Fast Quiz #3
Numerical Functional Analysis

Præparatus supervivet

Stefan Engblom

Division of Scientific Computing
Department of Information Technology
Uppsala University

Uppsala, May, 2019
Question 1

True/False: \[\|x + y\|^2 \leq \|x\|^2 + \|y\|^2. \]
True/False: One way of defining the l^p inner product is

$$(x, y) = \sum_{j \geq 1} \xi_j^{p/2} \eta_j^{p/2},$$

where $x = (\xi_j)$ and $y = (\eta_j)$.
True/False: *Unfortunately*, the norm $\|x\| = \max_{t \in [a,b]} |x(t)|$ for $x \in C[a,b]$ can not be obtained from an inner product.
Question 4

True/False: Let Y be an open subspace of a Hilbert space H. Then Y is complete.
True/False: Suppose $(Sv, v) = 0$ for all v in a complex Hilbert space H, where S is a bounded linear operator. Then $S = 0$.
True/False: A bounded bilinear form $a(\cdot, \cdot) \geq 0$ defines a norm by $\|v\|^2 := a(v, v)$.
Question 7

True/False: If a Hilbert space H contains a total orthogonal sequence, then H is separable.
Question 8

True/False: Let $f \in L^2[0, 1]$. Assume that (e_k) is an orthonormal sequence in $L^2[0, 1]$. Put

$$\tilde{f} = \sum_{k \geq 1} (f, e_k) e_k.$$

Then $f = \tilde{f}$.
True/False: If \(x \perp y \), then \(\| x + y \|^2 = \| x \|^2 + \| y \|^2 \).
Question 10

True/False: Suppose \((Sv, v) = 0\) for some \(v\) in a complex Hilbert space \(H\), where \(S\) is a bounded linear operator. Then \(Sv = 0\).
True/False: A bounded coercive bilinear form defines an inner product by

\[(u, v) := a(u, v).\]