A Tutorial Introduction to Structured Isar Proofs

Tobias Nipkow
Institut für Informatik, TU München
http://www.in.tum.de/~nipkow/

1 Introduction

This is a tutorial introduction to structured proofs in Isabelle/HOL. It introduces the core of the proof language Isar by example. Isar is an extension of the applystyle proofs introduced in the Isabelle/HOL tutorial [4] with structured proofs in a stylised language of mathematics. These proofs are readable for both human and machine.

1.1 A first glimpse of Isar

Below you find a simplified grammar for Isar proofs. Parentheses are used for grouping and ? indicates an optional item:

$$
\begin{array}{ll}
\text { proof }::=\text { proof method }{ }^{?} \text { statement* qed } \\
& \mid \text { by method } \\
\text { statement }::= & \text { fix variables } \\
& \mid \text { assume propositions } \\
& \mid\left(\text { from fact*) }{ }^{*} \text { (show } \mid \text { have }\right) \text { propositions proof } \\
\text { proposition }::= & (\text { label }:)^{?} \text { string } \\
\text { fact }::= & \text { label }
\end{array}
$$

A proof can be either compound (proof - qed) or atomic (by). A method is a proof method.

This is a typical proof skeleton:

```
proof
    assume "the-assm"
    have "..." - intermediate result
    \vdots
    have "..." - intermediate result
    show "the-concl"
qed
```

It proves the-assm \Longrightarrow the-concl. Text starting with "-" is a comment. The intermediate haves are only there to bridge the gap between the assumption and the conclusion and do not contribute to the theorem being proved. In contrast, show establishes the conclusion of the theorem.

1.2 Background

Interactive theorem proving has been dominated by a model of proof that goes back to the LCF system [2]: a proof is a more or less structured sequence of commands that manipulate an implicit proof state. Thus the proof text is only suitable for the machine; for a human, the proof only comes alive when he can see the state changes caused by the stepwise execution of the commands. Such proofs are like uncommented assembly language programs. Their Isabelle incarnation are sequences of apply-commands.

In contrast there is the model of a mathematics-like proof language pioneered in the Mizar system [5] and followed by Isar [7]. The most important arguments in favour of this style are communication and maintainance: structured proofs are immensly more readable and maintainable than apply-scripts.

For reading this tutorial you should be familiar with natural deduction and the basics of Isabelle/HOL [4] although we summarize the most important aspects of Isabelle below. The definitive Isar reference is its manual [6]. For an example-based account of Isar's support for reasoning by chains of (in)equations see [1].

1.3 Bits of Isabelle

Isabelle's meta-logic comes with a type of propositions with implication \Longrightarrow and a universal quantifier \bigwedge for expressing inference rules and generality. Iterated implications $A_{1} \Longrightarrow \ldots A_{n} \Longrightarrow A$ may be abbreviated to $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$. Applying a theorem $A \Longrightarrow B$ (named $T)$ to a theorem A (named U) is written T[OF U] and yields theorem B.

Isabelle terms are simply typed. Function types are written $\tau_{1} \Rightarrow \tau_{2}$.
Free variables that may be instantiated ("logical variables" in Prolog parlance) are prefixed with a ?. Typically, theorems are stated with ordinary free variables but after the proof those are automatically replaced by ?-variables. Thus the theorem can be used with arbitrary instances of its free variables.

Isabelle/HOL offers all the usual logical symbols like $\longrightarrow, \wedge, \forall$ etc. HOL formulae are propositions, e.g. \forall can appear below \Longrightarrow, but not the other way around. Beware that \longrightarrow binds more tightly than \Longrightarrow : in $\forall x . P \longrightarrow Q$ the $\forall x$ covers $P \longrightarrow Q$, whereas in $\forall x . P \Longrightarrow Q$ it covers only P.

Proof methods include rule (which performs a backwards step with a given rule, unifying the conclusion of the rule with the current subgoal and replacing the subgoal by the premises of the rule), simp (for simplification) and blast (for predicate calculus reasoning).

1.4 Advice

A word of warning for potential writers of Isar proofs. It is easier to write obscure rather than readable texts. Similarly, apply-style proofs are sometimes easier to write than readable ones: structure does not emerge automatically but needs to be understood and imposed. If the precise structure of the proof is unclear at
beginning, it can be useful to start with apply for exploratory purposes until one has found a proof which can be converted into a structured text in a second step. Top down conversion is possible because Isar allows apply-style proofs as components of structured ones.

Finally, do not be mislead by the simplicity of the formulae being proved, especially in the beginning. Isar has been used very successfully in large applications, for example the formalisation of Java dialects [3].

The rest of this tutorial is divided into two parts. Section 2 introduces proofs in pure logic based on natural deduction. Section 3 is dedicated to induction.

2 Logic

2.1 Propositional logic

Introduction rules We start with a really trivial toy proof to introduce the basic features of structured proofs.

```
lemma "A \longrightarrowA"
proof (rule impI)
    assume a: "A"
    show "A" by(rule a)
qed
```

The operational reading: the assume-show block proves $A \Longrightarrow A$ (a is a degenerate rule (no assumptions) that proves A outright), which rule impI ((?P \Longrightarrow $? Q) \Longrightarrow ? P \longrightarrow ? Q)$ turns into the desired $A \longrightarrow A$. However, this text is much too detailed for comfort. Therefore Isar implements the following principle:

Command proof automatically tries to select an introduction rule based on the goal and a predefined list of rules.

Here impI is applied automatically:

```
lemma "A \longrightarrowA"
proof
    assume a: A
    show A by(rule a)
qed
```

Single-identifier formulae such as A need not be enclosed in double quotes. However, we will continue to do so for uniformity.

Trivial proofs, in particular those by assumption, should be trivial to perform. Proof "." does just that (and a bit more). Thus naming of assumptions is often superfluous:

```
lemma "A \longrightarrowA"
proof
    assume "A"
    show "A" .
```

qed
To hide proofs by assumption further，by（method）first applies method and then tries to solve all remaining subgoals by assumption：

```
lemma " }A\longrightarrowA\wedgeA
proof
    assume "A"
    show "A ^A" by(rule conjI)
qed
```

Rule conjI is of course $\llbracket ? P$ ；？Q】 \Longrightarrow ？P \wedge ？Q．A drawback of implicit proofs by assumption is that it is no longer obvious where an assumption is used．

Proofs of the form by（rule name）can be abbreviated to＂．．＂if name refers to one of the predefined introduction rules（or elimination rules，see below）：

```
lemma "A}\longrightarrowA\wedgeA
proof
    assume "A"
    show "A ^ A" ..
qed
```

This is what happens：first the matching introduction rule conjI is applied（first ＂．＂），then the two subgoals are solved by assumption（second＂．＂）．

Elimination rules A typical elimination rule is $\operatorname{conjE}, \wedge$－elimination：
$\llbracket ? P \wedge$ ？Q；【？P；？Q】 $\Longrightarrow ? R \rrbracket \Longrightarrow \quad ? R$
In the following proof it is applied by hand，after its first（major）premise has been eliminated via［ $O F A B$ ］：

```
lemma " \(A \wedge B \longrightarrow B \wedge A\) "
proof
    assume \(A B: ~ " A \wedge B "\)
    show " \(B \wedge A\) "
    proof (rule conjE[OF AB]) - conjE[OF AB]: \((\llbracket A ; B \rrbracket \Longrightarrow ? R) \Longrightarrow\) ?R
        assume "A" "B"
        show ?thesis ..
    qed
qed
```

Note that the term ？thesis always stands for the＂current goal＂，i．e．the enclos－ ing show（or have）statement．

This is too much proof text．Elimination rules should be selected automat－ ically based on their major premise，the formula or rather connective to be eliminated．In Isar they are triggered by facts being fed into a proof．Syntax：

from fact show proposition proof

where fact stands for the name of a previously proved proposition，e．g．an as－ sumption，an intermediate result or some global theorem，which may also be
modified with $O F$ etc. The fact is "piped" into the proof, which can deal with it how it chooses. If the proof starts with a plain proof, an elimination rule (from a predefined list) is applied whose first premise is solved by the fact. Thus the proof above is equivalent to the following one:

```
lemma " }A\wedgeB\longrightarrowB\wedgeA
proof
    assume AB: "A ^ B"
    from AB show "B ^A"
    proof
        assume "A" "B"
        show ?thesis ..
    qed
qed
```

Now we come to a second important principle:
Try to arrange the sequence of propositions in a UNIX-like pipe, such that the proof of each proposition builds on the previous proposition.

The previous proposition can be referred to via the fact this. This greatly reduces the need for explicit naming of propositions:

```
lemma "A}\wedge B\longrightarrowB\wedgeA
proof
    assume "A ^ B"
    from this show "B ^A"
    proof
        assume "A" "B"
        show ?thesis ..
    qed
qed
```

Because of the frequency of from this, Isar provides two abbreviations:

```
then = from this
thus = then show
```

Here is an alternative proof that operates purely by forward reasoning:

```
lemma "A}\wedge B\longrightarrowB\wedgeA"
proof
    assume ab: "A ^ B"
    from ab have a: "A" ..
    from ab have b: "B" ..
    from b a show " }B\wedgeA" .
qed
```

It is worth examining this text in detail because it exhibits a number of new concepts. For a start, it is the first time we have proved intermediate propositions (have) on the way to the final show. This is the norm in nontrivial proofs where one cannot bridge the gap between the assumptions and the conclusion in one step. To understand how the proof works we need to explain more Isar details:

- Method rule can be given a list of rules, in which case (rule rules) applies the first matching rule in the list rules.
- Command from can be followed by any number of facts. Given from $f_{1} \ldots f_{n}$, the proof step (rule rules) following a have or show searches rules for a rule whose first n premises can be proved by $f_{1} \ldots f_{n}$ in the given order.
- ".." is short for by (rule elim-rules intro-rules) ${ }^{1}$, where elim-rules and introrules are the predefined elimination and introduction rule. Thus elimination rules are tried first (if there are incoming facts).
Hence in the above proof both haves are proved via conjE triggered by from ab whereas in the show step no elimination rule is applicable and the proof succeeds with conjI. The latter would fail had we written from $a b$ instead of from b a.

A plain proof with no argument is short for proof (rule elim-rules introrules $)^{1}$. This means that the matching rule is selected by the incoming facts and the goal exactly as just explained.

Although we have only seen a few introduction and elimination rules so far, Isar's predefined rules include all the usual natural deduction rules. We conclude our exposition of propositional logic with an extended example - which rules are used implicitly where?

```
lemma " \(\neg(A \wedge B) \longrightarrow \neg A \vee \neg B "\)
proof
    assume \(n: " \neg(A \wedge B) "\)
    show " \(\neg A \vee \neg B^{\prime \prime}\)
    proof (rule ccontr)
        assume nn: " \(\neg(\neg A \vee \neg B) "\)
        have " \(\neg\) A"
        proof
            assume "A"
            have "ᄀ B"
            proof
                assume " \(B\) "
                have " \(A \wedge B\) "..
                with n show False ..
            qed
            hence " \(\neg A \vee \neg B^{\prime \prime}\)..
            with \(n n\) show False ..
        qed
        hence " \(\neg A \vee \neg B\) " ..
        with nn show False ..
    qed
qed
```

Rule ccontr ("classical contradiction") is ($\neg P \Longrightarrow$ False) $\Longrightarrow P$. Apart from demonstrating the strangeness of classical arguments by contradiction, this example also introduces two new abbreviations:

$$
\begin{array}{ll}
\text { hence } & =\text { then have } \\
\text { with facts } & =\text { from facts this }
\end{array}
$$

[^0]
2.2 Avoiding duplication

So far our examples have been a bit unnatural: normally we want to prove rules expressed with \Longrightarrow, not \longrightarrow. Here is an example:

```
lemma "A}\wedge B\LongrightarrowB\wedgeA"
proof
    assume "A ^ B" thus "B" ..
next
    assume "A ^ B" thus "A" ..
qed
```

The proof always works on the conclusion, $B \wedge A$ in our case, thus selecting \wedge-introduction. Hence we must show B and A; both are proved by \wedge-elimination and the proofs are separated by next:
next deals with multiple subgoals. For example, when showing $A \wedge B$ we need to show both A and B. Each subgoal is proved separately, in any order. The individual proofs are separated by next. ${ }^{2}$
Strictly speaking next is only required if the subgoals are proved in different assumption contexts which need to be separated, which is not the case above. For clarity we have employed next anyway and will continue to do so.

This is all very well as long as formulae are small. Let us now look at some devices to avoid repeating (possibly large) formulae. A very general method is pattern matching:

```
lemma "large_A ^ large_B \Longrightarrow large_B ^ large_A"
            (is "?AB\Longrightarrow?B ^ ?A")
proof
    assume "?AB" thus "?B" ..
next
    assume "?AB" thus "?A" ..
qed
```

Any formula may be followed by (is pattern) which causes the pattern to be matched against the formula, instantiating the ?-variables in the pattern. Subsequent uses of these variables in other terms causes them to be replaced by the terms they stand for.

We can simplify things even more by stating the theorem by means of the assumes and shows elements which allow direct naming of assumptions:

```
lemma assumes AB: "large_A ^ large_B"
    shows "large_B ^ large_A" (is "?B ^ ?A")
proof
    from }AB\mathrm{ show "?B" ..
next
    from AB show "?A" ..
```

[^1]qed
Note the difference between ? $A B$, a term, and $A B$, a fact.
Finally we want to start the proof with \wedge-elimination so we don't have to perform it twice, as above. Here is a slick way to achieve this:

```
lemma assumes AB: "large_A ^ large_B"
    shows "large_B ^ large_A" (is "?B ^ ?A")
using AB
proof
    assume "?A" "?B" show ?thesis ..
qed
```

Command using can appear before a proof and adds further facts to those piped into the proof. Here $A B$ is the only such fact and it triggers \wedge-elimination. Another frequent idiom is as follows:
from major-facts show proposition using minor-facts proof
Sometimes it is necessary to suppress the implicit application of rules in a proof. For example show $A \vee B$ would trigger \vee-introduction, requiring us to prove A. A simple "-" prevents this faux pas:

```
lemma assumes AB: "A \vee B" shows " }B\veeA\mathrm{ "
proof -
    from AB show ?thesis
    proof
        assume A show ?thesis ..
    next
        assume B show ?thesis ..
    qed
qed
```

Alternatively one can feed $A \vee B$ directly into the proof, thus triggering the elimination rule:

```
lemma assumes AB: "A \vee B" shows " }B\veeA\mathrm{ "
using }A
proof
    assume A show ?thesis ..
next
    assume B show ?thesis ..
qed
```

Remember that eliminations have priority over introductions.

2.3 Avoiding names

Too many names can easily clutter a proof. We already learned about this as a means of avoiding explicit names. Another handy device is to refer to a fact not by name but by contents: for example, writing ' $A \vee B$ ' (enclosing the formula
in back quotes) refers to the fact $A \vee B$ without the need to name it. Here is a simple example, a revised version of the previous proof

```
lemma assumes "A \vee B" shows " }B\veeA\mathrm{ "
using ' }A\veeB
```

which continues as before.
Clearly, this device of quoting facts by contents is only advisable for small formulae. In such cases it is superior to naming because the reader immediately sees what the fact is without needing to search for it in the preceding proof text.

The assumptions of a lemma can also be referred to via their predefined name assms. Hence the ' $A \vee B^{\prime}$ ' in the previous proof can also be replaced by assms. Note that assms refers to the list of all assumptions. To pick out a specific one, say the second, write assms (2).

This indexing notation name(.) works for any name that stands for a list of facts, for example f.simps, the equations of the recursively defined function f. You may also select sublists by writing name $(2-3)$.

Above we recommended the UNIX-pipe model (i.e. this) to avoid the need to name propositions. But frequently we needed to feed more than one previously derived fact into a proof step. Then the UNIX-pipe model appears to break down and we need to name the different facts to refer to them. But this can be avoided:

```
lemma assumes "A ^ B" shows " }B\wedgeA
proof -
    from ' }A\wedgeB'\mathrm{ ' have "B" ..
    moreover
    from ' }A\wedgeB\mathrm{ ' have "A" ..
    ultimately show "B ^A" ..
qed
```

You can combine any number of facts $A 1 \ldots$ An into a sequence by separating their proofs with moreover. After the final fact, ultimately stands for from A1 ... An. This avoids having to introduce names for all of the sequence elements.

2.4 Predicate calculus

Command fix introduces new local variables into a proof. The pair fix-show corresponds to \bigwedge (the universal quantifier at the meta-level) just like assumeshow corresponds to \Longrightarrow. Here is a sample proof, annotated with the rules that are applied implicitly:

```
lemma assumes \(P: \quad \forall x . P\) x" shows \(\forall \forall x . P(f x) "\)
proof -allI: ( \(\bigwedge x\). ? \(P x\) ) \(\Longrightarrow \forall x\). ? \(P x\)
    fix a
    from \(P\) show " \(P(f\) a)" .. - allE: \(\llbracket \forall x . \quad ? P \mathrm{x} ; ~ ? P\) ? \(\mathrm{x} \Longrightarrow ? R \rrbracket \Longrightarrow\) ?R
qed
```

Note that in the proof we have chosen to call the bound variable a instead of x merely to show that the choice of local names is irrelevant.

Next we look at \exists which is a bit more tricky.

```
lemma assumes Pf: " \(\exists \mathrm{x} . P(\mathrm{f} x)\) " shows " \(\exists \mathrm{y}\). \(P\) y"
proof -
    from Pf show ?thesis
    proof -exE: \(\llbracket \exists \mathrm{x} . ? \mathrm{P} x ; \bigwedge \mathrm{x} . ? \mathrm{P} \mathrm{x} \Longrightarrow ? \mathrm{Q} \rrbracket \Longrightarrow\) ?Q
        fix \(x\)
        assume " \(P(f x)\) "
        show ?thesis .. - exI: ?P ?x \(\Longrightarrow \exists x\). ?P \(x\)
    qed
qed
```

Explicit \exists-elimination as seen above can become cumbersome in practice. The derived Isar language element obtain provides a more appealing form of generalised existence reasoning:

```
lemma assumes Pf: "\existsx. P(f x)" shows "\existsy. P y"
proof -
    from Pf obtain x where "P(f x)" ..
    thus "\existsy. P y" ..
qed
```

Note how the proof text follows the usual mathematical style of concluding $P(x)$ from $\exists x . P(x)$, while carefully introducing x as a new local variable. Technically, obtain is similar to fix and assume together with a soundness proof of the elimination involved.

Here is a proof of a well known tautology. Which rule is used where?

```
lemma assumes ex: "\existsx. \forally. P x y" shows "\forally. \existsx. P x y"
proof
    fix y
    from ex obtain x where "\forally. P x y" ..
    hence "P x y" ..
    thus "\existsx. P x y" ..
qed
```


2.5 Making bigger steps

So far we have confined ourselves to single step proofs. Of course powerful automatic methods can be used just as well. Here is an example, Cantor's theorem that there is no surjective function from a set to its powerset:

```
theorem "\existsS.S S range (f :: 'a # 'a set)"
proof
    let ?S = "{x. x & f x}"
    show "?S & range f"
    proof
        assume "?S \in range f"
        then obtain y where "?S = f y" ..
        show False
        proof cases
```

```
            assume "y \in ?S"
            with '?S = f y' show False by blast
        next
            assume "y & ?S"
            with '?S = f y' show False by blast
        qed
    qed
qed
```

For a start, the example demonstrates two new constructs:

- let introduces an abbreviation for a term, in our case the witness for the claim.
- Proof by cases starts a proof by cases. Note that it remains implicit what the two cases are: it is merely expected that the two subproofs prove $P \Longrightarrow$?thesis and $\neg P \Longrightarrow$?thesis (in that order) for some P.

If you wonder how to obtain y : via the predefined elimination rule $\llbracket b \in$ range $f ; ~ \bigwedge x . b=f x \Longrightarrow P \rrbracket \Longrightarrow P$.

Method blast is used because the contradiction does not follow easily by just a single rule. If you find the proof too cryptic for human consumption, here is a more detailed version; the beginning up to obtain stays unchanged.

```
theorem " \(\exists S . S \notin\) range ( \(f::\) ’a \(\Rightarrow\) 'a set)"
proof
    let ?S = "\{x. \(x \notin f x\} "\)
    show "?S \(\notin\) range \(f\) "
    proof
        assume "?S \(\in\) range \(f\) "
        then obtain \(y\) where "?S = f y" ..
        show False
        proof cases
            assume "y \(\in\) ?S"
            hence "y \(\notin f\) y" by simp
            hence "y \(\notin\) ?S" by (simp add: '?S = f y')
            thus False by contradiction
        next
            assume "y \(\notin ? S "\)
            hence "y \(\in f\) y" by simp
            hence " \(y \in\) ?S" by (simp add: '?S = f y')
            thus False by contradiction
        qed
    qed
qed
```

Method contradiction succeeds if both P and $\neg P$ are among the assumptions and the facts fed into that step, in any order.

As it happens, Cantor's theorem can be proved automatically by best-first search. Depth-first search would diverge, but best-first search successfully navigates through the large search space:

```
theorem "\existsS.S & range (f :: 'a # 'a set)"
by best
```


2.6 Raw proof blocks

Although we have shown how to employ powerful automatic methods like blast to achieve bigger proof steps, there may still be the tendency to use the default introduction and elimination rules to decompose goals and facts. This can lead to very tedious proofs:

```
lemma " \(\forall \mathrm{x} y . A \mathrm{x} y \wedge B \mathrm{x} y \longrightarrow C \mathrm{x} \mathrm{y}\) "
proof
    fix \(x\) show \(" \forall y . A x y \wedge B x y \longrightarrow C x y "\)
    proof
        fix y show " \(A x y \wedge B x y \longrightarrow C x y\) "
        proof
            assume " \(A x y \wedge B x y "\)
            show "C x y" sorry
        qed
    qed
qed
```

Since we are only interested in the decomposition and not the actual proof, the latter has been replaced by sorry. Command sorry proves anything but is only allowed in quick and dirty mode, the default interactive mode. It is very convenient for top down proof development.

Luckily we can avoid this step by step decomposition very easily:

```
lemma " \(\forall \mathrm{x} y . A \mathrm{x} y \wedge B \mathrm{x} y \longrightarrow C \mathrm{x} \mathrm{y}\) "
proof -
```



```
    proof -
        fix \(x\) y assume "A x y" "B x y"
        show "C x y" sorry
    qed
    thus ?thesis by blast
qed
```

This can be simplified further by raw proof blocks, i.e. proofs enclosed in braces:

```
lemma " \(\forall \mathrm{x} y . A \mathrm{x} y \wedge B \mathrm{x} y \longrightarrow C \mathrm{x} \mathrm{y}\) "
proof -
    \{ fix \(x\) y assume "A x y" "B x y"
        have "C x y" sorry \}
    thus ?thesis by blast
qed
```

The result of the raw proof block is the same theorem as above, namely $\bigwedge x$ y. $\llbracket A \times y ; B x y \rrbracket \Longrightarrow C x y$. Raw proof blocks are like ordinary proofs except that they do not prove some explicitly stated property but that the property emerges directly out of the fixes, assumes and have in the block. Thus they
again serve to avoid duplication. Note that the conclusion of a raw proof block is stated with have rather than show because it is not the conclusion of some pending goal but some independent claim.

The general idea demonstrated in this subsection is very important in Isar and distinguishes it from apply-style proofs:

Do not manipulate the proof state into a particular form by applying proof methods but state the desired form explicitly and let the proof methods verify that from this form the original goal follows.

This yields more readable and also more robust proofs.

General case distinctions As an important application of raw proof blocks we show how to deal with general case distinctions - more specific kinds are treated in $\S 3.1$. Imagine that you would like to prove some goal by distinguishing n cases P_{1}, \ldots, P_{n}. You show that the n cases are exhaustive (i.e. $P_{1} \vee \ldots \vee P_{n}$) and that each case P_{i} implies the goal. Taken together, this proves the goal. The corresponding Isar proof pattern (for $n=3$) is very handy:

```
proof -
    have "P}\mp@subsup{P}{1}{}\vee\mp@subsup{P}{2}{}\vee\mp@subsup{P}{3}{\prime\prime
    moreover
    { assume P P
        have ?thesis ... }
    moreover
    { assume P
        have ?thesis ... }
    moreover
    { assume P3
        have ?thesis ... }
    ultimately show ?thesis by blast
qed
```


2.7 Further refinements

This subsection discusses some further tricks that can make life easier although they are not essential.
and Propositions (following assume etc) may but need not be separated by and. This is not just for readability (from A and B looks nicer than from $A B$) but for structuring lists of propositions into possibly named blocks. In
assume $\mathrm{A}: A_{1} A_{2}$ and B: A_{3} and A_{4}
label A refers to the list of propositions $A_{1} A_{2}$ and label B to A_{3}.
note If you want to remember intermediate fact(s) that cannot be named directly, use note. For example the result of raw proof block can be named by following it with note some_name = this. As a side effect, this is set to the list of facts on the right-hand side. You can also say note some_fact, which simply sets this, i.e. recalls some_fact, e.g. in a moreover sequence.
fixes Sometimes it is necessary to decorate a proposition with type constraints, as in Cantor's theorem above. These type constraints tend to make the theorem less readable. The situation can be improved a little by combining the type constraint with an outer Λ :
theorem " $\bigwedge f:: \prime$ 'a \Rightarrow 'a set. $\exists S . S \notin$ range $f "$
However, now f is bound and we need a fix f in the proof before we can refer to f. This is avoided by fixes:

```
theorem fixes f :: "’a # 'a set" shows "\existsS. S & range f"
```

Even better, fixes allows to introduce concrete syntax locally:

```
lemma comm_mono:
    fixes r :: "'a # 'a # bool" (infix ">" 60) and
        f :: "'a # 'a # 'a" (infixl "++" 70)
    assumes comm: "\x y::'a. x ++ y = y ++ x" and
            mono: "\x y z::'a. x > y \Longrightarrow x ++ z > y ++ z"
    shows "x > y \Longrightarrow z ++ x > z ++ y"
by(simp add: comm mono)
```

The concrete syntax is dropped at the end of the proof and the theorem becomes
【^x y. ?f x y $=$?f y x;
\x y z. ?r x y \Longrightarrow ?r (?f x z) (?f y z); ?r ?x ?y】
\Longrightarrow ?r (?f ?z ?x) (?f ?z ?y)
obtain The obtain construct can introduce multiple witnesses and propositions as in the following proof fragment:

```
lemma assumes A: "\existsx y. P x y ^Q x y" shows "R"
proof -
    from A obtain x y where P: "P x y" and Q: "Q x y" by blast
```

Remember also that one does not even need to start with a formula containing \exists as we saw in the proof of Cantor's theorem.

Combining proof styles Finally, whole apply-scripts may appear in the leaves of the proof tree, although this is best avoided. Here is a contrived example:

```
lemma "A \longrightarrow(A\longrightarrowB)\longrightarrowB"
proof
```

```
    assume a: "A"
    show "(A \longrightarrowB) \longrightarrow B"
    apply(rule impI)
    apply(erule impE)
    apply(rule a)
    apply assumption
    done
qed
```

You may need to resort to this technique if an automatic step fails to prove the desired proposition.

When converting a proof from apply-style into Isar you can proceed in a top-down manner: parts of the proof can be left in script form while the outer structure is already expressed in Isar.

3 Case distinction and induction

Computer science applications abound with inductively defined structures, which is why we treat them in more detail. HOL already comes with a datatype of lists with the two constructors Nil and Cons. Nil is written [] and Cons x xs is written x \# xs.

3.1 Case distinction

We have already met the cases method for performing binary case splits. Here is another example:

```
lemma "\negA\veeA"
proof cases
    assume "A" thus ?thesis ..
next
    assume "\negA" thus ?thesis ..
qed
```

The two cases must come in this order because cases merely abbreviates (rule case_split_thm) where case_split_thm is $\llbracket ? P \Longrightarrow$?Q; $\neg P P \Longrightarrow$?Q】 \Longrightarrow ?Q. If we reverse the order of the two cases in the proof, the first case would prove $\neg A$ $\Longrightarrow \neg A \vee A$ which would solve the first premise of case_split_thm, instantiating ?P with $\neg A$, thus making the second premise $\neg \neg A \Longrightarrow \neg A \vee A$. Therefore the order of subgoals is not always completely arbitrary.

The above proof is appropriate if A is textually small. However, if A is large, we do not want to repeat it. This can be avoided by the following idiom

```
lemma "\negA \vee A"
proof (cases "A")
    case True thus ?thesis ..
next
    case False thus ?thesis ..
```


qed

which is like the previous proof but instantiates ?P right away with A. Thus we could prove the two cases in any order. The phrase case True abbreviates assume True: A and analogously for False and $\neg A$.

The same game can be played with other datatypes, for example lists, where $t 1$ is the tail of a list, and length returns a natural number (remember: $0-1=0$):

```
lemma "length(tl xs) = length xs - 1"
proof (cases xs)
    case Nil thus ?thesis by simp
next
    case Cons thus ?thesis by simp
qed
```

Here case Nil abbreviates assume Nil: xs = [] and case Cons abbreviates fix ? ?? assume Cons: xs = ? \# ??, where ? and ?? stand for variable names that have been chosen by the system. Therefore we cannot refer to them. Luckily, this proof is simple enough we do not need to refer to them. However, sometimes one may have to. Hence Isar offers a simple scheme for naming those variables: replace the anonymous Cons by (Cons y ys), which abbreviates fix y ys assume Cons: xs = y \# ys. In each case the assumption can be referred to inside the proof by the name of the constructor. In Section 3.4 below we will come across an example of this.

3.2 Structural induction

We start with an inductive proof where both cases are proved automatically:

```
lemma "2 * ( \(\left.\sum \mathrm{i}:: \mathrm{nat} \leq n . i\right)=n *(n+1) "\)
by (induct n) simp_all
```

The constraint : :nat is needed because all of the operations involved are overloaded. This proof also demonstrates that by can take two arguments, one to start and one to finish the proof - the latter is optional.

If we want to expose more of the structure of the proof, we can use pattern matching to avoid having to repeat the goal statement:

```
lemma "2 * ( \(\mathrm{\sum} \mathrm{i}:\) :nat \(\leq n\). i) \(=n *(n+1)\) " (is "?P n")
proof (induct \(n\) )
    show "?P 0" by simp
next
    fix \(n\) assume "?P n"
    thus "?P(Suc n)" by simp
qed
```

We could refine this further to show more of the equational proof. Instead we explore the same avenue as for case distinctions: introducing context via the case command:

```
lemma "2 * (\sumi::nat \leq n. i) = n*(n+1)"
```

```
proof (induct n)
    case O show ?case by simp
next
    case Suc thus ?case by simp
qed
```

The implicitly defined ?case refers to the corresponding case to be proved, i.e. $? P O$ in the first case and ?P (Suc n) in the second case. Context case 0 is empty whereas case Suc assumes ?P n. Again we have the same problem as with case distinctions: we cannot refer to an anonymous n in the induction step because it has not been introduced via fix (in contrast to the previous proof). The solution is the one outlined for Cons above: replace Suc by (Suc i):

```
lemma fixes n::nat shows "n < n*n + 1"
proof (induct n)
    case O show ?case by simp
next
    case (Suc i) thus "Suc i < Suc i * Suc i + 1" by simp
qed
```

Of course we could again have written thus ?case instead of giving the term explicitly but we wanted to use i somewhere.

3.3 Generalization via arbitrary

It is frequently necessary to generalize a claim before it becomes provable by induction. The tutorial [4] demonstrates this with itrev xs ys = rev xs @ ys, where ys needs to be universally quantified before induction succeeds. ${ }^{3}$ But strictly speaking, this quantification step is already part of the proof and the quantifiers should not clutter the original claim. This is how the quantification step can be combined with induction:

```
lemma "itrev xs ys = rev xs @ ys"
by (induct xs arbitrary: ys) simp_all
```

The annotation arbitrary: vars universally quantifies all vars before the induction. Hence they can be replaced by arbitrary values in the proof.

The nice thing about generalization via arbitrary: is that in the induction step the claim is available in unquantified form but with the generalized variables replaced by ?-variables, ready for instantiation. In the above example the induction hypothesis is itrev xs ?ys = rev xs @ ?ys.

For the curious: arbitrary: introduces \bigwedge behind the scenes.

3.4 Inductive proofs of conditional formulae

Induction also copes well with formulae involving \Longrightarrow, for example

```
3 rev [] = [], rev (x # xs) = rev xs @ [x],
    itrev [] ys = ys, itrev (x # xs) ys = itrev xs (x # ys)
```

```
lemma "xs f [] \Longrightarrow hd(rev xs) = last xs"
by (induct xs) simp_all
```

This is an improvement over that style the tutorial [4] advises, which requires \longrightarrow. A further improvement is shown in the following proof:

```
lemma "map f xs = map f ys \Longrightarrow length xs = length ys"
proof (induct ys arbitrary: xs)
    case Nil thus ?case by simp
next
    case (Cons y ys) note Asm = Cons
    show ?case
    proof (cases xs)
        case Nil
        hence False using Asm(2) by simp
        thus ?thesis ..
    next
        case (Cons x xs')
        with Asm(2) have "map f xs' = map f ys" by simp
        from Asm(1)[OF this] 'xs = x#xs'' show ?thesis by simp
    qed
qed
```

The base case is trivial. In the step case Isar assumes (under the name Cons) two propositions:

```
map f ?xs = map f ys }\Longrightarrow\mathrm{ length ?xs = length ys
map f xs = map f(y # ys)
```

The first is the induction hypothesis, the second, and this is new, is the premise of the induction step. The actual goal at this point is merely length xs = length (y \# ys). The assumptions are given the new name Asm to avoid a name clash further down. The proof procedes with a case distinction on xs. In the case xs $=[]$, the second of our two assumptions (Asm (2)) implies the contradiction $0=$ $\operatorname{Suc}(\ldots)$. In the case $\mathrm{xs}=\mathrm{x} \# \mathrm{xs}{ }^{\prime}$, we first obtain $\operatorname{map} f \mathrm{xs}{ }^{\prime}=\operatorname{map} f$ ys, from which a forward step with the first assumption (Asm(1) [OF this]) yields length $\mathrm{xs}{ }^{\prime}=$ length ys. Together with $\mathrm{xs}=\mathrm{x} \# \mathrm{xs}$ this yields the goal length $\mathrm{xs}=$ length (y \# ys).

3.5 Induction formulae involving \wedge or \Longrightarrow

Let us now consider abstractly the situation where the goal to be proved contains both \bigwedge and \Longrightarrow, say $\Lambda x . P \mathrm{x} \Longrightarrow Q \mathrm{x}$. This means that in each case of the induction, ?case would be of the form $\Lambda x . P^{\prime} x \Longrightarrow Q^{\prime} x$. Thus the first proof steps will be the canonical ones, fixing x and assuming $P^{\prime} x$. To avoid this tedium, induction performs the canonical steps automatically: in each step case, the assumptions contain both the usual induction hypothesis and $P^{\prime} \mathrm{x}$, whereas ?case is only $Q^{\prime} x$.

3.6 Rule induction

HOL also supports inductively defined sets. See [4] for details. As an example we define our own version of the reflexive transitive closure of a relation - HOL provides a predefined one as well.

```
inductive_set
    rtc :: "('a \(\times\) ’a)set \(\Rightarrow\) ('a \(\times\) ’a)set" ("_*" [1000] 999)
    for \(r::\) "('a \(\times\) 'a)set"
where
    refl: " \((x, x) \in r * "\)
| step: "【 \((x, y) \in r ;(y, z) \in r * \rrbracket \Longrightarrow(x, z) \in r^{*} "\)
```

First the constant is declared as a function on binary relations (with concrete syntax r * instead of $r t c r$), then the defining clauses are given. We will now prove that $r *$ is indeed transitive:

```
lemma assumes \(A: "(x, y) \in r^{*}\) " shows " \((y, z) \in r * \Longrightarrow(x, z) \in r * "\)
using \(A\)
proof induct
    case refl thus ?case .
next
    case step thus ?case by (blast intro: rtc.step)
qed
```

Rule induction is triggered by a fact $\left(x_{1}, \ldots, x_{n}\right) \in R$ piped into the proof, here using A. The proof itself follows the inductive definition very closely: there is one case for each rule, and it has the same name as the rule, analogous to structural induction.

However, this proof is rather terse. Here is a more readable version:

```
lemma assumes " \((x, y) \in r * "\) and \("(y, z) \in r * "\) shows \("(x, z) \in r * "\)
using assms
proof induct
    fix \(x\) assume " \((x, z) \in r * "-B[y:=x]\)
    thus " \((x, z) \in r * "\).
next
    fix \(x^{\prime} x\) y
    assume 1: " \((x, x) \in r "\) and
            IH: " \((y, z) \in r^{*} \Longrightarrow(x, z) \in r^{*} "\) and
            B: " \((y, z) \in r * "\)
    from 1 IH[OF B] show " \(\left(x^{\prime}, z\right) \in r * "\) by (rule rtc.step)
qed
```

This time, merely for a change, we start the proof with by feeding both assumptions into the inductive proof. Only the first assumption is "consumed" by the induction. Since the second one is left over we don't just prove ?thesis but $(y, z) \in r^{*} \Longrightarrow$?thesis, just as in the previous proof. The base case is trivial. In the assumptions for the induction step we can see very clearly how things fit together and permit ourselves the obvious forward step IH [OF B].

The notation case (constructor vars) is also supported for inductive definitions. The constructor is the name of the rule and the vars fix the free variables
in the rule; the order of the vars must correspond to the left-to-right order of the variables as they appear in the rule. For example, we could start the above detailed proof of the induction with case (step x ' x y). In that case we don't need to spell out the assumptions but can refer to them by step (.), although the resulting text will be quite cryptic.

3.7 More induction

We close the section by demonstrating how arbitrary induction rules are applied. As a simple example we have chosen recursion induction, i.e. induction based on a recursive function definition. However, most of what we show works for induction in general.

The example is an unusual definition of rotation:

```
fun rot :: "'a list }=>\mathrm{ 'a list" where
"rot [] = []" |
"rot [x] = [x]" |
"rot (x#y#zs) = y # rot(x#zs)"
```

This yields, among other things, the induction rule rot.induct:

```
\(\llbracket P[] ; \bigwedge x . P[x] ; \bigwedge x\) y zs. \(P(x \neq z s) \Longrightarrow P(x \neq y \# z s) \rrbracket \Longrightarrow P a 0\)
```

The following proof relies on a default naming scheme for cases: they are called 1,2 , etc, unless they have been named explicitly. The latter happens only with datatypes and inductively defined sets, but (usually) not with recursive functions.

```
lemma "xs }=[]\Longrightarrow\operatorname{rot xs = tl xs @ [hd xs]"
proof (induct xs rule: rot.induct)
    case 1 thus ?case by simp
next
    case 2 show ?case by simp
next
    case (3 a b cs)
    have "rot (a # b # cs) = b # rot(a # cs)" by simp
    also have "... = b # tl(a # cs) @ [hd(a # cs)]" by(simp add:3)
    also have "... = tl (a # b # cs) @ [hd (a # b # cs)]" by simp
    finally show ?case.
qed
```

The third case is only shown in gory detail (see [1] for how to reason with chains of equations) to demonstrate that the case (constructor vars) notation also works for arbitrary induction theorems with numbered cases. The order of the vars corresponds to the order of the \bigwedge-quantified variables in each case of the induction theorem. For induction theorems produced by fun it is the order in which the variables appear on the left-hand side of the equation.

The proof is so simple that it can be condensed to

```
by (induct xs rule: rot.induct) simp_all
```


References

1. Gertrud Bauer and Markus Wenzel. Calculational reasoning revisited - an Isabelle/Isar experience. In R. Boulton and P. Jackson, editors, Theorem Proving in Higher Order Logics, TPHOLs 2001, volume 2152 of Lect. Notes in Comp. Sci., pages 75-90. Springer-Verlag, 2001.
2. M.C.J. Gordon, Robin Milner, and C.P. Wadsworth. Edinburgh LCF: a Mechanised Logic of Computation, volume 78 of Lect. Notes in Comp. Sci. Springer-Verlag, 1979.
3. Gerwin Klein and Tobias Nipkow. A machine-checked model for a Java-like language, virtual machine and compiler. ACM Transactions on Programming Languages and Systems, 28(4):619-695, 2006.
4. Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant for Higher-Order Logic, volume 2283 of Lect. Notes in Comp. Sci. Springer-Verlag, 2002. http://www.in.tum.de/~nipkow/LNCS2283/.
5. P. Rudnicki. An overview of the Mizar project. In Workshop on Types for Proofs and Programs. Chalmers University of Technology, 1992.
6. Markus Wenzel. The Isabelle/Isar Reference Manual. Technische Universität München, 2002. http://isabelle.in.tum.de/dist/Isabelle2002/doc/isar-ref.pdf.
7. Markus Wenzel and Freek Wiedijk. A comparison of the mathematical proof languages Mizar and Isar. J. Automated Reasoning, pages 389-411, 2002.

[^0]: ${ }^{1}$ or merely (rule intro-rules) if there are no facts fed into the proof

[^1]: ${ }^{2}$ Each show must prove one of the pending subgoals. If a show matches multiple subgoals, e.g. if the subgoals contain ?-variables, the first one is proved. Thus the order in which the subgoals are proved can matter - see $\S 3.1$ for an example.

