Radio Spectrum

- **VLF** = Very Low Frequency
- **LF** = Low Frequency
- **MF** = Medium Frequency
- **HF** = High Frequency
- **VHF** = Very High Frequency
- **UHF** = Ultra High Frequency
- **SHF** = Super High Frequency
- **EHF** = Extra High Frequency
- **UV** = Ultraviolet Light

Frequency and wave length: \(\lambda = \frac{c}{f} \)

Wave length \(\lambda \), speed of light \(c = 3 \times 10^8 \text{ m/s} \), frequency \(f \)
Frequencies (MHz) and regulations

<table>
<thead>
<tr>
<th></th>
<th>Europe</th>
<th>USA</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cordless Phones</td>
<td>CT1+ 885-887, 930-932 CT2 864-868 DECT 1880-1900</td>
<td>PACS 1850-1910, 1930-1990 PACS-UB 1910-1930</td>
<td>PHS 1895-1918 JCT 254-380</td>
</tr>
<tr>
<td>Wireless LANs</td>
<td>IEEE 802.11 2400-2483 HIPERLAN 2 5150-5350, 5470-5725</td>
<td>902-928 IEEE 802.11 2400-2483 5150-5350, 5725-5825</td>
<td>IEEE 802.11 2471-2497 5150-5250</td>
</tr>
<tr>
<td>Others</td>
<td>RF-Control 27, 128, 418, 433, 868</td>
<td>RF-Control 315, 915</td>
<td>RF-Control 426, 868</td>
</tr>
</tbody>
</table>

Partly adapted from www.jochenschiller.de
Mobile **Phone** coverage

Range and rate

Partly adapted from www.jochenschiller.de

http://www.it.uu.se/edu/course/homepage/datakom3/vt11
Antennas: (Ideal) Isotropic radiator

- Equal radiation in all directions (three dimensional) – (only a theoretical reference antenna)
- Received power: $P_f = K_f 1/d^2$, $d=$distance, $K_f =$ frequency dependent constant
Antennas: simple dipoles

Radiation pattern of a simple Hertzian dipole
Gain: maximum power in the direction of the main lobe

Antennas: directed and sectorized

Directed antenna, e.g. in a valley

Sectorized antenna, e.g. Mobile phone base station
Radio signals

- Parameters of periodic signals:
 - Period T
 - Frequency $f = 1/T$
 - Amplitude A
 - Phase shift φ

 $$s(t) = A_t \sin(2 \pi f_t t + \varphi)$$

- Function of time, location and phase

Sine Wave

$$s(t) = A_t \sin(2\pi f t + \varphi)$$
Signals II

- Different representations of radio signals
 - Amplitude (amplitude domain)
 - frequency spectrum (frequency domain)
 - phase state diagram (amplitude M and phase φ in polar coordinates)

Fourier representation of periodic signals

$$g(t) = \frac{1}{2} c + \sum_{n=1}^{\infty} a_n \sin(2\pi nft) + \sum_{n=1}^{\infty} b_n \cos(2\pi nft)$$

Digital signals need infinite frequencies for perfect transmission => modulation with a carrier frequency for transmission
Modulation and demodulation

Modulation

- **Digital modulation**
 - digital data is translated into an analog signal (baseband)
 - Choice of coding: differences in spectral efficiency, power efficiency, robustness

- **Analog modulation**
 - shifts center frequency of baseband signal up to the radio carrier

- **Motivation**
 - Smaller antennas (e.g., $\lambda/4$)
 - Frequency Division Multiplexing – allocate different bands
 - medium propagation characteristics – better at higher frequencies.
Digital modulation

- **Amplitude Shift Keying (ASK):**
 - very simple
 - low bandwidth requirements
 - very susceptible to interference

- **Frequency Shift Keying (FSK):**
 - needs larger bandwidth

- **Phase Shift Keying (PSK):**
 - more complex
 - more robust against interference

Advanced Phase Shift Keying

- **BPSK (Binary Phase Shift Keying):**
 - bit value 0: sine wave, bit value 1: inverted sine wave
 - very simple PSK low spectral efficiency
 - robust, used e.g. in satellite systems

- **QPSK (Quadrature Phase Shift Keying):**
 - 2 bits coded as one symbol
 - symbol determines shift of sine wave
 - needs less bandwidth compared to BPSK
 - more complex
Quadrature Amplitude Modulation

- Quadrature Amplitude Modulation (QAM):
 - combines amplitude and phase modulation
 - possible to code \(n \) bits using one symbol
- \(2^n \) discrete levels, \(n=2 \)
- **BUT - bit error rate increases with** \(n \)
 - Signal To Noise Ratio, SNR, determines \(n \).

Example: 16-QAM (4 bits = 1 symbol)
- used in standard 9600 bit/s modems

Signal propagation ranges

- **Transmission range**
 - communication possible
 - low error rate
- **Detection range**
 - detection of the signal possible
 - no communication possible (too high error rate)
- **Interference range**
 - signal may not be detected
 - signal adds to the background noise
Radio signal propagation

- Propagation in *free space* always a straight line (like light)
- Receiving power influenced by:
 - *attenuation* (frequency dependent) proportional to $distance^2$
 - *shadowing* – some energy may get through/around
 - *reflection* at large obstacles – some energy may get through
 - *refraction* depending on the density of a medium
 - *scattering* at small obstacles
 - *diffraction* at edges of large objects

Real world simulations
Multipath propagation

- Signal can take many different paths between sender and receiver due to reflection, scattering and diffraction
 ➔ interference with “neighbor” symbols, i.e. Inter Symbol Interference (ISI)

Effects of a moving terminal

- Short term, (small scale) fading
 - signal paths change
 - different delay variations of different signal parts
 - different phases of signal parts
 - ➔ quick changes in the power received
- Long term fading
 - distance to sender
 - obstacles further away
 - ➔ slow changes in the average power received
Fading in Ångström corridor

2.4 GHz, IEEE 802.15.4

High resolution of fading
Multiplexing

• Goal: Accept multiple users of a shared medium (i.e. radio spectrum)
• Multiplexing/sharing in 4 dimensions
 – frequency (f)
 – space (s_i)
 – time (t)
 – code (c)

Frequency multiplexing

• A user/channel gets a certain frequency band of the spectrum. A reservation.
• Advantages:
 – Easy - no dynamic coordination necessary.
 – works also for analog signals
• Disadvantages:
 – waste of bandwidth if the traffic is unevenly distributed
 – Inflexible
 • Can not redistribute bands
 – Need “guards” (i.e. spaces between bands) to avoid disturbing each other
Space Division Multiplexing

User gets frequency/channel k_i

Allocate frequencies in a regular pattern to avoid overlap with same frequency in same geographical area.

Transmission ranges of base stations

Spatial Guard

Frequency planning

- Frequency reuse only within a certain distance between the base stations
- Standard model uses 7 frequencies. Distance=3.
- Fixed frequency assignment
 - Also allow dynamic frequency planning
Space Division Cell structure

Mobile stations communicate only via the base station

- **Advantages** of cell structures:
 - to get higher capacity, decrease cell sizes and increase density
 - Cell sizes: City > 100m radius. Country side < 35km radius.
 - adaptive transmission power – only needs to reach to the base station.
 - Robust against misbehaving clients - centralized control
 - base station deals with interference, transmission area, etc

- **Consequences** of cell structures:
 - fixed network needed for interconnecting base stations
 - handover (changing from one cell to another, one frequency to another) is necessary
 - interference with and between other cells. Requires careful planning.

Time multiplexing

- A user/channel gets the whole allocated band for an agreed time-slot \(t \), repeated every \(nt \).

- **Advantages**:
 - only one user/channel/carrier in the medium at any time
 - utilization high also for many users

- **Consequences**:
 - precise synchronization between distributed nodes necessary
Combination of time and frequency multiplexing

• A user gets a *certain frequency band for a certain amount of time*

• Advantages:
 – protection against frequency interference
 – better protection against eaves listening

• Consequence:
 – Precise co-ordination required

Code multiplexing

• Each user transmits according to their own *unique code* on the whole frequency band.
 – All channels use the same band *at the same time* but with different underlying codes.

• Advantages:
 – no coordination and synchronization necessary
 – good protection against interference and eaves tapping (code is protected)
 – bandwidth efficient – degrades gracefully

• Consequences:
 – lower user data rates
 – more complex signal generation
Spreading and frequency wrt selective fading

Effects of spreading and interference

\[dP/df = \text{dPower/dfrequency} \]

\[\text{user signal} \]
\[\text{broadband interference} \]
\[\text{narrowband interference} \]
Direct Sequence Spread Spectrum

- XOR the transmission bits with an assigned “code”, called the chipping sequence
 - Use many chips per bit (e.g., 128), which results in a wider bandwidth of the total signal.

- Advantages
 - Reduces selective fading and interference
 - in cellular networks:
 A base stations can use the same frequency range but with different chipping sequence for different users

- Disadvantages
 - precise power control necessary
 - A nearby user may drown a distance user

\[
\begin{align*}
\text{user data} & \quad \text{XOR} \\
\begin{array}{cccccccc}
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\end{array} & \quad \begin{array}{cccccccc}
0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\
\end{array} \\
\end{align*}
\]

\[t_b: \text{bit period} \quad t_c: \text{chip period}\]

Frequency Hopping Spread Spectrum

- slow hopping (3 bits/hop)
- fast hopping (3 hops/bit)

\[
\begin{align*}
\text{fast hopping} & \quad \text{slow hopping} \\
\begin{array}{cccccccc}
0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\
\end{array} & \quad \begin{array}{cccccccc}
0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\
\end{array} \\
\end{align*}
\]

\[t_b: \text{bit period} \quad t_d: \text{dwell time}\]