Induction heuristics
Basic heuristics

Theorems about recursive functions are proved by induction
Basic heuristics

Theorems about recursive functions are proved by induction

Induction on argument number \(i \) of \(f \)
if \(f \) is defined by recursion on argument number \(i \)
A tail recursive reverse

primrec itrev :: 'a list ⇒ 'a list ⇒ 'a list
A tail recursive reverse

primrec itrev :: 'a list ⇒ 'a list ⇒ 'a list

 itrev [] ys = ys |
 itrev (x#xs) ys =
A tail recursive reverse

primrec itrev :: 'a list ⇒ 'a list ⇒ 'a list
itrev [] ys = ys |
itrev (x#xs) ys = itrev xs (x#ys)
primrec itrev :: 'a list ⇒ 'a list ⇒ 'a list
 itrev [] ys = ys |
 itrev (x#xs) ys = itrev xs (x#ys)

lemma itrev xs [] = rev xs
A tail recursive reverse

primrec itrev :: 'a list ⇒ 'a list ⇒ 'a list
 itrev [] ys = ys |
 itrev (x#xs) ys = itrev xs (x#ys)

lemma itrev xs [] = rev xs

Why in this direction?
A tail recursive reverse

primrec itrev :: 'a list ⇒ 'a list ⇒ 'a list
 itrev [] ys = ys | itrev (x#xs) ys = itrev xs (x#ys)

lemma itrev xs [] = rev xs

Why in this direction?
Because the lhs is “more complex” than the rhs.
Demo: first proof attempt
Generalisation (1)

Replace constants by variables

lemma \textit{itrev} \(xs\) \(ys\) = \textit{rev} \(xs\) @ \(ys\)
Demo: second proof attempt
Quantify free variables by \forall
(except the induction variable)

lemma $\forall ys. \text{itrev } xs \ ys = \text{rev } xs @ ys$