
A Comparative Study of Parallel Programming

Language Support for Bioinformatics

Project under supervision of Dave Clarke
dave.clarke@it.uu.se

May 28, 2014

Abstract

The goal of this project is to evaluate the applicability of a number of
parallel programming languages/frameworks for developing bioinformat-
ics algorithms, considering issues such as easy-of-programming, efficiency,
scalability, and composability.

Bioinformatics is the study of biological processes using computers. At the
core of bioinformatics are algorithms that operate on a representation of DNA,
namely strings such as the following:

ACAATGAGGTCACTATGTTCGAGCTCTTCAAACCGGCTGCGCATACGCAGCGGCTG

CGCCTTCGTTGGCAACTTTTCATCGGTATTTTTGTTGGCTATGCAGGCTACTATTT

TGATGGGGAACGTCTCTGACCGTTCTAACCCGCGCTACTTTCTGAGTGCAGGTCTA

GGCTTTATGCCATGGGCAACGGGCAGCATTACTGCGATGTTTATTCTGCTGTTCTT

...

Such data is typically large (many gigabytes) and flawed. Algorithms oper-
ating on such strings look for recurring patterns or commonality between differ-
ent strings, perform statistical calculations, and so forth, to extract information
from (sets of) such strings in order to answer hypotheses posed by biologists.

Getting the underlying algorithms fast is crucial for many bioinformatic
tasks. To this end, multicore (and manycore) computers offer a way forwards,
as vast amounts of parallel processing power are now readily available. Exploit-
ing parallel computing resources requires parallel programming languages, and
many such languages have been devised.

One of the key challenges is that the bioinformatics programs are typically
written by bioinformaticians (biologists), not computer programmers. Conse-
quently, programmability is often considered more important than efficiency.
Typically, biologist will write a program in an easy-to-use programming lan-
guage (such as Python or R) building upon existing libraries. Programming
time will be short, but the resulting program may run for weeks to deliver a
result. A computer scientist approaching the same problem would program for
several weeks to produce a program that runs in a short amount of time. The

1



language used by the computer scientist would typically require deep knowl-
edge of the hardware and compiler in order to achieve efficiency. Thus there is a
trade-off between programmability and efficiency. Research, for example, in the
UpScale project, is working towards bridging that gap. The role of the present
project is to evaluate the features of existing programming languages in terms
of how well they support bioinformatic algorithms.

A second key issue is scalability. Will algorithms/languages/compilers/run-
times/machine infrastructure support increasing data sizes while maintaining a
linear increase in run-time?

A third key issue is composability. Bioinformaticians typically build work-
flows composing several different algorithms to solve their problems. Often these
algorithms have different requirements on their input data, and sometimes they
are only available in different languages, which means that vast amounts of data
needs to be transformed or even saved to file before it can be used in the next
step of a workflow. The core question is what support do languages provide for
composability and how does this impact performance?

The project will take the following steps:

Core algorithms Initially a number of core bioinformatic algorithms will be
implemented. This will also familiarise student with bioinformatics. (See
http://rosalind.info/ for many examples.)

Parallelisation Next, a selection of these algorithms will be made as targets
for parallelisation and further investigation. The algorithms chosen should
represent the diversity of bioinformatic algorithms. These will be imple-
mented in languages/frameworks such as Erlang, Haskell (+ parallel pro-
gramming extensions), Java+Fork-Join, Java+ABS-API, and Open MP.1

Composition True bioinformatic algorithms consist of workflows composing
several algorithms. This step will explore how the languages support for
such workflows. Issues considered will include the demands on program-
mer to perform costly data transformations and the language support for
this.

Evaluation & benchmarking Ultimately, the project is about evaluating the
suitability of various language/framework features for implementing bioin-
formatics algorithms and workflows. Factors to consider when doing the
evaluation and will include readability and conciseness of the code, paral-
lelisability of the problem, adaptability of the algorithm, for instance, to
different machine configurations, support for composition, and scalability.

The student taking on this project should have interest in programming
languages, algorithms and parallel computing, and skill in programming in mul-
tiple programming languages. Knowledge of biology or bioinformatics would be
helpful, but is certainly not required.

1The precise choice of languages is open for discussion.

2


