1. **True/False**: $\| x + y \|^2 \leq \| x \|^2 + \| y \|^2$.

2. **True/False**: One way of defining the l^p inner product is

 $$(x, y) = \sum_{j \geq 1} \xi_j^{p/2} \eta_j^{p/2},$$

 where $x = (\xi_j)$ and $y = (\eta_j)$.

3. **True/False**: Unfortunately, the norm $\| x \| = \max_{t \in [a, b]} | x(t) |$ for $x \in C[a, b]$ can not be obtained from an inner product.

4. **True/False**: Let Y be an open subspace of a Hilbert space H. Then Y is complete.

5. **True/False**: Suppose $(Sv, v) = 0$ for all v in a complex Hilbert space H, where S is a bounded linear operator. Then $S = 0$.

6. **True/False**: A bounded bilinear form $a(\cdot, \cdot) \geq 0$ defines a norm by $\| v \|^2 := a(v, v)$.

7. **True/False**: If a Hilbert space H contains a total orthogonal sequence, then H is separable.
8. **True/False:** Let $f \in L^2[0,1]$. Assume that (e_k) is an orthonormal sequence in $L^2[0,1]$. Put

$$\tilde{f} = \sum_{k \geq 1} (f, e_k) e_k.$$

Then $f = \tilde{f}$.

9. **True/False:** If $x \perp y$, then $\|x + y\|^2 = \|x\|^2 + \|y\|^2$.

10. **True/False:** Suppose $(Sv, v) = 0$ for some v in a complex Hilbert space H, where S is a bounded linear operator. Then $Sv = 0$.

11. **True/False:** A bounded coercive bilinear form defines an inner product by $(u, v) := a(u, v)$.