 10.1: The problem a deterministic Subspace Identification algorithms aims to solve.
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10.1. DETERMINISTIC SUBSPACE IDENTIFICATION

’realizations’ of random variables as described in Chapter 5). The naming convention originates from
times where people sought quite intensively to physical ’realizations’ of mathematically described
electrical systems.

10.1.1 Deterministic Realization: IR2SS

Given a sequence of IR matrices {G⌧}⌧�0

with
P

⌧�0

kGk
2

< 1, consider the problem of finding
a realization S = (A,B,C,D). Since we know that G

0

= D, we make life easier by focussing on
the problem of recovering the matrices (A,B,C) from given sequence of IR matrices {G⌧}⌧�1

.

Let us start by defining the Block-Hankel matrix Hd0 2 Rd0p⇥d0m of degree d0 which will play a
central role in the derivation:
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(10.3)

where the limit is taken for d0 ! 1 (represented by the open ended ’. . . ’ in the matrix). Hence
the interpretation of the matrix H1 is that ’when presented the system with an input which drops
to 0 when going beyond t, then the block-Hankel matrix H1 computes the output of the system
after t’. That is, it gives the system output when the system is in free mode.

Lemma 10 (Factorization) Given a State-space system S = (A,B,C) (with D = 0), then

Hd = OdTT�1Cd, (10.4)

for any nonsingular transformation T 2 Rd⇥d. Moreover, we have the following rank conditions

rank(Hd)  max(rank(Od), rank(Cd))  d. (10.5)

Lemma 11 (Minimal Realization) Given a State-space system S = (A,B,C) (with D = 0)
with minimal state-dimension d, then we have for all d0 � d that

rank(Hd0) = d. (10.6)
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10.1. DETERMINISTIC SUBSPACE IDENTIFICATION

This result is directly seen by construction. However the implications are important: it says that
the rank of the block-Hankel matrix is equal to the minimal dimension of the states in a state-space
model which can exhibit the given behavior. That means that in using this factorization, we are
not only given the system-matrices, but as well the minimal dimension. Recall that the problem of
order estimation in PEM methods is often considered as a separate model selection problem, and
required in a senses the use of ad-hoc tools.

The idea of the Ho-Kalman realization algorithm is then that in case the block-Hankel matrix
Hd0 can be formed for large enough d0, the Singular Value Decomposition of this matrix let us
recover the observability matrix Od0 and the controllability matrix Cd0 (up to a transformation T).
These can in turn be used to extract the system matrices A,B,C (up to a transformation T). In
order to perform this last step, we need the following straightforward idea:

Proposition 2 (Recovering System Matrices) The observability matrix Od satisfies the fol-
lowing recursive relations

Od =
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The controlability matrix Cd satisfies the following recursive relations

Cd =
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That means that once the matrix Cd and Od are known, the system matrices (A,B,C) can be
recovered straightforwardly by selecting appropriate parts. Optimality of the SVD then ensures
that we will recover a minimal state space ’realizing’ the sequence of IR matrices {G⌧}⌧>0

. In full,
the algorithm becomes as follows.

Algorithm 1 (Ho-Kalman) Given d0 � d and the IRs {G⌧}d
0

⌧=0

, find a realization S = (A,B,C,D)
up to within a similarity transform T.

1. Set D = G
0

.

2. Decompose

3. Find A

4. Find B and C
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10.1. DETERMINISTIC SUBSPACE IDENTIFICATION

10.1.2 N4SID

Now we turn to the question how one may use the ideas of the Kalman-Ho algorithm in order to
find a realization directly from input-output data, rather than from given IRs. Again, this can be
done by performing a sequence of projections under the assumption that the given data obeys a
state-space model with unknown (but fixed) system matrices S = (A,B,C,D). This technique is
quite di↵erent from the PEM approach were the estimation problem is turned into an optimization
problem. To make the di↵erence explicit, we refer to the projection-based algorithms as Subspace
Identification (SID) algorithms. The first studied SID algorithm was (arguably) N4SID (niftily
pronounced as a californian plate as ’enforce it’). The abbreviation stands for ’Numerical algorithm
For Subspace IDentification’.

The central insight is the following expression of the future output of the system in terms of (i)
the unknown states at that time, and (ii) the future input signals. Formally, we define the matrices
representing ’past’ as
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and equivalently we define the matrices representing ’future’ as
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Now we are all set to give the main factorization from which the N4SID algorithm will follow.

Lemma 12 (N4SID) Assuming that a system S = (A,B,C,D) underlying the signals exists,
than there exist matrices F 2 Rmd0⇥pd0

and F 2 Rmd0⇥pd0
such that

Yf = XfOd0T
+UfG

d0T
(10.11)

= UpF+YpF
0 +UfG

d0T
. (10.12)

This really follows from working out the terms, schematically (again empty entries denote blocks
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of zeros):
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We see that the sequence of states {x}t�d0 can be written as a (finite) linear combination of the
matrices Up and Yf . Hereto, we interprete a similar linear relation
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Note that this step needs some care to let the indices match properly, i.e. we can only use the
signals between iteration d0, . . . , n� d0. As such the factorization follows readily.

This factorization gives us an equation connecting the ’past’ and ’future’. Moreover, note that
eq. (10.12) looks like a model which is linear in the unknown F,F0 and Gd0

, and we know by now
how to solve this one since we can construct the matrices Yf and Up,Yp,Uf . Indeed, using an OLS
estimator - or equivalent the orthogonal projection - lets us recover the unknown matrices, that
is, under appropriate rank conditions in order to guarantee that only a single solution exists. We
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10.2. STOCHASTIC SUBSPACE TECHNIQUES

proceed however by defining a shortcut to solving this problem in order to arrive at less expensive
implementations.

What is left to us is to decompose the term O = Xd0

f Od0T
in the state variables and the observ-

ability matrix. This however, we learned to do from Kalman-Ho’s algorithm (previous Subsection).
Indeed, an SVD decomposition of the matrix O gives us the rank d of the observability matrix,
together with a reduced rank decomposition from which {xt} and Od can be recovered (up to a
similarity transform T). Now it is not too di�cult to retrieve the system matrices S = (A,B,C,D).
A more robust way goes as follows: given the input and output signals, as well as the recovered
states, we know that those satisfy the state-space system and as such
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from which one can recover directly the matrices (A,B,C,D), for instance by solving a LS problem
or an Orthogonal projection as Z†

pZf . The N4SID algorithm is summarized as follows:

Algorithm 2 (N4SID) Given d0 � d and the signals u 2 Rpn and y 2 Rmn, find a realization
S = (A,B,C,D) up to within a similarity transform T.

1. Find Od.

2. Find the state sequence X

3. Find A,B,C,D

10.1.3 Variations on the Theme

Since its inception, almost decades of research yielded many important improvements of the algo-
rithm. Here we will review some of those, starting with a description of a family of related methods
going under the name of MOESP subspace identification algorithms.

MOESP

Intersection

Projection

10.2 Stochastic Subspace Techniques

10.2.1 Stochastic Realization: Cov2SS

Given a sequence of covariance matrices {⇤⌧ = E[YtYt+⌧ ]}⌧�0

with
P

⌧�0

k�⌧k2 < 1, can we find
a stochastic MIMO system S = (A,C) realizing those covariance matrices? More specifically, if
the realized system S = (A,C) were driven by zero-mean colored Gaussian noise {Wt}t and {Vt}t,
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10.2. STOCHASTIC SUBSPACE TECHNIQUES

Given: An input signal {yt}nt=1

⇢ Rp of length n, and satisfying an
(unkown) deterministic state-space of order d, or

(
xt+1

= Axt + vt

y = Cxt +wt

(10.16)

where t = 1, . . . , n and x
0

is fixed.
Problem: Recover

(a) The order d of the unknown system.

(b) The unknown system matrices (A,C).

Figure 10.2: The problem a stochastic Subspace Identification algorithms aims to solve.

the covariance matrices of the outputs are to match {⇤⌧ = E[YtYt+⌧ ]}⌧�0

. Ideas go along the line
as set out in the previous subsection.

Such series of covariance matrices might be given equivalently as a spectral density function
�(z). Here we use the following relation generalizing the z-transform
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�⌧ , (10.17)

and its inverse
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Z 1
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�(z)z�⌧dz. (10.18)

The key once more is to consider the stochastic processes representing past and future. Specifically,
given a process Y = (. . . , Yt�1
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both taking values as one-sided infinite vectors. The next idea is to build up the covariance matrices
associated to those stochastic processes. The devil is in the details here! The following (infinite
dimensional) matrices are block Toeplitz:
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and
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The (infinite dimensional) block Hankel matrix H is here defined as
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Now again we can factorize the matrix H into an observability part, and a controllability part.
That is define the infinite observability ’matrix’ corresponding with a stochastic MIMO system
S = (A,C) as
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and let the infinite controllability ’matrix’ of S = (A,C) be given as

C =
⇥
C⇤ AC⇤ A2C⇤ . . .

⇤
. (10.24)

Then we have again

Lemma 13 (Factorisation) Let H, C,O be infinite ’matrices’ as before associated with a stochas-
tic MIMO system S = (A,B). If the realization were driven by white noise we have for all ⌧ � 1
that

⇤⌧ = E[YtYt+⌧ ] =

(
⇤
0

⌧ = 0

CA⌧�1C⇤ ⌧ � 1.
(10.25)

Moreover
H = OC. (10.26)

10.3 Further Work on Subspace Identification

10.4 Implementations of Subspace Identification
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Chapter 11

Design of Experiments

”How to set up a data-collection experiment so as too guarantee accurately identified
models?”
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