Isar — A language for structured proofs
Apply scripts

- unreadable
Apply scripts

- unreadable
- hard to maintain
Apply scripts

- unreadable
- hard to maintain
- do not scale
Apply scripts

- unreadable
- hard to maintain
- do not scale

No structure!
Apply scripts versus Isar proofs

Apply script = assembly language program
Apply scripts versus Isar proofs

Apply script = assembly language program
Isar proof = structured program with comments
Apply scripts versus Isar proofs

Apply script = assembly language program
Isar proof = structured program with comments

But: apply still useful for proof exploration
A typical Isar proof

proof

assume \(f_{\text{ormula}_0} \)

have \(f_{\text{ormula}_1} \) by simp

:

have \(f_{\text{ormula}_n} \) by blast

show \(f_{\text{ormula}_{n+1}} \) by \ldots

qed
A typical Isar proof

proof
 assume \(\text{formula}_0 \)
 have \(\text{formula}_1 \) by simp

 have \(\text{formula}_n \) by blast
 show \(\text{formula}_{n+1} \) by \ldots
 qed

proves \(\text{formula}_0 \implies \text{formula}_{n+1} \)
Overview

- Basic Isar
- Propositional logic
- Predicate logic
Isar core syntax

\[
\text{proof} \quad = \quad \text{proof} \ [\text{method}] \ \text{statement}^* \ \text{qed} \\
| \quad \text{by method}
\]
Isar core syntax

\[\text{proof} = \text{proof} \ [\text{method}] \ \text{statement}^* \ \text{qed} \]
\[\quad | \quad \text{by method}\]

\[\text{method} = (\text{simp} \ldots) \ | \ (\text{blast} \ldots) \ | \ (\text{rule} \ldots) \ | \ \ldots\]
Isar core syntax

proof = proof [method] statement* qed
 | by method

method = (simp ...) | (blast ...) | (rule ...) | ...

statement = fix variables \(\wedge\)
 | assume proposition \(\implies\)
 | [from name\[+\]] (have | show) proposition proof
Isar core syntax

\[
\text{proof} = \begin{cases}
\text{proof} \ [\text{method}] \ \text{statement}^* \ \text{qed} \\
\text{by} \ \text{method}
\end{cases}
\]

\[
\text{method} = (\text{simp} \ldots) \mid (\text{blast} \ldots) \mid (\text{rule} \ldots) \mid \ldots
\]

\[
\text{statement} = \begin{cases}
\text{fix variables} \\
\text{assume proposition} \\
[\text{from name}^+] (\text{have} \mid \text{show}) \ \text{proposition} \ \text{proof} \\
\text{next}
\end{cases}
\]

\(\begin{array}{c}
\text{(separates subgoals)}
\end{array}\)
Isar core syntax

proof = proof [method] statement* qed
 | by method

method = (simp ...) | (blast ...) | (rule ...) | ...

statement = fix variables (\wedge)
 | assume proposition (\Rightarrow)
 | [from name^+] (have | show) proposition proof
 | next (separates subgoals)

proposition = [name:] formula
Demo: propositional logic, introduction rules
Basic atomic proof:

by method
apply method, then prove all subgoals by assumption
Basic proof methods

Basic atomic proof:

by method
apply method, then prove all subgoals by assumption

Basic proof method:

rule \tilde{a}
apply a rule in \tilde{a};
Basic proof methods

Basic atomic proof:

by method
apply *method*, then prove all subgoals by assumption

Basic proof method:

rule \vec{a}
apply a rule in \vec{a};
if \vec{a} is empty: apply a standard elim or intro rule.
Basic proof methods

Basic atomic proof:

by method
apply *method*, then prove all subgoals by assumption

Basic proof method:

rule \(\vec{a}\)
apply a rule in \(\vec{a}\);
if \(\vec{a}\) is empty: apply a standard elim or intro rule.

Abbreviations:

. = *by* do-nothing
.. = *by* rule
Demo: propositional logic, elimination rules
Elimination rules / forward reasoning

- Elim rules are triggered by facts fed into a proof:
 from \(\vec{a} \) have \(f_{ormula} \) \(p\)roof
Elimination rules / forward reasoning

- Elim rules are triggered by facts fed into a proof:
 `from \(\vec{a} \) have formula proof`

- `proof` alone abbreviates `proof rule`
Elimination rules / forward reasoning

- Elim rules are triggered by facts fed into a proof:
 \textit{from } \vec{a}\textit{ have formula proof}
- proof alone abbreviates proof \textit{rule}
- \textit{rule}: tries elim rules first (if there are incoming facts } \vec{a}!\textit{)
Elimination rules / forward reasoning

- Elim rules are triggered by facts fed into a proof:
 \[
 \text{from } \vec{a} \text{ have } \text{formula proof}
 \]

- proof alone abbreviates proof rule

- rule: tries elim rules first (if there are incoming facts \(\vec{a} \! \))

- from \(\vec{a} \) have formula proof (rule rule)
Elimination rules / forward reasoning

- Elim rules are triggered by facts fed into a proof:
 \texttt{from } \vec{a} \texttt{ have } formula \texttt{ proof}

- \texttt{proof} alone abbreviates \texttt{proof rule}

- \texttt{rule}: tries elim rules first (if there are incoming facts \vec{a}!)

- \texttt{from } \vec{a} \texttt{ have } formula \texttt{ proof (rule rule)}
 \vec{a} \texttt{ must prove the first } n \texttt{ premises of } rule,
Elimination rules / forward reasoning

• Elim rules are triggered by facts fed into a proof:
 \texttt{from } \vec{a} \texttt{ have } \textit{formula} \texttt{ proof}

• proof alone abbreviates proof rule

• \textit{rule}: tries elim rules first (if there are incoming facts \vec{a}!)

• \texttt{from } \vec{a} \texttt{ have } \textit{formula} \texttt{ proof (rule rule)}
 \vec{a} \texttt{ must prove the first } n \texttt{ premises of rule, in the right order}
Elimination rules / forward reasoning

- Elim rules are triggered by facts fed into a proof:
 \[\text{from } \vec{a} \text{ have } \text{formula proof} \]
- \textit{proof} alone abbreviates \textit{proof rule}
- \textit{rule}: tries elim rules first (if there are incoming facts \(\vec{a}! \))
- \textit{from } \vec{a} \text{ have } \text{formula proof (rule rule)}
 \(\vec{a} \) must prove the first \(n \) premises of \textit{rule}, in the right order
 the others are left as new subgoals
Abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>this</td>
<td>the previous proposition proved or assumed</td>
</tr>
<tr>
<td>then</td>
<td>from this</td>
</tr>
<tr>
<td>thus</td>
<td>then show</td>
</tr>
<tr>
<td>hence</td>
<td>then have</td>
</tr>
<tr>
<td>with \vec{a}</td>
<td>from \vec{a} this</td>
</tr>
</tbody>
</table>
First the what, then the how:

(have|show) proposition using facts
First the what, then the how:

\[(\text{have}|\text{show}) \text{ proposition using facts}\]

\[=\]

\[\text{from facts (have}|\text{show}) \text{ proposition}\]
First the what, then the how:

\[(\text{have}|\text{show}) \text{ proposition } \text{using} \text{ facts} \]

\[= \]

\[\text{from facts (have|show) proposition} \]

Can be mixed:

\[\text{from major-facts (have|show) proposition } \text{using} \text{ minor-facts} \]
using

First the what, then the how:

\[(\text{have}|\text{show}) \text{ proposition using facts} = \text{from facts (have}|\text{show}) \text{ proposition}\]

Can be mixed:

\[\text{from major-facts (have}|\text{show}) \text{ proposition using minor-facts} = \text{from major-facts minor-facts (have}|\text{show}) \text{ proposition}\]
Demo: avoiding duplication
Schematic term variables

?A
Schematic term variables

?A

• Defined by pattern matching:

\[x = 0 \land y = 1 \ (\text{is} \ ?A \land _) \]
Schematic term variables

?A

- Defined by pattern matching:
 \[x = 0 \land y = 1 \text{ (is } ?A \land _) \]

- Predefined: ?thesis
 The last enclosing show formula
Demo: predicate calculus
obtain

Syntax:

\texttt{obtain \ variables \ where \ proposition \ proof}
Mixing proof styles

from . . .

have . . .

apply - make incoming facts assumptions

apply(...)

:

apply(...)

done
Advanced Isar
Overview

• Case distinction
• Induction
• Calculational reasoning
Case distinction
Boolean case distinction

proof cases
 assume \(f_{\text{ormula}} \)
 :
next
 assume \(\neg f_{\text{ormula}} \)
 :
qed
Boolean case distinction

\[
\text{proof cases} \\
\quad \text{assume } formula \\
\quad \vdash \\
\quad \text{next} \\
\quad \text{assume } \neg formula \\
\quad \vdash \\
\text{qed}
\]

\[
\text{proof } \left(\text{cases } formula \right) \\
\quad \text{case } True \\
\quad \vdash \\
\quad \text{next} \\
\quad \text{case } False \\
\quad \vdash \\
\text{qed}
\]
Boolean case distinction

\[\begin{align*}
\text{proof cases} & \quad \text{proof (cases } \text{formula}) \\
\text{assume } \text{formula} & \quad \text{case } \text{True} \\
\vdots & \quad \vdots \\
\text{next} & \quad \text{next} \\
\text{assume } \neg \text{formula} & \quad \text{case } \text{False} \\
\vdots & \quad \vdots \\
\text{qed} & \quad \text{qed} \\
\end{align*}\]

\[\begin{align*}
\text{case } \text{True} & \equiv \\
\text{assume } \text{True: formula} \quad &
\end{align*}\]
Demo: case distinction
Datatype case distinction

proof \((cases \ term)\)

 case \(Constructor_1\)

 :

 next

 :

 next

 case \((Constructor_k \ \vec{x})\)

 \(\ldots \ \vec{x} \ \ldots\)

qed
Datatype case distinction

proof (cases \(\text{term} \))

\[
\begin{aligned}
\text{case } \text{Constructor}_1
\end{aligned}
\]

\[
\begin{aligned}
\vdots
\end{aligned}
\]

next

\[
\begin{aligned}
\vdots
\end{aligned}
\]

next

\[
\begin{aligned}
\text{case } (\text{Constructor}_k \ \vec{x})
\end{aligned}
\]

\[
\begin{aligned}
\vdots \ \vec{x} \ \vdots
\end{aligned}
\]

qed

\[
\begin{aligned}
\text{case } (\text{Constructor}_i \ \vec{x}) \quad \equiv
\end{aligned}
\]

fix \(\vec{x} \) assume \(\text{Constructor}_i : \ \text{term} = (\text{Constructor}_i \ \vec{x}) \)
Induction
Overview

- Structural induction
- Rule induction
- Induction with fun
show $P(n)$
proof (induction n)
 case 0
 ...
 ...
 show ?case
next
 case $(Suc\ n)$
 ...
 ...
 n ...
 show ?case
qed
Structural induction for type nat

show $P(n)$
proof (induction n)
 case 0
 \[\equiv \text{ let } ?\text{case} = P(0) \]
 \[\cdots \]
 show ?case
next
 case (Suc n)
 \[\cdots \]
 \[\cdots n \cdots \]
 show ?case
qed
Structural induction for type nat

show $P(n)$
proof (induction n)
 case 0
 ...
 show $?case$
next
 case (Suc n)
 ...
 ... n ...
 show $?case$
qed
Demo: structural induction
Structural induction with \implies and \land

show $\land x. A(n) \implies P(n)$
proof (induction n)
 case 0
 ...
 ...
 show $?case$
next
 case (Suc n)
 ...
 n ...
 ...
 show $?case$
qed
Structural induction with \(\Rightarrow \) and \(\wedge \)

\[\forall x. A(n) \Rightarrow P(n) \]

proof (induction \(n \))

\[\text{case } 0 \]
\[\quad \ldots \]
\[\quad \text{show } \text{?case} \]
\[\text{next} \]
\[\quad \text{case } (\text{Suc } n) \]
\[\quad \ldots \]
\[\quad \ldots n \ldots \]
\[\quad \ldots \]
\[\quad \text{show } \text{?case} \]
\[\text{qed} \]

\[\equiv \quad \text{fix } x \quad \text{assume } 0: A(0) \]
\[\quad \text{let } \text{?case } = P(0) \]
Structural induction with \Rightarrow and \wedge

show $\forall x. A(n) \Rightarrow P(n)$

proof (induction n)

 case 0

 ...

 show $?case$

next

 case (Suc n)

 ... n ...

 ...

 show $?case$

qed

case 0

= fix x assume 0: A(0)
let $?case = P(0)$

case (Suc n)

= fix n x
assume Suc: $\forall x. A(n) \Rightarrow P(n)$

\[A(Suc n) \]

let $?case = P(Suc n)$
A remark on style

- case (Suc n) ... show ?case
 is easy to write and maintain
A remark on style

- **case** $(Suc \, n)$... **show** ?case
 is easy to write and maintain

- **fix** n **assume** formula ... **show** formula'
 is easier to read:
 - all information is shown locally
 - no contextual references (e.g. ?case)
Demo: structural induction with \Rightarrow and \land
Rule induction
Inductive definition

inductive_set S

intros

$\text{rule}_{1}: [s \in S; A] \implies s' \in S$

:

$\text{rule}_{n}: \ldots$
Rule induction

show \(x \in S \implies P(x) \)

proof \((\text{induct rule: } S.\text{induct})\)

\begin{align*}
\text{case } & rule_1 \\
\ldots
\end{align*}

\begin{align*}
\text{show } & \ ?case \\
\text{next}
\end{align*}

\begin{align*}
\vdots
\text{next}
\end{align*}

\begin{align*}
\text{case } & rule_n \\
\ldots
\end{align*}

\begin{align*}
\text{show } & \ ?case \\
\text{qed}
\end{align*}
Implicit selection of induction rule

assume $A : x \in S$

::

show $P(x)$
using A proof $induct$

::

qed
Implicit selection of induction rule

assume $A : x \in S$

using A proof $induct$

show $P(x)$

using A proof $induct$

qed

lemma assumes $A : x \in S$ shows $P(x)$

using A proof $induct$

qed
Renaming free variables in rule

\[\text{case } (rule_i \ x_1 \ldots \ x_k) \]

Renames the (alphabetically!) first \(k \) variables in \(rule_i \) to \(x_1 \ldots x_k \).
Demo: rule induction

Definition:

\[\text{fun } f \]

\[: \]
Induction with fun

Definition:

```plaintext
fun f
```

Proof:

```plaintext
show ... f(...) ...
proof (induction x₁ ... xₖ rule: f.induct)
```
Induction with fun

Definition:
fun f
:

Proof:
show ... f(...) ...
proof (induction x_1 ... x_k rule: f.induct)
 case 1
 :
 :
Induction with fun

Definition:

```plaintext
fun f
:
```

Proof:

```plaintext
show ... f(...) ...
proof (induction x₁ ... xₖ rule: f.induct)
  case 1
    :
```

Case i refers to equation i in the definition of f
Induction with fun

Definition:

```
fun f

: 
```

Proof:

```
show ... f(...)

proof (induction x_1 ... x_k rule: f.induct)
  
  case 1
  
  :

Case i refers to equation i in the definition of f

More precisely: to equation i in f.simps
```
Demo: induction with fun
Calculational Reasoning
Overview

• Accumulating facts
• Chains of equations and inequations
moreover

have \(formula_1 \ldots \)
moreover
have \(formula_2 \ldots \)
moreover
\vdots
moreover
have \(formula_n \ldots \)
ultimately show \ldots
— pipes facts \(formula_1 \ldots formula_n \) into the proof
proof
\vdots
also

have \(t_0 = t_1 \ldots \).

also

have \ldots = t_2 \ldots .

also

\vdots

also

have \ldots = t_n \ldots .
also

\[t_0 = t_1 \ldots \]

also

\[\ldots = t_2 \ldots \]

\[\ldots \equiv t_1 \]

also

\[\vdots \]

also

\[\ldots = t_n \ldots \]
also

have $t_0 = t_1$. . .
also
have . . . = t_2 . . .
also
:
also
have . . . = t_n . . .

also

\[\ldots \equiv t_1 \]
\[\ldots \equiv t_{n-1} \]
also

have \(t_0 = t_1 \) \ldots \\
also \\

have \(\ldots = t_2 \) \ldots \ldots \ldots \equiv t_1 \\
also \\

\vdots \\
also \\

have \(\ldots = t_n \) \ldots \\
finally show \ldots \\
— pipes fact \(t_0 = t_n \) into the proof \\
proof \\
\vdots
“...” is merely an abbreviation
Demo: moreover and also
Variations on also

Transitivity:

have \(t_0 = t_1 \ldots \)
also have \(\ldots = t_2 \ldots \)
also/finally \(\sim \)
Variations on also

Transitivity:

have $t_0 = t_1 \ldots$

also have $\ldots = t_2 \ldots$

also/finally $\sim t_0 = t_2$
Variations on also

Transitivity:

have \(t_0 = t_1 \ldots \)
also have \(\ldots = t_2 \ldots \)
also/finally \(\sim \) \(t_0 = t_2 \)

Substitution:

\[\text{have } P(s) \ldots \]
also have \(s = t \ldots \)
also/finally \(\sim \)
Variations on also

Transitivity:

have \(t_0 = t_1 \) \ldots
also have \(\ldots = t_2 \) \ldots
also/finally \(\rightsquigarrow t_0 = t_2 \)

Substitution:

have \(P(s) \) \ldots
also have \(s = t \) \ldots
also/finally \(\rightsquigarrow P(t) \)
Transitivity:

have $t_0 \leq t_1 \ldots$

also have $\ldots \leq t_2 \ldots$

also/finally \sim
Transitivity:

have \(t_0 \leq t_1 \) \ldots

also have \(\ldots \leq t_2 \) \ldots

also/finally \(\sim t_0 \leq t_2 \)
Transitivity:

have \(t_0 \leq t_1 \) \ldots
also have \ldots \leq t_2 \ldots .
also/finally \(\sim \) \(t_0 \leq t_2 \)

Substitution:

have \(r \leq f(s) \) \ldots
also have \(s < t \) \ldots
also/finally \(\sim \)
Transitivity:

- have \(t_0 \leq t_1 \)
- also have . . . \(\leq t_2 \)
- also/finally \(\sim \) \(t_0 \leq t_2 \)

Substitution:

- have \(r \leq f(s) \)
- also have \(s < t \)
- also/finally \(\sim \) \((\land x. x < y \implies f(x) < f(y)) \implies r < f(t) \)

\textbf{From} = \textbf{to} \leq \textbf{and} <
From $=$ to \leq and $<$

Transitivity:

have $t_0 \leq t_1$. . .
also have . . . $\leq t_2$. . .
also/finally $\leadsto t_0 \leq t_2$

Substitution:

have $r \leq f(s)$. . .
also have $s < t$. . .
also/finally $\leadsto (\forall x. x < y \implies f(x) < f(y)) \implies r < f(t)$

Similar for all other combinations of $=, \leq$ and $<$.
To view all combinations in Proof General:
 Isabelle/Isar → Show me → Transitivity rules
Demo: monotonicity reasoning