
Advanced Compiler Design (Kompilatorteknik DV2)

Institutionen för
informationsteknologi

www.it.uu.se

Science-based computer engineering meeting ”hackers at heart”

Prerequisites: Programming, data structures, compiler design 1.
Goals: Learn the answer to Question 1 and form some personal (and
possibly very valuable) opinion on what the answer to Question 2 is.
Get in touch with ongoing research.

In addition, the course examines the structure of efficient
virtual machine bytecode interpreters and techniques for
efficient just-in-time compilation to native code.

Towards the end of the course
we start getting dirty: we examine
techniques to perform garbage
collection (i.e., automatic memory
management).

However, the really dirty part of
the course comes after that: there
is no exam, but the course has a
project and to pass the course you
have to get your hands into it...
But who said that getting dirty isn't fun?
Have you forgotten your childhood?

You will meet the
compiler research
team and work
with projects like
High-Performance
Erlang (HiPE).

Q1: What exactly is it that separates a pretty
good programming language implementation
from a very good one?
Q2: What exactly is it that separates a pretty
good approach to developing high-performance
system software from a very good one?

The lectures of this course answer Q1 and the
project part of the course shows you the way to
discover the answer to Q2 yourself.

More specifically, advanced compiler techniques
studies the construction of high-performance
interpreters for virtual machines and (just-in-time)
optimizing compilers for modern uniprocessor
architectures. The course also covers optimizations
for modern computer architectures such as parallel
machines and complex memories with several
cache levels.

After taking compiler design 1, you may want to
know more about data-flow analysis, program
optimization and code generation for complete
programs. The course presents classical compiler
optimizations guided by static analysis of the code,
efficient intermediate representations, register
allocation, and instruction scheduling in the context
of actual compilers for high-level languages.

Research in just-in-
time garbage collection

