
Chapter 9

State Space Systems

”How can we represent mathematically a dynamical system accepting m � 1 input
signals, and outputting p � 1 signals?”

  A
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Figure 9.1: Schematic representation of a State Space System with matrices (A,B,C,D). The
feedback is implemented by the system matrix A, governing the dynamic behavior of the system.

9.1 State Space Model

A deterministic state-space model is given as

(
xt+1

= Axt +But

yt = Cxt +Dut,
8t = �1, . . . ,1. (9.1)

where we have

• {xt}t ⇢ Rn the state process.

• {ut}t ⇢ Rp the input process.

• {yt}t ⇢ Rq the output process.
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9.1. STATE SPACE MODEL

• A 2 Rn⇥n the system matrix.

• B 2 Rn⇥p the input matrix.

• C 2 Rq⇥n the output matrix.

• D 2 Rq⇥p the feed-through matrix.

The ’state variable’ has di↵erent interpretations.

1. Representation of hidden ’state’ of system (physical).

2. Summarization of what to remember from past.

3. Compact representation of information relevant to predict future.

4. Intersection of past and future.

5. Optimal estimate of the model parameters thus far (RLS).

Each interpretation leads to own algorithms. Advantages of the use of state-space systems over
fractional polynomial models include

• Those models are typically closer to physical modeling.

• They are more appropriate for modeling MIMO systems.

• Such models make a clearer distinction between input noise, measurement noise and Innova-
tions.

• Any LTI can be represented as a state-space model of su�cient order (Canonical representa-
tion).

• The study of the dynamics of the system concerns ’only’ the A matrix. The matrices B,C,D
’make up’ the system, but do not directly influence the qualitative dynamical behavior.

• Problems of identiafibility are readily phrased in this context.

9.1.1 State Space System - example 1

From PDE to state-space: the heating-rod system:

z=0 z=L

u(t)
y(t)
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9.1. STATE SPACE MODEL

Let x(t, z) denote temperature at time t, and location z on the rod.

@x(t, z)

@t
= 

@2x(t, z)

@z2
(9.2)

The heating at the far end mens that

@x(t, z)

@z

���
z=L

= Ku(t), (9.3)

The near-end is insulated such that
@x(t, z)

@z

���
z=0

= 0. (9.4)

The measurements are
y(t) = x(t, 0) + v(t), 8t = 1, 2, . . . (9.5)

The unknown parameters are

✓ =



K

�
(9.6)

This can be approximated as a system with n states

x(t) =
⇣
x(t, z

1

), x(t, z
2

), . . . , x(t, zn)
⌘T

2 Rn (9.7)

with zk = L(k � 1)/(n� 1).. Then we use the approximation that

@2x(t, z)

@z2
⇡ x(t, zk+1

)� 2x(t, zk) + x(t, zk�1

)

(L/(n� 1))2
(9.8)

where zk = argminz1,,...,zn kz � zkk. Hence the continuous state-space approximation becomes
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(9.9)

and a discrete Euler approximation
8
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9.1. STATE SPACE MODEL

9.1.2 State Space System - example 2

Models for the future size of the population (UN, WWF).

Leslie model: key ideas: discretize population in n aging groups and

• Let xt,i 2 R+ denote the size of the ith aging group at time t.

• Let xt+1,i+1

= sixt,i with si � 0 the ’survival’ coe�cient.

• Let xt+1,1 = s
0

Pn
i=1

fixt,i with fi � 0 the ’fertility’ rate.

Hence, the dynamics of the population may be captured by the following discrete time model

8
>>>>>>>>><

>>>>>>>>>:

xt+1

=

2

6666664

s
0

f
1

s
0

f
2

. . . s
0

fn
s
1

0

0 s
2

0
. . .

sn�1

0

3

7777775
xt + ut

yt =
Pn

i=1

xt,i

(9.11)
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9.1. STATE SPACE MODEL

9.1.3 Impulse Response to State Space System

What is now the relation of state-space machines, and the system theoretic tools seen in the previous
Part?

Recall impulse response (SISO)

yt =
1X

⌧=0

h⌧ut�⌧ , (9.12)

and MIMO

yt =
1X

⌧=0

H⌧ut�⌧ , (9.13)

where {H⌧}⌧ ⇢ Rp⇥q.
Recall: System identification studies method to build a model from observed input-output

behaviors, i.e. {ut}t and {yt}t.
Now it is a simple exercise to see which impulse response matrices {H⌧}⌧ are implemented by

a state-space model with matrices (A,B,C,D):

H⌧ =

(
D ⌧ = 0

CA⌧�1B ⌧ = 1, 2, . . .
, 8⌧ = 0, 1, 2, . . . (9.14)

Contrast with rational polynomials where typically

h⌧ , h(q�1) =
b
1

q�1 + b
2

q�2 + . . .

1 + a
1

q�1 + a
2

q�2 + . . .
(9.15)

Overlapping: consider FIR model

yt = b
0

ut + b
1

ut�1

+ b
2

ut�2

+ et (9.16)

then equivalent state-space with states xt = (ut, ut�1

, ut�2

)T 2 R3 becomes
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9.2. REALIZATION THEORY

and x
0

= (u
0

, u�1

, u�2

)T .

9.2 Realization Theory

9.2.1 Controllability and Observability

A state-space model is said to be Controllable i↵ for any terminal state x 2 Rn one has that for all
initial state x

0

2 Rn, there exists an input process {ut}t which steers the model from state x
0

to
x.

A state-space model is said to be Reachable i↵ for any initial state x
0

2 Rn one has that for all
terminal states x 2 Rn there exists an input process {ut}t which steers the model from state x

0

to
x.

The mathematical definition goes as follows: Define the reachability matrix C 2 Rn⇥np as

C =
⇥
B AB A2B . . . An�1B

⇤
(9.18)

The State space (A,B) is reachable (controllable) if

rank(C) = n. (9.19)

Intuition: if the matrix C is full rank, the image of C equals Rn
, and the superposition principle states

that any linear combination of states can be reached by a linear combination of inputs.

A state-space model is Observable i↵ any two di↵erent initial states x
0

6= x0
0

2 Rn lead to a
di↵erent output {ys}s�0

of the state-space model in the future when the inputs are switched o↵
henceforth (autonomous mode).

Define the Observability matrix O 2 Rqn⇥n as

O =

2

6664

C
CA
...

CAn�1

3

7775
(9.20)

Hence, a state-space model (A,C) is observable i↵

rank(O) = n (9.21)

Intuition: if the (right) null space of O is empty, no two di↵erent x,x0 2 Rn
lead to the Ox = Ox0

.
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9.2. REALIZATION THEORY

Let
u� = (u

0

,u�1
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, . . . )T (9.22)

And
y
+

= (y
1

,y
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, . . . )T (9.23)

Then
x
1

/ Cu� (9.24)
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y
+

/ Ox
1

(9.25)
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9.2.2 Kalman-Ho Realization

Problem: Given an impulse response sequence {H⌧}⌧ , can we recover (A,B,C,D)?
Def. Minimal Realization. A state-space model (A,B,C,D) is a minimal realization of order

n i↵ the corresponding C and O are full rank, that is i↵ the model is reachable (observable) and
controllable.

Thm. (Kalman) If (A,B,C,D) and (A0,B0,C0,D0) are two minimal realizations of the same
impulse response {H⌧}, then they are linearly related by a nonsingular matrix T 2 Rn⇥n such that

8
>>><

>>>:

A0 = T�1AT

B0 = T�1B

C0 = CT

D0 = D

(9.26)
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9.2. REALIZATION THEORY

Intuition: a linear transformation of the states does not alter input-output behavior; that is, the corre-

sponding {H⌧}⌧ is the same. The thm states that those are the only transformations for which this is

valid.

Hence, it is only possible to reconstruct a minimal realization of a state-space model (A,B,C,D)
from {H⌧}⌧ up to a linear transformation of the states.

In case we only observe sequences {ut}t�1

and {yt}t�1

, we have to account for the transient
e↵ects and need to estimate x

0

2 Rn as well. This is in many situations crucial. The above thm.
is extended to include x

0

as well.
Now the celebrated Kalman-Ho realization algorithm goes as follows:

• Toeplitz-matrix

Hn =

2

6664

H
1

H
2

H
3

. . . Hn

H
2

H
3

H
4

. . .
Hn H

2n+1

3

7775

=

2

6664

CB CAB CA2B . . . CAn�1B
CAB CA2B

. . .
CAn�1B CA2n�1B

3

7775
= OC

• The state space is identifiable up to a non-singular matrix T 2 Rn⇥n such that

Hn = OC = OTT�1C (9.27)

.

• Then take the SVD of Hn, such that

Hn = U⌃VT (9.28)

with U 2 Rpn⇥n,V 2 Rn⇥nq and ⌃ = diag(�
1

, . . . ,�n) 2 Rn⇥n.

• Hence a minimal realization is given as
(
O0 = U

p
⌃

C0 =
p
⌃V

(9.29)

• From O0, C0 it is not too di�cult to extract (A,B,C)

9.2.3 An Example

Given an input
u = (1, 0, 0, 0, . . . )T (9.30)

and output signal
y = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . )T (9.31)
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9.3. STOCHASTIC SYSTEMS

with system
yt = yt�1

+ yt�2

, y
0

= 0, y
1

= u
1

(9.32)

or SS with x
0

= (0, 0)T as 8
>><

>>:

xt+1

=

"
0 1

1 1

#
xt +

"
1

1

#
ut

yt =
h
1 0

i
xt

(9.33)

or transfer function
G(z) =

z

z2 � z � 1
(9.34)

Now realization

H
5

=

2

66664

1 1 2 3 5
1 2 3 5 8
2 3 5 8 13
3 5 8 13 21
5 8 13 21 34

3

77775
(9.35)

Then SVD of H
5

gives �
1

= 54.5601 and �
2

= 0.4399, and a minimal realization is
8
>><

>>:

x0
t+1

=

"
1.6179 0.0185

0.0185 �0.6179

#
x0
t +

"
0.8550

�0.5187

#
ut

yt =
h
0.8550 �0.5187

i
xt

(9.36)

9.3 Stochastic Systems

Now let us see how one can use a state-space system to describe a system which is driven by
stochastic signals. Recall that we adopt the convention to indicate signals which are stochastically
as capital letters. It is for example immediate that the states will be a stochastic process too with
the rules of probability governing its behavior. A Stochastic State Space System takes the general
form: (

Xt+1

= AXt +Wt

Yt = CXt + Vt

(9.37)

with

• {Xt}t the stochastic state process taking values in Rn.

• {Yt}t the stochastic output process, taking values in Rp.

• A 2 Rn⇥n the (deterministic) system matrix.

• C 2 Rp⇥n the (deterministic) output matrix.

• {Wt}t the stochastic process disturbances taking values in Rn.

• {Vt}t the stochastic measurement disturbances taking values in Rp.

The stochastic vectors follow a probability law assumed to follow
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9.4. CONCLUSIONS

• E[Wt] = 0n, and E[WtWT
s ] = �s,tQ 2 Rn⇥n.

• E[Vt] = 0p, and E[VtV T
s ] = �s,tR 2 Rp⇥p.

• E[WtV T
t ] = �s,tS 2 Rn⇥p.

• Wt, Vt assumed independent of . . . , Xt.

Main questions:

• Covariance matrix states E[XtXT
t ] = ⇧:

⇧ = A⇧AT +Q (9.38)

- Lyapunov, stable.

• Covariance matrix outputs E[YtY T
t ].

This model can equivalently be described in its innovation form

(
X 0

t+1

= AX 0
t +KDt

Yt = CX 0
t +Dt

(9.39)

with K 2 Rn⇥p the Kalman gain, such that P,K solves

(
P = APA+ (G�APCT )(⇤

0

�CPCT )�1(G�APCT )T

K = (G�APCT )(⇤
0

�CPCT )
(9.40)

and

• E[DtD0
t
T ] = (⇤

0

�CPCT )

• P = E[X 0
tX

0
t
T ]

9.4 Conclusions

• State-space systems for MIMO - distributed parameter systems.

• Relation impulse response - state-space models.

• Controllability - Observability

• Kalman - Ho

• Stochastic Systems
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