Chapter 14

Problem Solving Sessions

14.1 Dynamic Models

14.1.1 Exercises

Exercise 1.0: Hello world

1. Given a discrete system $G(z)=\frac{K}{\tau-z}$ with $K=1$ and $\tau=2$. Is it BIBO stable? Why $/$ not?
2. Given a system which outputs positive values for any input. Is it LTI? Why/not?
3. Can you solve a least squares estimate for θ for a system satisfying $x_{i} \theta=y_{i}$ for any $\left\{\left(x_{i}, y_{i}\right)\right\}_{i}$? Why/not?
4. Is the median estimate optimal in a least squares sense? Why/not?
5. If we are to model a certain behavior and we know some of the physics behind it - should we go for a black box model? Why/not?
6. If we have a very fast system (time constants smaller than $O\left(10^{-2}\right) s$). Can we get away with slow sampling? Why/not?
7. Does a non-causal model allow an impulse representation? Why/not?
8. Is a sequence of two nontrivial LTIs identifiable from input-output observations? Why/not?
9. Is an ARMAX system linear in the parameters of the polynomials? Why/not?
10. Is an OE model LIP? Why/not?

Exercise 1.1: Stability boundary for a second-order system.

Consider the second-order AR model

$$
y_{t}+a_{1} y_{t-1}+a_{2} y_{t-2}=e_{t}
$$

Derive and plot the area in the $\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2}$-plane for which the model is asymptotically stable.

Exercise 1.2: Least Squares with Feedback

Consider the second-order AR model

$$
y_{t}+a y_{t-1}=b u_{t-1}+e_{t}
$$

where u_{t} is given by feedback as

$$
u_{t}=-K y_{t} .
$$

Show that given realizations of this signal we cannot estimate a_{0}, b_{0} separately, but we can estimate $a_{0}+b_{0} K$.

Exercise 1.3: Determine the time constant T from a step response.
A first order system $Y(s)=G(s) U(s)$ with

$$
G(s)=\frac{K}{1+s T} e^{-s \tau}
$$

or in time domain as a differential equation

$$
T \frac{d y(t)}{d t}+y(t)=K u(t-\tau)
$$

derive a formula of the step response of an input $u_{t}=I(t>0)$.
Exercise 1.4: Step response as a special case of spectral analysis.
Let $\left(y_{t}\right)_{t}$ be the step response of an LTI $H\left(q^{-1}\right)$ to an input $u_{t}=a I(t \geq 0)$. Assume $y_{t}=0$ for $t<0$ and $y_{t} \approx c$ for $t>N$. Justify the following rough estimate of H

$$
\hat{h}_{k}=\frac{y_{k}-y_{k-1}}{a}, \forall k=0, \ldots, N
$$

and show that it is approximatively equal to the estimate provided by the spectral analysis.
Exercise 1.5: Ill-conditioning of the normal equations in case of a polynomial trend model.

Given model

$$
y_{t}=a_{0}+a_{1} t+\cdots+a_{r} t^{r}+e_{t}
$$

Show that the condition number of the associated matrix $\Phi^{T} \Phi$ is ill-conditioned:

$$
\operatorname{cond}\left(\Phi^{T} \Phi\right) \geq O\left(N^{2 r} /(2 r+1)\right)
$$

for large n, and where $r>1$ is the polynomial order. Hint. Use the relations for a symmetric matrix A :

- $\lambda_{\max }(A) \geq \max _{i} A_{i i}$
- $\lambda_{\text {min }}(A) \leq \min _{i} A_{i i}$

Exercise 1.6

Determine the covariance function for an $\mathrm{AR}(1)$ process

$$
y_{t}+a y_{t-1}=e_{t}
$$

where e_{t} come from a white noise process with zero mean and unit variance. Determine the covariance function for an $\operatorname{AR}(2)$ process

$$
y_{t}+a y_{t-1}+a y(t-2)=e_{t}
$$

Determine the covariance function for an MA(1) process

$$
y_{t}=e_{t}+b e_{t-1}
$$

Exercise 1.7

Given two systems

$$
H_{1}(z)=\frac{b}{z+a}
$$

and

$$
H_{2}(z)=\frac{b_{0} z+b_{1}}{z^{2}+a_{1} z+a_{2}}
$$

(a) If those systems filters white noise $\left\{e_{t}\right\}$ coming from a stochastic process $\left\{D_{t}\right\}_{t}$ which is zero mean, and has unit variance. What is the variance of the filtered signal $\left\{y_{t}\right\}$?
(b) What happens to the output of the second system when you move the poles of $H_{2}(z)$ towards the unit circle?
(c) Where to place the poles to get a 'low-pass' filter?
(d) Where to put the poles in order to have a resonance top at $\omega=1$?
(e) How does a resonant system appear on the different plots?
(f) What happens if $H_{2}(z)$ got a zero close to the unit circle?

Exercise 1.8

Given an input signal $\left\{X_{t}\right\}_{t}$ shaped by an ARMA filter,

$$
A\left(q^{-1}\right) X_{t}=C\left(q^{-1}\right) V_{t},
$$

where A and C are polynomials of appropriate order with the constant term equal to 1 , and where is V_{t} a white noise source, zero mean and variance σ_{v}^{2}. Given noisy observations $\left\{Y_{t}\right\}_{t}$ of this signal, or

$$
Y_{t}=X_{t}+E_{t}
$$

where E_{t} follows a stochastic process with white, zero mean and variance σ_{e}^{2} and uncorrelated to D_{t}. Rewrite this as a ARMA process, what would be the corresponding variance of the 'noise'? How would the spectrum of Y_{t} look like?

