
Chapter 2

Least Squares Rules

”Given a set of observations, which model parameters gives a model which approxi-
mates those up to the smallest sum of squared residuals?”

Least squares estimation serves as the blueprint and touchstone of most estimation techniques,
and ideas should be mastered by any student. The purpose of this chapter is to survey results, to
review the geometric insights and to elaborate on the numerical techniques used. In order to keep
the exposition as simple as possible (but no simpler), we suppress for the moment the ’dynamic’
nature of the studied systems, and focus on the static estimation problem.

2.1 Estimation by Optimizaztion

At first, let us introduce the main ideas behind di↵erent estimators. Informally:

We choose model parameters ✓̂ which explain the data as well as possible.

To formalize this, we need to think about the following ideas:

(Model): What is a good set of functions {f✓} which gives plausible models?

(Objective): In what sense do we need (formulate) the estimate be optimal?

(Optimization): How do we compute the minimization problem?

So the generic problem becomes

✓̂ = argmin
✓

Li(f✓(xi, ✓), yi). (2.1)

This formulation makes the fundamental transition from observed input-output behavior to internal
parameters which are not directly observed. Following the above discussion, this can be made
explicit in various ways. Some common choices are

LS : The archetypical Least Squares (LS) estimation problem solves

✓̂ = argmin
✓

nX

i=1

(f✓(xi)� yi)
2 (2.2)
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WLS : The Weighted Least Squares (WLS) estimation problem solves

✓̂ = argmin
✓

nX

i=1

wi (f✓(xi)� yi)
2 (2.3)

TA : The Tchebychev Approximation (TA) problem solves

✓̂ = argmin
✓

max
i=1,...,n

|f✓(xi)� yi| (2.4)

L1 : The L
1

estimation problem solves

✓̂ = argmin
✓

nX

i=1

|f✓(xi)� yi| (2.5)

L0 : A robust approximation problem solves

✓̂ = argmin
✓

nX

i=1

|f✓(xi)� yi|
0

(2.6)

where |z|
0

equals one if z 6= 0, and |z|
0

= 0 if and only if z = 0.

It depends on application specific considerations which one to choose. For example, if one wants
to model in the context of peaks which are important to catch one may prefer (2.4). Fig. (2.1)
exemplifies the di↵erent estimators.

2.2 Least Squares (OLS) estimates

2.2.1 Models which are Linear in the Parameters

This chapter studies a classical estimators for unknown parameters which occur linearly in a model
structure. Such model structure will be referred to as Linear In the Parameters, abbreviated as
LIP. At first we will give some examples in order to get an intuition about this class. Later sections
then discuss how those parameters can be estimated using a least square argument. It is important
to keep in the back of your mind that such least squares is not bound to LIP models, but then one
ends up in general with less convenient (numerical, theoretical and conceptual) results.

Definition 2 (LIP) A model for {yi}i is linear in the unknowns {✓j}dj=1

if for each yi : i =

1, . . . , n, one has given values {xij}dj=1

such that

yi =
dX

j=1

xij✓j + ei, (2.7)

and the terms {ei} are in some sense small. Such model can be summarized schematically as
2
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Figure 2.1: An example of an estimation problem. Assume that {f✓ : R ! R} equals the straight
lines passing through the origin, with slope ✓ 2 R. Assume that there are n = 10 samples (indicated
by the black dots), with the 9th one containing a disturbance. Then the di↵erent estimators would
give di↵erent solutions: (blue dashed-dotted line): the best ✓ according to the least squares criterion
as in eq. (2.2), (red dashed line): the best ✓ according to the TA criterion as in eq. (2.4), (black
solid line): the best ✓ according to the L

0

criterion as in eq. (2.6).
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2.2. LEAST SQUARES (OLS) ESTIMATES

or in matrix notation

y = X✓ + e. (2.9)

where the matrix X 2 Rn⇥d, the vectors ✓ 2 Rd and e 2 Rn are as in eq. (2.8). In case d is ’small’
(compared to n), one refers to them as the parameter vector.

If the input-output data we try to model can be captured in this form, the resulting problems ,
algorithms, analysis and interpretations become rather convenient. So the first step in any modeling
task is to try to phrase the model formally in the LIP shape. Later chapters will study also
problems who do not admit such parameterization. However, the line which models admit such
parameterizations and which do not is not always intuitively clear. We support this claim with
some important examples.

Example 1 (Constant Model) Perhaps the simplest example of a linear model is

yt = ✓ + et. (2.10)

where ✓ 2 R is the single parameter to estimate. This can be written as in eq. (2.7) as

yt = xT ✓ + et. (2.11)

where xt = 1 2 R, or in vector form as

y = 1n✓ + e, (2.12)

where y = (y
1

, . . . , yn)T 2 Rn, e = (e
1

, . . . , en)T 2 Rn and 1n = (1, . . . , 1)T 2 Rn. Hence, the
’inputs’ take the constant value 1. This thinking is also used in order to express a model of d inputs
Xt = xT

t 2 Rd for all t = 1, . . . , n with a constant intercept term ✓
0

given as

yt = xT
t ✓ + ✓

0

+ et. (2.13)

In matrix form one has

y = X0✓0 + e, (2.14)

where now ✓0 = (✓T ✓
0

)T 2 Rd+1 and X0 =
⇥
X 1n

⇤
.

Example 2 (Polynomial Trend) Assume the output has a polynomial trend of order smaller
than m > 0, then it is good practice to consider the model

yt =
dX

j=1

xtj✓j +
mX

k=0

tk✓0k + et. = xT
t ✓ + zT (t)✓0 + et, (2.15)

where z(t) = (1, t, t2, . . . , tm)T 2 Rm+1 and ✓0 = (✓0
0

, ✓0
1

. . . , ✓m)T 2 Rm+1. Again, in matrix
notation one has

y = X0✓0 + e. (2.16)

where X0
t = (xT

t , 1, t, . . . , t
m) and ✓0 = (✓T , ✓0

0

, ✓0
1

, . . . , ✓0m)T 2 Rd+m+1.
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Example 3 (A Weighted sum of Exponentials) It is crucial to understand that models which
are linear in the parameters are not necessary linear in the covariates. For example, consider a
nonlinear function

yt = f(xt) + et, (2.17)

where f : Rd ! R is any function. Then one can find an arbitrary good approximation to this model

yt =
mX

k=1

'k(xt)✓k + et = '(xt)✓ + et, (2.18)

where {�
1

, . . . ,�m} ⇢ {f : Rd ! R} are an appropriate set of basis functions. Then '(x) =

('
1

(x), . . . ,'m(x))T 2 Rm. There are ample ways on which form of basis functions to consider. A
method which often works is to work with exponential functions defined for any k = 1, . . . ,m as

'k(x) = exp

✓
�kx� xkk

�k

◆
, (2.19)

where �k > 0 and xk 2 Rd is chosen suitably. Specific examples of basis functions are the orthogonal
polynomials (e.g. Chebychev, Legendre or Laguerre polynomials). More involved sets lead to methods
as wavelets, splines, orthogonal functions, or kernel methods.
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Figure 2.2: A Simple Example of a representation of a function f(x) in panel (a) as the sum of two
basis functions �

1

(b) and �
2

(c).
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Example 4 (Dictionaries) Elaborating on the previous example, it is often useful to model

yt = f(xt) + et, (2.20)

as

yt =
mX

k=1

fk(xt)✓k + et, (2.21)

where the set {f
1

, . . . , fm} is assumed to contain the unknown function f : Rd ! R up to a scaling.
If this is indeed the case, and the f / fj then eq. (2.20) can be represented as

yt = Fm(xt)eka+ et, (2.22)

where a 6= 0 is a constant, ek 2 {0, 1}m is the kth unit vector, that is ek = (0, . . . , 1 . . . , 0)T

with unit on the kth position, and zero elsewhere. Fm denotes the dictionary, it is Fm(x) =

(f
1

(x), . . . , fm(x))T 2 Rm for all x 2 Rd.

In practice, if the model which is proposed to use for the identification experiment can be written
as an expression which is linear in the parameters, then the subsequent analysis, inference and
interpretation are often rather straightforward. The first challenge for successful identification is
hence to phrase the problem in this form. It is however not always possible to phrase mathematical
models in this form as indicated in the following example.

Example 5 (Nonlinear in the Parameters) Consider the following model for observations {yt}nt=1

yt = a sin(bt+ c), (2.23)

where (a, b, c) are unknown parameters. Then it is seen that the model is linear in a, but not in b, c.
A way to circumvent this is to come up with plausible values {b

1

, . . . , bm} for b, and {b
1

, . . . , bm}
for c, and to represent the model as

yt =
mX

i,j=1

ai,j sin(bit+ cj), (2.24)

where the model (2.23) is recovered when ai,j = a when bi = b and cj = c, and is zero otherwise.

Example 6 (Quadratic in the Parameters) Consider the following model for observations {(yt, xt)}nt=1

yt = axt + et + bet�1

, (2.25)

where {et}t are unobserved noise terms. Then we have cross-terms {bet�1

} of unknown quantities,
and the model falls not within the scope of models which are linear in the parameters.

Other examples are often found in the context of grey-box models where theoretical study (often
expressed in terms of PDEs) decide where to put the parameters. Nonlinear modeling also provide
a fertile environment where models which are nonlinear in the parameters thrive. One could for
example think of systems where nonlinear feedback occurs.
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2.2.2 Ordinary Least Squares (OLS) estimates

Example 7 (Univariate LS) Suppose we have given n samples {(xi, yi)}ni=1

, where xi, yi 2 R.
We suspect that they are strongly correlated in the sense that there is an unknown parameter ✓ 2 R
such that yi ⇡ ✓xi for all i = 1, . . . , n. We hope to find a good approximation to ✓ by solving the
following problem

✓̂ = argmin
✓2R

nX

i=1

(yi � ✓xi)
2. (2.26)

At this stage, we have done the most work - i.e. converting the practical problem in a mathematical
one - and what is left is mere technical. In this particular case, the solution is rather straightforward:
first note that eq. (2.26) requires us to solve an optimization problem with (i) optimization criterion
Jn(✓) =

Pn
i=1

(yi � ✓xi)2, and (ii) ✓ 2 R the variable to optimize over. It is easily checked that in

general there is only a single optimum, and this one is characterized by the place where
@Jn(✓)

@✓
= 0.

Working this one out gives

�2
nX

i=1

xiyi + 2
nX

i=1

xixi✓̂ = 0, (2.27)

or

✓̂ =

Pn
i=1

xiyiPn
i=1

x2

i

, (2.28)

That is, in case
Pn

i=1

x2

i 6= 0! This is a trivial remark in this case, but in general such conditions
will play a paramount role in estimation problems.

Example 8 (Average) Consider the simpler problem where we are after a variable ✓ which is
’close’ to all datasamples {yi}ni=1

taking values in R. Again, we may formalize this as

✓̂ = argmin
✓2R

nX

i=1

(yi � ✓)2. (2.29)

Do check that the solution is given as

✓̂ =
1

n

nX

i=1

yi. (2.30)

In other words, the sample average is the optimal least squares approximation of a bunch of samples.
This is no coincidence: we will explore the relation between sample averages, means and least squares
optimal estimators in depth in later chapters. Note that in this particular case, there is no caveat
to the solution, except for the trivial condition that n > 0.

The extension to more than one parameter is much easier by using matrix representations.

Example 9 (Bivariate Example) Assume that we have a set of n > 0 couples {(xi,1, xi,2, yi)}ni=1

to our disposition, where xi,1, xi,2, y 2 R. Assume that we try to ’fit a model’

✓
1

xi,1 + ✓
2

xi,2 + ei = yi, (2.31)
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Figure 2.3: Illustration of the squared loss function in function of ✓. The arrow indicates ✓̂ where
the minimum to J(✓) is achieved. Panel (a) shows the univariate case, or ✓ 2 R as in Example 2.
Panel (b) shows the bivariate case, or ✓ 2 R2 as in Example 3.

where the unknown residuals {ei}ni=1

are thought to be ’small’ in some sense. The Least Squares
estimation problem is then written as

(✓̂
1

, ✓̂
1

) = argmin
✓1,✓22R

nX

i=1

(yi � ✓
1

xi1 � ✓
2

xi2)
2. (2.32)

This can be written out in matrix notation as follows. Let us introduce the matrix and vectors
X

2

2 Rn⇥2, y, e 2 Rn and ✓ 2 R2 as

X
2

=

2

6664

x
1,1 x

1,2

x
2,1 x

2,2

...
...

xn,1 xn,2

3

7775
, y =

2

6664

y
1

y
2

...
yn

3

7775
, e =

2

6664

e
1

y
2

...
en

3

7775
, ✓ =


✓
1

✓
2

�
. (2.33)

Then the model (2.31) can be written as

X
2

✓ + e = y. (2.34)

and the Least Squares estimation problem (2.32) becomes

✓̂ = argmin
✓2R2

Jn(✓) = (X
2

✓ � y)T (X
2

✓ � y) (2.35)

where the estimate ✓̂ = (✓̂
1

, ✓̂
2

)T 2 R2 is assumed to be unique. Taking the derivative of Jn(✓) and
equating it to zero (why?) gives the following set of linear equations characterizing the solution:

(XT
2

X
2

)✓ = XTy. (2.36)

This set of linear equations has a unique solution in case the matrix (XT
2

X
2

) is su�ciently ’infor-
mative’. In order to formalize this notion let us first consider some examples:

1. Assume xi,2 = 0 for all i = 1, . . . , n.
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2. Assume xi,2 = xi,1 for all i = 1, . . . , n

3. Assume xi,2 = axi,1 for all i = 1, . . . , n, for a constant a 2 R.

How does the matrix

(XT
2

X
2

) =

Pn
i=1

xi,1xi,1

Pn
i=1

xi,1xi,2Pn
i=1

xi,2xi,1

Pn
i=1

xi,2xi,2

�
, (2.37)

look like? Why does (2.36) give an infinite set of possible solutions in that case?

This reasoning brings us immediately to the more general case of d � 1 covariates. Consider
the model which is linear in the parameters

yi =
dX

j=1

✓jxi,j + ei, 8i = 1, . . . , n. (2.38)

Defining

Xd =

2

64
xT
1

...
xn

3

75 =

2

64
x
1,1 . . . x

1,d

...
...

xn,1 . . . xn,d

3

75 , (2.39)

or Xd 2 Rn⇥d with Xd, i,j = xi,j . Note the orientation (i.e. the transposes) of the matrix as
di↵erent texts use often a di↵erent convention. Equivalently, one may define

y = Xd✓ + e, (2.40)

where ✓ = (✓
1

, . . . , ✓d)T 2 Rd and y = (y
1

, . . . , yn)T 2 Rn and e = (e
1

, . . . , en)T 2 Rn. The Least
Squares estimation problem solves as before

min
✓2Rd

Jn(✓) = (Xd✓ � y)T (Xd✓ � y) (2.41)

where the estimate is now ✓̂ = (✓̂
1

, . . . , ✓̂d)T 2 Rd. Equating the derivative to zero gives a charac-
terization of a solution ✓ in terms of a set of linear equations as

(XT
d Xd)✓ = XT

d y, (2.42)

this set of equations is referred to as the normal equations associated to (2.41). Now it turns out
that the condition for uniqueness of the solution to this set goes as follows.

Lemma 1 Let n, d > 0, and given observations {(xi,1, . . . , xi,d, yi)}ni=1

satisfying the model (2.40)
for a vector e = (e

1

, . . . , en)T 2 Rn. The solutions {✓} to the optimization problem (2.41) are
characterized by the normal equations (2.42). This set contains a single solution if and only if (i↵)
there exists no w 2 Rd with kwk

2

= 1 such that (XT
d Xd)w = 0d.

Proof: At first, assume there exists a w 2 Rd with kwk
2

= 1 such that (XT
d Xd)w = 0d. Then it

is not too di�cult to derive that there has to be many di↵erent solutions to (2.41). Specifically, let
✓ be a solution to the problem (2.41), then so is ✓ + aw for any a 2 R.

Conversely, suppose there exists two di↵erent solutions, say ✓ and ✓0, then w 6= 0d is such that
(XT

d Xd)w = 0d. This proofs the Lemma.
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⇤

It is interesting to derive what the minimal value J(✓̂) will be when the optimum is achieved.
This quantity will play an important role in later chapters on statistical interpretation of the result,
and on model selection. Let’s first consider a simple example:

Example 10 (Average, Ct’d) Consider the again the case where we are after a variable ✓ which
is ’close’ to all datasamples {yi}ni=1

taking values in R, or

✓̂ = argmin
✓2R

J(✓) =
nX

i=1

(yi � ✓)2. (2.43)

The solution is characterized as ✓̂ = 1

n

Pn
i=1

yi. Then the achieved minimal value J(✓̂) equals

J(✓̂) =
nX

i=1

(yi � ✓̂)2 =
nX

i=1

y2i � 2
nX

i=1

yi✓̂ + ✓̂2 =
nX

i=1

y2i �
 

nX

i=1

yi

!
2

. (2.44)

as verified by straightforward calculation.

In general, the value J(✓̂) is expressed as follows.

2.2.3 Ridge Regression

What to do in case multiple solutions exists? It turns out that there exists two essentially di↵erent
approaches which become almost as elementary as the OLS estimator itself. we consider again the
estimators solving

⌦ = argmin
✓2Rd

Jn(✓) = (Xd✓ � y)T (Xd✓ � y), (2.45)

where ⌦ ⇢ Rd is now a set.

• Select the smallest solution amongst the set of all solutions ⌦.

• Modify the objective such that there is always a unique solution.

The first approach is very much a procedural approach, and details will be given in the section
about numerical tools. It is noteworthy that such approach is implemented through the use of the
pseudo-inverse.

The second approach follows a more general path. In its simplest form the modified optimization
problem becomes

min
✓2Rd

J�
n(✓) = (Xd✓ � y)T (Xd✓ � y) + �✓T ✓, (2.46)

where � � 0 regulates the choice of how the terms (i) kXd✓ � yk2
2

and (ii) k✓k2
2

are traded o↵. If
� is chosen large, one emphasizes ’small’ solutions, while the corresponding first term (i) might be
suboptimal. In case � ⇡ 0 one enforces the first term to be minimal, while imposing a preference on
all vectors {✓}minimizing this term. It is easy to see that in case � > 0 there is only a single solution
to (2.46). Indeed equating the derivative of (2.46) to zero would give the following characterization
of a solution ✓ 2 Rd

(XT
d Xd + �Id)✓ = XT

d y, (2.47)
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and it becomes clear that no w 2 Rd with kwk
2

= 1 exist such that (XT
d Xd + �Id)w = 0d. in

case there is only a single ✓ which achieves the minimum to kXd✓ � yk2
2

, a nonzero � would give a
slightly di↵erent solution to (2.46), as opposed to this ✓. It would be up to the user to control this
di↵erence, while still ensuring uniqueness of the solution when desired.

Recently, a related approach came into attention. Rather than adding a small jitter term ✓T ✓,
it is often advantageous to use a jitter term k✓k

1

=
Pd

j=1

|✓j |. The objective then becomes

min
✓2Rd

J�
n(✓) = (Xd✓ � y)T (Xd✓ � y) + �k✓k

1

. (2.48)

The solution to this problem can be computed e�ciently using tools of numerical optimization as
surveyed in Chapter 15. Why to prefer (2.48) over (2.46)? Denote the estimates resulting from
solving (2.46) as ✓̂

2

, and the estimates based on the sameX,y obtained by solving (2.48) as ✓̂
1

. Then
the main insight is that the latter will often contain zero values in the vector ✓̂

1

. Those indicate
often useful information on the problem at hand. For example, they could be used for selecting
relevant inputs, orders or delays. Solution ✓̂

2

in contrast will rarely contain zero parameters. But
then, it is numerically easier to solve (2.46) and to characterize theoretically the optimum.

2.3 Numerical Tools

The above techniques have become indispensable tools for researchers involved with processing
data. Their solutions are characterized in terms of certain matrix relations. The actual power of
such is given by the available tools which can be used to solve this problems numerically in an
e�cient and robust way. This section gives a brief overview of how this works.

2.3.1 Solving Sets of Linear Equations

A central problem is how a set of linear equations can be solved. That is, given coe�cients
{aij}i=1,...,d,j=1,...,d0 and {bi}di=1

, find scalars {✓i 2 R}d0

i=1

such that

8
>><

>>:

a
11

✓
1

+ . . . a
1d0✓d0 = b

1

...

ad1✓1 + . . . add0✓
1

= bd.

(2.49)

This set of linear equations can be represented in terms of matrices as b = (b
1

, . . . , bd)T 2 Rd and

A =

2

64
a
11

. . . a
1d0

...
...

ad1 . . . add0

3

75 . (2.50)

The set of linear equations is then written shortly as

A✓ = b. (2.51)

Now we discriminate between 3 di↵erent cases:
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d < d0 Then the matrix A looks fat, and the system is underdetermined. That is, there are an infinite
set of possible solutions: there are not enough equality conditions in order to favor a single
solution.

d > d0 Then the matrix A looks tall, and the system is in general overdetermined. That is, there is in
general no solution vector ✓ = (✓

1

, . . . , ✓d0)T 2 Rd0
which satisfies all equations simultaneously.

Note that in certain (restrictive) conditions on the equality constraints, it is possible for a
solution to exist.

d = d0 This implies that A 2 Rd⇥d is square. In general, there is exactly one vector ✓ = (✓
1

, . . . , ✓d) 2
Rd which obeys all the equality constraints at once. In some cases this solution is however
not unique.

As explained in the previous section, a vector ✓ 2 Rd0
can satisfy more than d0 equalities (i.e.

d > d0) only when at least one of the equalities can be written as a linear combination of the other
equalities. Numerical solutions to solve this system of equations include the Gauss Elimination or
the Gauss-Newton algorithms. It is found that both theoretical as well as practical advantages are
achieved when using a Conjugate Gradient Algorithm (CGA). Plenty of details of such schemes can
be found in standard textbooks on numerical analysis and optimization algorithms, see e.g. [].

In case that there is no exact solution to the set of equality constraints, one can settle for the
next best thing: the best approximate solution. If ’best’ is formalized in terms of least squares
norm of the errors needed to make the equalities hold approximatively, one gets

min
✓

dX

i=1

0

@
dX

j=1

aij✓j � bi

1

A
2

= min
✓

kA✓ � bk2
2

. (2.52)

which can again be solved as ... an OLS problem, where the solution in turn is given by solving
according normal equations ATA✓ = ATb of size d0.

A crucial property of a matrix is its rank, defined as follows.

Definition 3 (Rank) A matrix A 2 Cn⇥d with n � d is rank-deficient if there exists a nonzero
vector x 2 Cd such that

Ax = 0n (2.53)

where 0n 2 Rn denotes the all-zero vector. Then the rank of a matrix is defined as the number of
nonzero linear independent vectors {x

1

, . . . ,xr} ⇢ Rd which have that Axi 6= 0n, or

rank(A) = max
��{xi 2 Rd s.t. Axi 6= 0n,x

T
i x = �i�j , 8i, j = 1, . . . , r}

��  min(n, d). (2.54)

2.3.2 Eigenvalue Decompositions

The previous approaches are mostly procedural, i.e. when implementing them the solution is com-
puted under suitable conditions. However, a more fundamental approach is based on characterizing
the properties of a matrix. In order to achieve this, the notion of a n Eigen Value Decomposition
(EVD) is needed.
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Definition 4 (Eigenpair) Given a matrix A 2 Cd0⇥d which can contain complex values. Then a
vector x 2 Rd with kxk

2

= 1 and corresponding value � 2 C constitutes an eigenpair (x,�) 2 Cd⇥C
if they satisfy

Ax = �x, (2.55)

That is, if the matrix A applied to the vector x transforms into a rescaled version the same vector.
It is intuitively clear that working with such eigenpairs simplifies an analysis since it reduces to
working with scalars instead. Suppose we have d0 such eigenpairs {(xi,�i)}ni=1

, then those can be
represented in matrix formulation as

A
⇥
x
1

, . . . ,xd0
⇤
=
⇥
�
1

x
1

, . . . ,�d0xd0
⇤
=
⇥
x
1

, . . . ,xd0
⇤
diag(�

1

, . . . ,�d0), (2.56)

or
AX = X⇤. (2.57)

where ⇤ = diag(�
1

, . . . ,�d0) 2 Cd0⇥d0
is a diagonal matrix, and X =

⇥
x
1

, . . . ,xd0
⇤
=
⇥
x
1

, . . . ,xd0
⇤
2

Rd⇥d0
.

The eigenvalues have a special form when the matrix A has special structure. The principal
example occurs when A 2 Cd⇥d and A = A⇤, i.e. the matrix is Hermitian. In case A 2 Rd⇥d, this
means that A = AT is squared and symmetric. In both above cases we have that

(Real) All eigenvalues {�i}di=1

are real valued.

(Ortho) All eigenvectors are orthonormal to each other, or xT
i xj = �i�j .

Such orthonormal matrices are often represented using the symbol U, here for example we have
that X = U. The last property means that UTU = Id, where Id = diag(1, . . . , 1) 2 {0, 1}d⇥d is the
identity matrix of dimension d. But it also implies that UUT = U(UTU)UT = (UUT )2. Then,
the only full-rank matrix C 2 Rd⇥d which satisfies the problem CC = C is Id, such that we have
also that UUT = Id. As such we can write

UTAU = ⇤. (2.58)

That is, the matrix of eigenvectors of a symmetric matrix diagonalizes the matrix. The proof of
the above facts are far from trivial, both w.r.t. existence of such eigenpairs as well as concerning
the properties of the decomposition, and we refer e.g. to [9], Appendix A for more information and
pointers to relevant literature. Then we define the concepts of definiteness of a matrix as follows.

Definition 5 (Positive Definite Matrices) A square matrix A 2 Rd⇥d is called Positive Defi-
nite (PD) i↵ one has for all vectors x 2 Rd that

xTAx > 0. (2.59)

A matrix A = A⇤ is called Positive Semi-Definite (PSD) i↵ one has for all vectors v 2 Rd that

xTAx � 0. (2.60)

The notation A ⌫ 0 denotes the A is PSD, and A � 0 means that A is PD.
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In the same vein, one defines negative definite, negative semi-definite and non-definite matrices.
It turns out that such properties of a squared matrix captures quite well how di↵erent matrices
behave in certain cases.

Lemma 2 (A PD Matrix) A matrix A = A⇤ 2 Cd⇥d is positive definite if any of the following
conditions hold:

(i) If all eigenvalues {�i} are strictly positive.

(ii) If there exist a matrix C 2 Rn⇥d of rank rank(A) where

A = CTC. (2.61)

(iii) If the determinant of any submatrix of A is larger than zero. A submatrix of A is obtained
by deleting k < d rows and corresponding columns of A.

This decomposition does not only characterize the properties of a matrix, but is as well optimal
in a certain sense.

Lemma 3 (Rayleigh Coe�cient) Let �
1

� · · · � �d be the ordered eigenvalues of a matrix
A = AT 2 Rd⇥d. Then

�n = min
x

xTAx

xTx
, (2.62)

and this minimum is achieved when x / x
1

, that is, is proportional to an eigenvector corresponding
to a minimal eigenvalue.

�n = maxmin
x

xTAx

xTx
, (2.63)

Moreover, one has for all i = 1, . . . , d that

�i = max
W2Rd⇥(d�i)

min
x:W

T
x=0

xTAx

xTx
= min

W2Rd⇥(i�1)
max

x:W

T
x=0

xTAx

xTx
, (2.64)

which is known as the Courant-Fischer-Weyl min-max principle.

This is intuitively seen as

�i = xT
i Axi =

xT
i Axi

xT
i xi

, xix
T
j , 8j 6= i, (2.65)

for all i = 1, . . . , d, by definition of an eigenpair. Equation (2.64) implies that the eigenvectors are
also endowed with an optimality property.

2.3.3 Singular Value Decompositions

While the EVD is usually used in case A = A⇤ is Hermitian and PSD, the related Singular Vector
Decomposition is used when A 2 Cn⇥d is rectangular.
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Definition 6 (Singular Value Decomposition) Given a matrix A 2 Cn⇥d, the Singular Value
Decomposition (SVD) is given as

A = U⌃V⇤, (2.66)

where U = (u
1

, . . . ,un) 2 Cn⇥n and V = (v
1

, . . . ,vd) 2 Cd⇥d are both unitary matrices, such
that UTU = UUT = In and VTV = VVT = Id. The matrix ⌃ 2 Rn⇥d which is all zero except
for the elements ⌃ii = �i for i = 1, . . . ,min(n, d). Here, {�i} are the singular vectors, and the
corresponding vectors {ui} ⇢ Cn and {vi} ⇢ Cd are called the left- and right singular vectors
respectively.

The fundamental result then goes ass follows.

Lemma 4 (Existence and Uniqueness) Given a matrix A 2 Cn⇥d, the Singular Value Decom-
position (SVD) always exists and is unique up to linear transformations of the singular vectors
corresponding to equal singular values.

This implies that
rank(A) = |{�i 6= 0}| , (2.67)

that is, the rank of a matrix equals the number of nonzero singular values of that matrix. The
intuition behind this result is that the transformations U and V do not change the rank of a matrix,
and the rank of ⌃ equals by definition the number of non-zero ’diagonal’ elements. Similarly, the
’best’ rank r approximation of a matrixA can be computed explicitly in terms of the SVD. Formally,

B = argmin
B2Cn⇥d

kA�BkF s.t. rank(B) = r. (2.68)

where the Frobenius norm of a matrix A is defined as kAkF = tr(ATA). For simplicity, assume that
the singular values which are not equal to zero are distinct, and sort them as �

(1)

> . . .�
(d0

)

� 0
where min(n, d) � d0 > r. This notation is often used: a

1

, . . . , an denoted a sequence of num-
bers, and a

(1)

, . . . , a
(n) denotes the corresponding sorted sequence of numbers. The unique matrix

optimizing this problem is given as

B̂ =
rX

i=1

�
(i)u(i)v

⇤
(i). (2.69)

where u
(i),v(i) are the left- and right singular vector corresponding to eigenvalue �

(i). In matrix
notation this becomes

B̂ =
⇥
U

1

U
2

⇤ ⌃r 0
0 0

� 
V⇤

1

V⇤
1

�
= U⌃

(r)V
⇤, (2.70)

where ⌃r denote the matrix consisting of the first r rows and columns of ⌃, and ⌃
(r) 2 Rn⇥d equals

⌃ except for the singular values �
(r+1)

,�
(r+2)

, . . . which are set to zero. This result appeals again
to the min-max result of the EVD. That is, the EVD and SVD decomposition are related as

Proposition 1 (SVD - EVD) Let A 2 Cn⇥d, let then A = U⌃V⇤ be the SVD, then

ATA = V⇤⌃TUUT⌃V = V⇤(⌃T⌃)V. (2.71)
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Let XA = ⇤X be the EVD of the PSD Hermitian matrix ATA. Then ⌃T⌃ = ⇤ and X = V. That
is �2

i = �i for all i = 1, . . . ,min(d, n) and �i = 0 otherwise. Similarly,

AAT = U⌃V⇤V⌃TU⇤ = U(⌃⌃T )U. (2.72)

and V as such contains the eigenvectors of the outer-product AAT , and the subsequent eigenvalues
are �i = �2

i for all i = 1, . . . ,min(d, n) and �i = 0 otherwise

2.3.4 Other Matrix Decompositions

There exist a plethora of other matrix decompositions, each with its own properties. For the sake
of this course the QR-decomposition is given. Let A = AT 2 Rd⇥d be a symmetric positive definite
matrix (i.e. without zero singular values). Then we can decompose the matrix A uniquely as the
product of an uppertriangular matrix R 2 Rd⇥d and a unitary matrix Q 2 Rd⇥d or

A =

2

64
q
11

. . . q
1d

...
...

qd1 . . . qdd

3

75

2

64
r
11

. . . r
1d

. . .
...

0 rdd

3

75 = QR, (2.73)

where QQT = QTQ = Id.

2.3.5 Indirect Methods

Let us return to the question how to solve the normal equations (2.42) associated to a least squares
problem, given as

(XTX)✓ = XTy. (2.74)

Rather than solving the normal equations directly by using numerical techniques, one often resorts
to solving related systems. For example in order to achieve numerical stable results, to speed up
multiple estimation problems. Some common approaches go as follows

QR: If A✓ = b is a set of linear equations where A is upper-triangular, then the solution ✓ can
be found using a simple backwards substitution algorithm. But the normal equations can be
phrased in this form using the QR decomposition of the covariance matrix as (XTX) = QR
where Q is orthonormal (unitary) and R is upper-triangular. Hence

(XTX)✓ = (XTy) , QT (XTX)✓ = QT (XTy) , R✓ = b, (2.75)

where b = QT (XTy). Hence the solution ✓ can then be found by backwards substitution.
The QR decomposition of the matrix (XTX) can be found using a Gram-Schmid algorithm, or
using Householder or Givens rotations. Such approaches have excellent numerical robustness
properties.

SVD: Given the SVD of the matrix X 2 Rn⇥d as X = U⌃VT , and assume that all the singular
values {�i > 0} are strictly positive. Then the solution ✓n to (2.74) is given as

(XTX)✓ = (XTy) , (V⌃TUTU⌃VT )✓ = V⌃TUTy , ✓ = V⌃�1UTy, (2.76)

where ⌃�1 = diag(��1

1

, . . . ,��1

d ) 2 Rd⇥d and the inverses exist by assumption.
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†: In case the matrix X is not full rank, one has to modify the reasoning somewhat. That is, it
is not guaranteed that there exists a solution ✓n to the normal equations of eq. (2.74). And
in case that a solution ✓n exists, it will not be unique: assume that a 2 Rd is a nonzero vector
such that Xa = 0, then ✓n + a solves the normal equations as well as

(XTX)(✓n + an) = (XTX)✓n = XTy. (2.77)

So it makes sense in case X is rank-deficient to look for a solution ✓n which is solves the
normal equations as good as possible, while taking the lowest norm of all equivalent solutions.
From properties of the SVD we have that any vector ✓ 2 Rd solving the problem as well as
possible is given as

✓ =
rX

i=1

v
(i)�

�1

(i) u
T
(i)y +

d�rX

j=1

ajv
(r+j)aju

T
(r+j)y, (2.78)

where {�
(1)

, . . . ,�
(r)} denote the r non-zero singular values. The smallest solution ✓ in this

set is obviously the one where a
1

= · · · = ad�r = 0, or

✓n =
rX

i=1

v
(i)�

�1

(i) u
T
(i)y. (2.79)

Note that this is not quite the same as the motivation behind ridge regression where we want
to find the solution trading the smallest norm requirement with the least squares objective.

From a practical perspective, the last technique is often used in order to get the best numerically
stable technique. In common software packages as MATLAB, solving of the normal equations can
be done using di↵erent commands. The most naive one is as follows:

>> theta = inv(X’*X) * (X’y)

But since this requires the involved inversion of a square matrix, a better approach is

>> theta = (X’*X) \ (X’y)

which solves the set of normal equations. This approach is also to be depreciated as it requires the
software to compute the matrix (XTX) explicitly, introducing numerical issues as a matrix-matrix
product is known to increase rounding errors. The better way is

>> theta = pinv(X)*Y

MATLAB implements such technique using the shorthand notation

>> theta = X \ Y

2.4 Orthogonal Projections

Let us put our geometric glasses on, and consider the calculation with vectors and vector spaces.
A vector space A ⇢ Rm generated by a matrix A 2 Rn⇥m is defined as

A =

8
<

:a
��� a =

mX

j=1

wjA
j = Aw, 8w 2 Rm

9
=

; . (2.80)
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Consider the following geometric problem: ”Given a vector x 2 Rn, and a linear space A, extract
from x the contribution lying in A.” Mathematically, this question is phrased as a vector which can
be written as x̂ = Aw, where

(x�Aw)TA = 0, (2.81)

saying that ”the remainder x� x̂ cannot contain any component that correlate with A any longer”.
The projection Aw for this solution becomes as such

Aw = A(ATA)�1Ax, (2.82)

that is, if the matrix (ATA) can be inverted. Yet in other words, we can write that the projection
x̂ of the vector x onto the space spanned by the matrix A can be written as

x̂ = ⇧
A

x = A
�
(ATA)�1Ax

�
= (A(ATA)�1A)x, (2.83)

and the matrix ⇧
A

= (A(ATA)�1A) is called the projection matrix. Examples are

• The identity projection ⇧
A

= In, projecting any vector on itself.

• The coordinate projection ⇧
A

= diag(1, 0, . . . , 0), projecting any vector onto its first coordi-
nate.

• Let ⇧
w

= 1

w

T
w

(wwT ) for any nonzero vectorw 2 Rn, then ⇧
w

projects any vector orthogonal
onto w.

• In general, since we have to have that ⇧
A

⇧
A

x = ⇧
A

x for all x 2 Rn (idempotent property),
a projection matrix ⇧

A

has eigenvalues either 1 or zero.

x

x/A

x/A

Figure 2.4: Orthogonal projection of vector x on the space A, spanned by vector a;

2.4.1 Principal Component Analysis

Principal Component Analysis (PCA) aims at uncovering the structure hidden in data. Specifically,
given a number of samples D = {xi}ni=1

- each xi 2 Rd - PCA tries to come up with a shorter
description of this set using less than d features. In that sense, it tries to ’compress’ data, but
it turns out that this very method shows up using other motivations as well. It is unlike a Least
Squares estimate as there is no reference to a label or an output, and it is sometimes referred to
as an unsupervised technique, [?]. The aim is translated mathematically as finding that direction
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Figure 2.5: Schematic Illustration of an orthogonal projection of the angled upwards directed vector
on the plane spanned by the two vectors in the horizontal plane.

w 2 Rd that explains most of the variance of the given data. ’Explains variance’ of a vector is
encoded as the criterion

Pn
i=1

(xT
i w)2. Note that multiplication of the norm of the vector w gives a

proportional gain in the ’explained variance’. As such it makes sense to fix kwk
2

= 1, or wTw = 1,
in order to avoid that we have to deal with infinite values.

This problem is formalized as the following optimization problem. Let xi 2 Rd be the observation
made at instant i, and let w 2 Rd and let zi 2 R be the latent value representing xi in a one-
dimensional subspace. Then the problem becomes

min
w2Rd,{zi}i

nX

i=1

kxi �wzik2
2

s.t. wTw = 1. (2.84)

In order to work out how to solve this optimization problem, let us again define the matrix Xn 2
Rn⇥d stacking up all the observations inD, and the matrix zn 2 Rn stacking up all the corresponding
latent values, or

Xn =

2

6664

xT
1

xT
2

...
xT
n

3

7775
, zn =

2

6664

z
1

z
2

...
zn

3

7775
. (2.85)

Then the problem eq. (2.84) can be rewritten as

min
w2Rd,zn2Rn

Jn(zn,w) = tr
�
Xn � znw

T
� �

Xn � znw
T
�T

s.t. wTw = 1, (2.86)

where trG =
Pn

i=1

Gii where G 2 Rn⇥n. Suppose that w satisfying wTw = 1 were known, then
we can find the corresponding optimal ẑn(w) as a simple least squares problem: as classically we
derive the objective to eq. (2.86) and equate it to zero, giving the condition for any i = 1, . . . , n
that

@Jn(ẑn,i(w),w)

@ẑn,i(w)
= 0 , �2

nX

i=1

(xi �wẑn,i(w))T w = 0, (2.87)

or

ẑn(w) =
1

(wTw)
Xnw. (2.88)
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Now having this closed form solution for ẑn corresponding to a w, one may invert the reasoning and
try to find this w satisfying the constraint wTw = 1 and optimizing the objective Jn(ẑn(w),w) as

min
w2Rd

J 0
n(w) = Jn(ẑn(w),w) = tr

�
Xn � ẑn(w)wT

� �
Xn � ẑn(w)wT

�T
. s.t. wTw = 1. (2.89)

Working out the terms and using the normal equations (2.88) gives the equivalent optimization
problem

min
w2Rd

J 0
n(w) =

��Xn � (wwT )Xn

��
F

s.t. wTw = 1. (2.90)

where the Frobenius norm k · k2F is defined for any matrix G 2 Rn⇥d as

kGkF = trGGT =
nX

i=1

GT
i Gi =

X

ij

G2

ij , (2.91)

and where Gi denotes the ith row of G. It is useful to interpret this formula. It is easy to see
that the matrix ⇧

w

= (wwT ) as a projection matrix as (wTw)�1 = 1 by construction, and as
such we look for the best projection such that ⇧Xn is as close as possible to Xn using a Euclidean
norm. To solve this optimization problem, let us rewrite eq. (2.90) in terms of the arbitrary vector
v 2 Rd such that w = v

kvk2
has norm 1 by construction. We take care of this rescaling by dividing

the objective through vTv. Recall that linearity of the trace implies trGGT = trGTG. Since
(ww)T (ww) = (ww) (idempotent), one has

min
v2Rd

J 0
n(v) = min

v2Rd

vTv � vT (XT
nXn)v

vTv
= 1� max

v2Rd

vT (XT
nXn)v

vTv
, (2.92)

and w solving eq. (2.84) is given as w = v

kvk .

Now luckily enough maximization of v

T
(X

T
nXn)v

v

T
v

is a wellknown problem, studied for decades in
analyses and numerical algebra as the problem of maximizing the Rayleigh coe�cient. From this
we know not only how the maximum is found, but how all local maxima can be found. Equating
the derivative of the Rayleigh coe�cient to zero gives the conditions

�(v) =
vT (XT

nXn)v

vTv
, �(v)(vTv) = vT (XT

nXn)v. (2.93)

Now deriving to v and equating to zero gives the conditions

�(v)v = (XT
nXn)v, (2.94)

and we know that the d orthogonal solutions {vi}i and corresponding coe�cients {�(vi)} are
given by the eigenvectors and eigenvalues of the matrix XT

nXn, such that vT
i vj = �ij (i.e. is

one if i = j, and zero otherwise), and vT
i (X

T
nXn)vj = �i(vi)�ij . We will use the notation that

{(�i(XT
nXn),vi(XT

nXn))} to denote this set. In fact, the relation PCA - eigenvalue decomposition
is so close that they are often considered to be one and the same. That is if an algorithm performs
an eigenvalue decomposition at a certain stage of a certain matrix, one may often think of it as a
PCA of this matrix thereby helping intuition.
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z

y

x

Figure 2.6: (a) An example of n = 13 and d = 2, where all the samples ’x’ lie in a two-dimensional
linear subspace denoted as the filled rectangle. PCA can be used to recover this subspace from the
data matrix X 2 R13⇥3. (b) An example of the results of a PCA analysis on 2000 of expression
levels observed in 23 experiments. The 3 axes correspond with the 3 principal components of the
matrix X 2 R23⇥2000.
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