Fast Quiz #2
Numerical Functional Analysis

Præparatus supervivet

Stefan Engblom

Division of Scientific Computing
Department of Information Technology
Uppsala University

Uppsala, May, 2019
True/False: In a normed vector space \((X, \| \cdot \|)\), the map \(x : X \to \mathbb{R}\) defined by \(x \mapsto \sqrt{1 + \|x\|^2}\) is continuous.
True/False: When considered on \mathbb{R}^n, the norms $\| \cdot \|_{\infty}$ and $\| \cdot \|_1$ imply the same topology, but they are not equivalent.
Question 3

True/False: All subspaces of the (sequence-) l^2-space are complete.
True/False: Define \(f_z(x) = \|x - z\| \) for arguments \(x \) in some normed vector space \(X \). Then there is a solution to \(x = \arg \max_{x \in M} f_z(x) \) for any compact subset \(M \subseteq X \).
True/False: All linear operators on $C[0, 1]$ are continuous.
Question 6

True/False: If there is a Schauder basis, then the space is separable.
Question 7

True/False: \(L^2[0, 1] \) is separable.
Question 8

True/False: The convergence of a Schauder expansion is always in the absolute sense.
Question 9

True/False: If the space is separable, then there is a Schauder basis.
Question 10

True/False: A closed and bounded subset of a metric space is compact.