
Chapter 8

Recursive Identification

”Given a current estimated model and a new observation, how should we update
this model in order to take this new piece of information into account?”

In many cases it is beneficial to have a model of the system available online while the system
is in operation. The model should then be based on the observations up till the current time. A
naive way to go ahead is to use all observations up to t to compute an estimate ✓̂t of the system
parameters. In recursive identification methods, the parameter estimates are computed recursively
over time: suppose we have an estimate ✓̂t�1

at iteration t � 1, then recursive identification aims
to compute a new estimate ✓̂t by a ’simple modification’ of ✓̂t�1

when a new observation becomes
available at iteration t. The counterpart to online methods are the so-called o✏ine or batch methods
in which all the observations are used simultaneously to estimate the model.

Recursive methods have the following general features:

• They are a central part in adaptive systems where the next action is based on the latest
estimated parameters. Typical examples are found in adaptive control or adaptive filtering
applications.

• Memory and computational requirements at any timestep has to be modest. Specifically, one
often requires that both are independent to the length of the history at any timestep.

• They are often applied to real-time settings, where the ’true’ underlying parameters are
changing over time (i.e. tracking applications).

• They are often used for fault detection systems. Here one wants to detect when the observed
signals or the underlying system di↵ers significantly from what one would associate from a
normal operation modus.

In general, the techniques go with the same statistical properties as their counterparts in ’batch’
setting. For example, the RLS gives consistent estimates under the conditions as discussed in Section
5.3. That is, the discussion on the recursive estimators is often concerned with computational issues.

123

8.1. RECURSIVE LEAST SQUARES

8.1 Recursive Least Squares

Let us start this section with perhaps the simplest application possible, nevertheless introducing
ideas.

Example 50 (RLS for Estimating a Constant) Given the following system

yt = ✓
0

+ et, 8t = 1, 2, (8.1)

In chapter 2, example 1 we derive how the least squares estimate of ✓
0

using the first t observations
is given as the arithmetic (sample) mean, i.e.

✓̂t =
1

t

tX

i=1

yi. (8.2)

Now it is not too di�cult to rewrite this in a recursive form.

✓̂t =
1

t

t�1X

i=1

yi + yt

!
=

1

t

⇣
(t� 1)✓̂t�1

+ yt
⌘
= ✓̂t�1

+
1

t

⇣
yt � ✓̂t�1

⌘
. (8.3)

This result is quite appealing: the new estimate ✓̂t equals the previous estimate ✓̂t�1

plus a small
correction term. The correction term is proportional to the deviation of the prediction ✓̂t�1

and
the observation yt. Moreover the correction term is weighted by the term 1

t , which implies that

the magnitude of the correction will decrease in time. Instead the estimate ✓̂t�1

will become more
reliable. In case a proper stochastic framework is assumed (see chapter 5, section 3), the variance
of ✓̂t becomes

Pt =
1

t
, (8.4)

which can in turn be computed recursively as

Pt =
1

P�1

t�1

+ 1
=

Pt�1

1 + Pt�1

. (8.5)

In order to generalize the result, we need the following well-known matrix properties.

Lemma 9 (Matrix Inversion Lemma) Let Z 2 Rd⇥d be a positive definite matrix with unique
inverse Z�1, and let z 2 Rd be any vector, then

Z�1

+

= (Z+ zzT)�1 = Z�1 � Z�1zzTZ�T

1 + zTZ�1z
, (8.6)

where Z�1

+

= Z+ zzT .

124

8.1. RECURSIVE LEAST SQUARES

In words, the inverse of a matrix with a rank-one update can be written in closed form using the
inverse of the matrix and a small correction. Proof: The proof is instrumental.

(Z+ zzT)

✓
Z�1 � Z�1zzTZ�1

1 + zTZ�1z

◆
= Id � Z

✓
Z�1zzTZ�1

1 + zTZ�1z

◆
+ zzTZ�1 � (zzT)

✓
Z�1zzTZ�1

1 + zTZ�1z

◆

= Id �
✓

zzTZ�1

1 + zTZ�1z

◆
+

✓
zzTZ�1

1 + zTZ�1z

◆
(1 + zZ�1z)�

✓
zzTZ�1zzTZ�1

1 + zTZ�1z

◆

= Id +

✓
zzTZ�1

1 + zTZ�1z

◆
(zzTZ�1)�

✓
zzTZ�1zzTZ�1

1 + zTZ�1z

◆
.

Now, note that (zTZ�1z) is a scalar, and thus

= Id +

✓
zzTZ�1

1 + zTZ�1z

◆
(zTZ�1z)�

✓
(zTZ�1z)zzTZ�1

1 + zTZ�1z

◆
= Id, (8.7)

as desired.

⇤
The previous example serves as a blueprint of the Recursive Least Squares (RLS) algorithm,

which we now will develop in full. Given a model for the observations {(xt, yt)}t ⇢ Rd⇥1 given as

yt = ✓T
0

xt + et, 8t = 1, 2, . . . , (8.8)

where ✓
0

2 Rd and the terms {et}t are the corresponding residuals. Then chapter 2 learns us that
the LS solution based on the observations xi : i = 1, . . . , t will be given as the solution to the normal
equations

tX

i=1

xix
T
i

!
✓̂t =

tX

i=1

yixi

!
. (8.9)

Assume for now that the solution ✓̂t is unique, i.e. the matrix Rt =
⇣Pt

i=1

xixT
i

⌘
can be inverted.

Since trivially one has
Rt�1

= Rt � xtx
T
t , (8.10)

if follows that

✓̂t = R�1

t

t�1X

i=1

yixi + ytxt

!

= R�1

t

⇣
Rt�1

✓̂t�1

+ ytxt

⌘

= ✓̂t�1

+R�1

t

⇣
ytxt � (xtx

T
t)✓̂t�1

⌘

= ✓̂t�1

+R�1

t xt

⇣
yt � ✓̂Tt�1

xt

⌘
, (8.11)

and in summary 8
><

>:

✏t = (yt � xT
t ✓̂t�1

)

Kt = R�1

t xt

✓̂t = ✓̂t�1

+Kt✏t.

(8.12)

125

8.1. RECURSIVE LEAST SQUARES

Here the term ✏t will be interpreted as the prediction error: it is the di↵erence between the observed
sample yt and the predicted value xT

t ✓̂t�1

. If ✏t is ’small’, the estimate ✓̂t�1

is good and should not
be modified much. The matrix Kt is interpreted as the weighting or ’gain’ matrix characterizing
how much each element of the parameter vector ✓̂t�1

should be modified by ✏t.

The RLS algorithm is completed by circumventing the matrix inversion of Rt in each timestep.
Hereto, we can use the matrix inversion Lemma.

R�1

t = R�1

t�1

�
R�1

t�1

xtxT
t R

�1

t�1

1 + xT
t R

�1

t�1

xt

. (8.13)

Note that as such we substitute the matrix inversion by a simple scalar division.

Kt = R�1

t xt = R�1

t�1

xt �
R�1

t�1

xt(xT
t R

�1

t�1

xt)

1 + xT
t R

�1

t�1

xt

=

1

1 + xT
t R

�1

t�1

xt

!
R�1

t�1

xt. (8.14)

Given initial values R�1

0

and ✓̂
0

, the final RLS algorithm can as such be written as

8
>>>><

>>>>:

✏t = (yt � xT
t ✓̂t�1

)

Pt = Pt�1

� Pt�1xtx
T
t Pt�1

1+x

T
t Pt�1xt

Kt = Ptxt =
⇣

1

1+x

T
t Pt�1xt

⌘
Pt�1

xt

✓̂t = ✓̂t�1

+Kt✏t,

(8.15)

where we use Pt = R�1

t for any t. For e�ciency reasons, one can We will come back to the
important issue on how to choose the initial values P

0

and ✓̂
0

in Subsection 8.1.2.

8.1.1 Real-time Identification

This subsection presents some ideas which are useful in case the RLS algorithm is applied for
tracking time-varying parameters. This is for example the case when the ’true’ parameter vector
✓
0

varies over time, and are as such denoted as {✓
0,t}t. This setting is referred to as the real-time

identification setting. There are two common approaches to modify the RLS algorithm to handle
such case: (i) use of a forgetting factor (this subsection); (ii) use of a Kalman filter as a parameter
estimator (next subsection).

The ’forgetting factor’ approach starts from a slightly modified loss function

Vt(✓) =
tX

s=1

�t�s(yt � ✓Txt)
2. (8.16)

The Squared Loss function lying at the basis of RLS is recovered when � = 1. If � is set to
some value slightly smaller than 1 (say � = 0.99 or � = 0.95), one has that for increasing t past
observations are discounted. The smaller � got, the quicker information obtained from previous
data will be forgotten, and hence the name. It is now straightforward to re-derive the RLS based

126

8.1. RECURSIVE LEAST SQUARES

on (8.16), and the modified RLS becomes:

8
>>>><

>>>>:

✏t = (yt � xT
t ✓̂t�1

)

Pt =
1

�

⇣
Pt�1

� Pt�1xtx
T
t Pt�1

�+x

T
t Pt�1xt

⌘

Kt = Ptxt =
⇣

1

�+x

T
t Pt�1xt

⌘
Pt�1

xt

✓̂t = ✓̂t�1

+Kt✏t.

(8.17)

Example 51 (Estimator Windup) Often, some periods of the identification experiment exhibit
poor excitation. This causes problems for the identification algorithms. Consider the situation where
't = 0 in the RLS algorithm, then (

✓̂t = ✓̂t�1

Pt =
1

�Pt�1

,
(8.18)

• Notice that ✓̂ remains constant during this period,

• ... and P increases exponentially with time when � < 1.

When the system is excited again ('t 6= 0), the estimation gain K will be very large, and there will
be an abrupt change in the estimate, despite the fact that the system has not changed. This e↵ect
is referred to as ’estimator windup’.

Since the study of Kalman filters will come back in some detail in later chapters, we treat the
Kalman filter interpretation as merely an example here.

Example 52 (RLS as a Kalman Filter) A stochastic state-space system takes the form

(
Xt+1

= FtXt + Vt

Yt = HtXt +Wt

8t = 1, 2, 3, . . . , (8.19)

where

• {Xt 2 Rn}t denote the stochastic states,

• {Yt 2 Rm}t denote the observed outcomes.

• {Vt 2 Rn}t denote the process noise.

• {Wt 2 Rm}t denote the observation noise.

• {Ft 2 Rn⇥n}t are called the system matrices

• {Ht 2 Rm⇥n}t

Now it is easily seen that the problem of time-invariant RLS estimation can be written as

(
✓t+1

= ✓t
Yt = xT

t ✓t + Et

8t = 1, 2, 3, . . . , (8.20)

127

8.1. RECURSIVE LEAST SQUARES

where ✓ = ✓
1

= · · · = ✓t = . . . is the unknown state one wants to estimate based on observations
{Yt}t. Hence one can phrase the problem as a filtering problem, where the Kalman filter provides
the optimal solution to under appropriate assumptions, eventually reducing to (8.15). The benefit
of this is that one can extend the model straightforwardly by including unknown process noise terms
{Vt}t, modeling the drifting true values as a random walk - approaching e↵ectively the real-time
identification problem. Suppose {V

1

, . . . , Vt, . . . } are sampled independently from a Gaussian with
mean zero and covariance V 2 Rn⇥n, then the Kalman filter would become

8
>>>><

>>>>:

✏t = (yt � xT
t ✓̂t�1

)

Pt =
⇣
Pt�1

� Pt�1xtx
T
t Pt�1

1+x

T
t Pt�1xt

⌘
+V

Kt = Ptxt

✓̂t = ✓̂t�1

+Kt✏t.

(8.21)

Observe that both in case (8.17) as in (8.21) the basic RLS algorithm is modified such that Pt will
no longer tend to zero. In this way Kt also is prevented from decreasing to zero. The parameter
estimate will therefore change continuously.

8.1.2 Choosing Initial Values

The choice of the initial values is paramount in real life application of RLS schemes. Close inspection
of the meaning of Pt helps us here. In the Kalman filter interpretation of RLS Pt plays the role of
the covariance matrix of the estimate ✓̂t, as such suggesting that in case one is not at all certain
of a certain choice of ✓̂

0

, one should take a large P
0

; if one is fairly confident in a certain choice
of ✓̂

0

, P
0

should be taken small. If P
0

is small, so will {Kt}t>0

and the estimate {✓̂t}t will not
change too much from ✓̂

0

. If P
0

would be large, ✓̂t will quickly jump away from ✓̂
0

. Without a
priori knowledge, it is common practice to take the following initial values

(
✓̂ = 0d
P

0

= ⇢Id,
(8.22)

with Id = diag(1, . . . , 1) 2 Rd⇥d the identity matrix, and ⇢ > 0 a ’large number’.
The e↵ect on the choice of the initial values (or the ’transient behavior) can be derived alge-

braically. Consider the basic RLS algorithm (8.15). Then

Rt = R
0

+
tX

s=1

xtxt. (8.23)

Now set
zt = Rt✓̂t. (8.24)

Then

zt = Rt✓̂t�1

+xt✏t =
�
Rt�1

+ xtx
T
t

�
✓̂t�1

+xt

⇣
yt � ✓̂Tt�1

xt

⌘
= zt�1

+xtyt = z
0

+
tX

s=1

xsys. (8.25)

And hence

✓̂t = Ptzt =

R

0

+
tX

s=1

xsx
T
s

!�1

R

0

✓̂
0

+
tX

s=1

xsys

!
. (8.26)

128

8.1. RECURSIVE LEAST SQUARES

So, if R
0

is small (i.e. P
0

is large), then ✓̂t is close to the o✏ine estimate

✓⇤t = argmin
✓

tX

s=1

(ys � ✓Txt)
2, (8.27)

as seen by comparison of (8.26) with the normal equations associated to (8.27)

✓⇤t =

tX

s=1

xsx
T
s

!�1

tX

s=1

xsys

!
. (8.28)

The methods discussed in the above subsections are appropriate to systems that are known to
change slowly over time. In such cases � is chosen close to 1, or V is chosen as a small non-negative
positive definite matrix. If the system exhibits more likely from time to time some abrupt changes
of the parameters, techniques based on fault detection might be more suitable.

8.1.3 An ODE Analysis

Simulation no doubt gives useful insight. However, it is also clear that it does not permit generally
valid conclusions to be drawn, and therefore it is only a complement to theory. The scope of a
theoretical derivation would in particular be to study whether the parameter estimates ✓̂t converge
as t tends to infinity. If so, to what limit? And if possible also to establish the limiting distribution
of ✓̂t.

A successful approach considers the sequence {✓̂t}t=0,1,2 as approximating a continuous vector
valued function {✓ : R

+

! Rd}. This continuos function evaluated at a time instant ⌧ > 0 is
denoted as ✓(⌧), and the whole sequence is described as an Ordinary Di↵erential Equation. Such
approach typically adopts a stochastic setting where {Yt}tis a stochastic process, and {Xt}t is a
vector valued stochastic process, and both have bounded first- and second moments. Recall that
the minimal MMSE ✓⇤ 2 Rd is then given as the solution to

E
⇥
XtX

T
t

⇤
✓⇤ = E [XtYt] . (8.29)

Define again R = E
⇥
XtXT

t

⇤
, and suppose this one is invertible. Define the functional r (recall that

✓ here is a function) as:
r(✓) = E

⇥
Xt(Yt �XT

t ✓)
⇤
. (8.30)

Now, consider the following ODE
@✓(⌧)

@⌧
= R�1r(✓(⌧)). (8.31)

If this ODE is solved numerically by an Euler method on discretization steps ⌧
1

, ⌧
2

, . . . one gets

✓⌧k ⇡ ✓⌧k�1 + (⌧k � ⌧k�1

)R�1E[Yt �XT
t ✓⌧k�1]. (8.32)

Note the similarity between (8.32) and the algorithm (8.15), suggesting that the solutions to the de-
terministic ODE will be close in some sense. Specifically, consider the following recursion described
by the algorithm

✓̂t = ✓̂t�1

+ �tR
�1Xt(Yt �XT

t ✓̂t). (8.33)

with ✓̂
0

given. Then the paths described by this discrete recursion will be similar to the solutions
{✓⌧k}k using the timescale (⌧k � ⌧k�1

) = �t. The above statements can be made quite precise as
was done in [?]. The study of this ODE gives us new insight in the RLS algorithm, including:

129

8.2. OTHER ALGORITHMS

1. The trajectories which solve the ODE are the expected paths of the algorithm.

2. Assume that there is a positive function V (✓,R) such that along along the solutions of the

ODE we have that
@

@⌧
V (✓(⌧),R) 0. Then as ⌧ ! 1, ✓(⌧) either tend to the set

Dc =

⇢
✓⇤
���

@

@⌧
V (✓(⌧),R) = 0

�
, (8.34)

or to the boundary of the set of feasible solutions. In other words, ✓(⌧) for ⌧ ! 1 go to the
stable stationary points of the ODE. Equivalently, ✓̂t converge locally to a solution in Dc.

8.2 Other Algorithms

Since the problem of recursive identification, adaptive filtering or online estimation is so ubiquitous,
it comes as no surprise that many di↵erent approaches exist. This section reviews three common
variations.

8.2.1 Recursive Instrumental Variables

Recall that instrumental variable techniques come into the picture when the noise is known to
be strongly colored, and a plain LSE is not consistent. An instrumental variable estimator uses
random instruments {Zt} which are known to be independent to the noise of the system. Then we
look for the parameters which match this property using the sample correlations instead. Formally,
consider the statistical system

Yt = xT
t ✓0 +Dt, (8.35)

where {Dt} is colored noise, and xt 2 Rd, with deterministic but unknown vector ✓
0

. Suppose we
have d-dimensional instruments Zt such that

E [ZtDt] = 0d. (8.36)

That is, the instruments are orthogonal to the noise. Then the (batch) IV estimator ✓n is given as
the solution of ✓ 2 Rd to

nX

t=1

Zt(Yt � xT
t ✓) = 0d, (8.37)

which look similar to the normal equations. If
Pn

t=1

(ZtxT
t) were invertible, then the solution is

unique and can be written as

✓n =

nX

t=1

Ztx
T
t

!�1

nX

t=1

ZtY
T
t

!
, (8.38)

Now we can use the techniques used for RLS to construct a recursive method to estimate ✓t when
the data comes in. It is a simple example to derive the algorithm, which is given as

8
>>>><

>>>>:

✏t = (yt � xT
t ✓̂t�1

)

Pt = Pt�1

� Pt�1Ztx
T
t Pt�1

1+x

T
t Pt�1Zt

Kt = PtZt

✓̂t = ✓̂t�1

+Kt✏t.

(8.39)

130

8.2. OTHER ALGORITHMS

The discussion on the behavior of RLS w.r.t. initial variables and forgetting factor remains valid.

8.2.2 Recursive Prediction Error Method

Recall that a PEM method bases inference on maximizing performance of the best predictor corre-
sponding to a model. Also this technique is straightforwardly to phrase in a recursive form.

✓t = argmin
✓

Vt(✓) =
tX

k=1

�t�k✏k(✓), (8.40)

where 0 < � 1 is typically chosen as 0.99, 0.95, 0.9. As before ✏t(✓) denotes the prediction errors of
corresponding to model parameters ✓, that is ✏t(✓) = yt� ŷt(✓) where ŷt(✓) is the optimal predictor
at the tth instance. Now, unlike the previous algorithms, no closed form solution of (8.40) exists
in general, and one resorts to numerical optimization tools. But there is an opportunity here: it is
not too di�cult to integrate -say- a Gauss-Newton step in the optimizer with the online protocol.

To see how this goes, consider again the second order Taylor decomposition of the loss function.
Lets assume we have a fairly good estimate ✓̂t�1

at the previous instance

Vt(✓) = Vt(✓̂t�1

) + V 0(✓̂t�1

)T (✓ � ✓̂t�1

) +
1

2
(✓ � ✓̂t�1

)TV 00
t (✓̂t�1

)(✓ � ✓̂t�1

). (8.41)

Now, the challenge is to compute gradient V 0
t and Hessian V 00

t recursively. Details can be found in
the book (Söderström, Stoica, 1989), but are necessarily tied to the adapted model and are often
approximative in nature.

8.2.3 Recursive Pseudo-linear Least Squares

The following example expresses an ARMAX as a pseudo-linear model as follows.

Example 53 (ARMAX) Given an ARMAX system

A(q�1)yt = B(q�1)ut + C(q�1)et, (8.42)

of orders na, nb, nc. Then this system can ’almost’ be written as a LIP model as follows

yt = 'T
t ✓0 + et, (8.43)

where (
't = (�yt�1

, . . . ,�yt�na , ut�1

, . . . , ut�nb , êt�1

, . . . , êt�nc)
T

✓
0

= (a
1

, . . . , at�na , b1, . . . , bt�nb , c1, . . . , ct�nc),
(8.44)

where êt is the prediction error computed based on the model parameters ✓̂t�1

. The rationale is that
in case ✓t�1

⇡ ✓t, êt is a good proxy to the prediction errors et based on the parameters ✓t. Then
the Recursive Partial Least Squares algorithm implements a RLS strategy based on this ’linearized’
model.

Indeed one can prove that the resulting estimates do converge if the system is obeys some regularity
conditions. Specifically, if the system is almost unstable the recursive estimates are often unstable
(and diverging) as well. In practice, the resulting algorithm needs monitoring of the resulting
estimates in order to detect such divergent behavior.

131

8.3. MODEL SELECTION

8.2.4 Stochastic Approximation

The class of stochastic approximation techniques take a quite di↵erent perspective on the recursive
identification problem. Here the parameter estimate ✓̂t�1

obtained previously is modified such that
it is better suited for explaining the new sample related to ('t, yt). Formally, a new estimate ✓̂t is
obtained from the given ✓̂t�1

and the sample ('t, yt) by solving for a given � > 0 the optimization
problem

✓̂t = argmin
✓

Jt(✓) = (✓ � ✓̂t�1

)T (✓ � ✓̂t�1

) + �
�
xT
t ✓ � yt

�
2

. (8.45)

The optimal result is then given directly as

✓̂t = ✓̂t�1

� �
�
xT ✓ � yt

�
't, (8.46)

obtained by equating the derivative of Jt(✓) to zero. The algorithm is then completed by specifi-
cation of the initial estimate ✓̂

0

. This recursion gives then what is called the Least Mean Squares
(LMS) algorithm. This is the building stone of many implementations of adaptive filtering. The
naming convention ’stochastic approximation’ is motivated as follows. The correction at instance
t is based on the gradient of a single point (xt, yt), and is a very ’noisy’ estimate of the overall
gradient. A variation of this algorithm is given by the recursion

✓̂t = ✓̂t�1

� �

kxtk2 + ✏

�
xT
t ✓ � yt

�
, (8.47)

with ✏ > 0 small, and where ✓̂
0

is given. This recursion is the basis of the Normalized LMS
algorithm. The rationale is that here each sample modifies the present estimate proportional how
close the estimate is to the working point 0d.

8.3 Model Selection

As in the batch setting, it is paramount to be able to qualify and quantify how well our recursive
algorithms succeeds in its task. But the conceptual and practical ways to do turn out to be entirely
di↵erent. As it stands there is no comprehensive theoretical framework for this question, but some
insight is gained in the following example.

Example 54 (Predicting Random noise) As seen, a lot of fancy mathematics can be brought
in to form complex recursive schemes, but at the end of the day the methods implemented need
’merely’ may good predictions. It helps to reason about this objective by considering the prediction
of random white noise: by construction this is impossible to do better than ŷt = 0 (why?). A method
trying to fit a complex model to such data will necessarily do worse than this simple predictor, and
the example is often used as a validity check of a new method.

Except for the traditional considerations of bias and variance of a model, and the statistical uncer-
tainty associated with estimating parameters, other issues include the following:

• Initialization of the parameters. If the initial guess of the parameters is not adequate, the
recursive algorithm might take much samples before correcting this (transient e↵ect).

• Forgetting Factor. The choice of a forgetting factor makes a trade-o↵ between flexibility and
accuracy.

132

8.3. MODEL SELECTION

• Window. If the window used for estimating then one must decide on how many samples are
used for estimating at a certain instance t.

• Stability of the estimate. If the algorithm at hand is not well-tuned to the task at hand, it
may display diverging estimates. This is clearly undesirable, and some algorithms go with
guarantees that no such unstable behavior can occur.

• Gain. A typical parameter which needs t be tuned concerns the size of the update made at a
new sample. If the gain is too low, a resulting algorithm will not converge fastly. If the gain
is too large, one may risk unstable behavior.

In order to check wether a recursive identification is well-tuned for a certain application, it is instru-
mental to monitor closely the online behavior of the method, and to make appropriate graphical
illustrations of the method.

133

8.3. MODEL SELECTION

134

