Isar — A language for structured proofs

unreadable

- unreadable
- hard to maintain

- unreadable
- hard to maintain
- do not scale

- unreadable
- hard to maintain
- do not scale

No structure!

Apply scripts versus Isar proofs

Apply script = assembly language program

Apply scripts versus Isar proofs

Apply script = assembly language program

Isar proof = structured program with comments

Apply scripts versus Isar proofs

Apply script = assembly language program

Isar proof = structured program with comments

But: apply still useful for proof exploration

A typical Isar proof

A typical Isar proof

```
proof
   assume formula_0
   have formula_1 by simp
   have formula_n by blast
   show formula_{n+1} by . . .
 qed
proves formula_0 \Longrightarrow formula_{n+1}
```

Overview

- Basic Isar
- Propositional logic
- Predicate logic

```
proof = proof [method] statement* qed
| by method

method = (simp ...) | (blast ...) | (rule ...) | ...

statement = fix variables (∧)
| assume proposition (⇒)
| [from name+] (have | show) proposition proof
| next (separates subgoals)
```

```
proof = proof [method] statement* qed
          by method
method = (simp...) | (blast...) | (rule...) | ...
statement = fix variables
              assume proposition (\Longrightarrow)
              [from name+] (have | show) proposition proof
                                        (separates subgoals)
               next
proposition = [name:] formula
```

Demo: propositional logic, introduction rules

Basic atomic proof:

by method apply method, then prove all subgoals by assumption

Basic atomic proof:

by method apply method, then prove all subgoals by assumption

Basic proof method:

rule \vec{a} apply a rule in \vec{a} ;

Basic atomic proof:

```
by method apply method, then prove all subgoals by assumption
```

Basic proof method:

```
rule \vec{a} apply a rule in \vec{a}; if \vec{a} is empty: apply a standard elim or intro rule.
```

Basic atomic proof:

```
by method apply method, then prove all subgoals by assumption
```

Basic proof method:

```
rule \vec{a} apply a rule in \vec{a}; if \vec{a} is empty: apply a standard elim or intro rule.
```

Abbreviations:

- = by do-nothing
- .. = by *rule*

Demo: propositional logic, elimination rules

• Elim rules are triggered by facts fed into a proof: from \vec{a} have formula proof

- Elim rules are triggered by facts fed into a proof: from \vec{a} have formula proof
- proof alone abbreviates proof rule

- Elim rules are triggered by facts fed into a proof: from \vec{a} have formula proof
- proof alone abbreviates proof rule
- rule: tries elim rules first (if there are incoming facts \vec{a} !)

- Elim rules are triggered by facts fed into a proof: from \vec{a} have formula proof
- proof alone abbreviates proof rule
- *rule*: tries elim rules first (if there are incoming facts \vec{a} !)
- from \vec{a} have formula proof (rule rule)

- Elim rules are triggered by facts fed into a proof: from \vec{a} have formula proof
- proof alone abbreviates proof rule
- *rule*: tries elim rules first (if there are incoming facts \vec{a} !)
- from \vec{a} have formula proof (rule rule) \vec{a} must prove the first n premises of rule,

- Elim rules are triggered by facts fed into a proof: from \vec{a} have formula proof
- proof alone abbreviates proof rule
- *rule*: tries elim rules first (if there are incoming facts \vec{a} !)
- from \vec{a} have formula proof (rule rule) \vec{a} must prove the first n premises of rule, in the right order

- Elim rules are triggered by facts fed into a proof: from \vec{a} have formula proof
- proof alone abbreviates proof rule
- *rule*: tries elim rules first (if there are incoming facts \vec{a} !)
- from \vec{a} have formula proof (rule rule) \vec{a} must prove the first n premises of rule, in the right order the others are left as new subgoals

Abbreviations

```
this = the previous proposition proved or assumed then = from this thus = then show hence = then have with \vec{a} = from \vec{a} this
```

First the what, then the how:

(have|show) proposition using facts

```
First the what, then the how:
```

```
(have|show) proposition using facts
=
from facts (have|show) proposition
```

First the what, then the how:

(have|show) proposition using facts

=

from facts (have|show) proposition

Can be mixed:

from major-facts (have|show) proposition using minor-facts

First the what, then the how:

(have|show) proposition using facts
=
from facts (have|show) proposition

Can be mixed:

from major-facts (have|show) proposition using minor-facts
=
from major-facts minor-facts (have|show) proposition

Demo: avoiding duplication

Schematic term variables

?A

Schematic term variables

?A

Defined by pattern matching:

$$x = 0 \land y = 1 \text{ (is } ?A \land _)$$

Schematic term variables

?A

Defined by pattern matching:

$$x = 0 \land y = 1 \text{ (is } ?A \land _)$$

Predefined: ?thesis
 The last enclosing show formula

Demo: predicate calculus

obtain

Syntax:

obtain variables where proposition proof

Mixing proof styles

```
have ...

apply - make incoming facts assumptions

apply(...)

i

apply(...)

done
```

Advanced Isar

Overview

- Case distinction
- Induction
- Calculational reasoning

Case distinction

Boolean case distinction

```
proof Cases
   assume formula
   :
next
   assume ¬formula
   :
qed
```

Boolean case distinction

Boolean case distinction

```
proof (cases formula)
proof cases
                             case True
  assume formula
next
                           next
                             case False
  assume \neg formula
qed
                           qed
                           case True ≡
                           assume True: formula
```

Demo: case distinction

Datatype case distinction

```
proof (cases term)
   case Constructor<sub>1</sub>
next
next
   case (Constructor<sub>k</sub> \vec{x})
   \cdots \vec{x} \cdots
qed
```

Datatype case distinction

```
proof (cases term)
     case Constructor<sub>1</sub>
 next
 next
     case (Constructor<sub>k</sub> \vec{x})
     \vec{x} ...
 qed
case (Constructor<sub>i</sub> \vec{x}) \equiv
fix \vec{x} assume Constructor<sub>i</sub>: term = (Constructor_i \vec{x})
```

Induction

Overview

- Structural induction
- Rule induction
- Induction with fun

Structural induction for type nat

```
show P(n)
proof (induction n)
  case 0
  show ?case
next
  case (Suc n)
  · · · · n · · ·
  show ?case
qed
```

Structural induction for type nat

```
show P(n)
proof (induction n)
  case 0
                         \equiv let ?case = P(0)
  show ?case
next
  case (Suc n)
  · · · · n · · ·
  show ?case
qed
```

Structural induction for type nat

```
show P(n)
proof (induction n)
  case 0
                         \equiv let ?case = P(0)
  show ?case
next
  case (Suc n)
                         \equiv fix n assume Suc: P(n)
                            let ?case = P(Suc n)
  · · · · n · · ·
  show ?case
qed
```

Demo: structural induction

Structural induction with \Longrightarrow and \land

```
show \bigwedge x. \ A(n) \Longrightarrow P(n)
proof (induction n)
  case 0
   show ?case
next
  case (Suc n)
   · · · n · · ·
   show ?case
qed
```

Structural induction with \Longrightarrow and \land

```
show \bigwedge x. \ A(n) \Longrightarrow P(n)
proof (induction n)
  case 0
                                  \equiv fix X assume 0: A(0)
                                       let ?case = P(0)
  show ?case
next
  case (Suc n)
  · · · · n · · ·
  show ?case
qed
```

Structural induction with \Longrightarrow and \land

```
show \bigwedge x. \ A(n) \Longrightarrow P(n)
proof (induction n)
  case 0
                                  \equiv fix X assume 0: A(0)
                                       let ?case = P(0)
  show ?case
next
  case (Suc n)
                                       fix n X
                                       assume Suc: \land x. A(n) \Longrightarrow P(n)
                                                      A(Suc n)
  · · · · n · · ·
                                       let ?case = P(Suc n)
  show ?case
```

qed

A remark on style

• case (Suc n) ... show ?case is easy to write and maintain

A remark on style

- case (Suc n) ... show ?case is easy to write and maintain
- fix n assume $formula \dots$ show formula' is easier to read:
 - all information is shown locally
 - no contextual references (e.g. ?case)

Demo: structural induction with \Longrightarrow and \land

Rule induction

Inductive definition

```
inductive_set S intros rule_1: [s \in S; A] \implies s' \in S: rule_n: . . .
```

Rule induction

```
show x \in S \Longrightarrow P(x)
proof (induct rule: S.induct)
   case rule<sub>1</sub>
   show ?case
next
next
   case rule<sub>n</sub>
   show ?case
qed
```

Implicit selection of induction rule

```
assume A: x \in S

:

show P(x)

using A proof induct

:

qed
```

Implicit selection of induction rule

```
assume A: x \in S lemma assumes A: x \in S shows P(x)
: using A proof induct
: using A proof induct
: qed
```

Renaming free variables in rule

case (rule_i
$$x_1 \dots x_k$$
)

Renames the (alphabetically!) first k variables in $rule_i$ to $x_1 \ldots x_k$.

Demo: rule induction

Induction with fun

Definition:

fun f

.

Induction with fun

```
Definition:

fun f

:

Proof:

show ... f(...) ...

proof (induction x_1 ... x_k rule: f.induct)
```

Induction with fun

```
Definition:
fun f
Proof:
show ... f(...) ...
proof (induction x_1 \dots x_k rule: f.induct)
  case 1
```

Induction with fun

```
Definition:
fun f
Proof:
show \dots f(\dots)
proof (induction x_1 \dots x_k rule: f.induct)
  case 1
```

Case *i* refers to equation *i* in the definition of *f*

Induction with fun

```
Definition:
fun f
Proof:
show ... f(...) ...
proof (induction x_1 \dots x_k rule: f.induct)
  case 1
```

Case i refers to equation i in the definition of f More precisely: to equation i in f.simps

Demo: induction with fun

Calculational Reasoning

Overview

- Accumulating facts
- Chains of equations and inequations

moreover

```
have formula_1 \dots
moreover
have formula_2 ...
moreover
moreover
have formula_n ...
ultimately show . . .
— pipes facts formula_1 \dots formula_n into the proof
proof
```

```
have t_0=t_1 . . . . . also have . . . = t_2 . . . . . also have . . . = t_n . . . . .
```

 $\dots \equiv t_1$

```
have t_0=t_1 . . . . . also have . . . = t_2 . . . . . also have . . . = t_n . . . .
```

```
have t_0=t_1 . . . . . \equiv t_1 also . . . \equiv t_1 also have . . . \equiv t_n . . . . \equiv t_{n-1}
```

```
have t_0 = t_1 . . . .
also
have \dots = t_2 \dots
                                               \dots \equiv t_1
also
also
have \dots = t_n \dots
                                               \dots \equiv t_{n-1}
finally show . . . .
— pipes fact t_0 = t_n into the proof
proof
```

"..." is merely an abbreviation

Demo: moreover and also

Transitivity:

```
have t_0 = t_1 \dots also have \dots = t_2 \dots also/finally \sim
```

Transitivity:

```
have t_0 = t_1 \dots
also have \dots = t_2 \dots
also/finally \rightsquigarrow t_0 = t_2
```

Transitivity:

```
have t_0 = t_1 \dots
also have \dots = t_2 \dots
also/finally \rightsquigarrow t_0 = t_2
```

Substitution:

have P(s) also have s=t also/finally \leadsto

Transitivity:

```
have t_0 = t_1 \dots
also have \dots = t_2 \dots
also/finally \rightsquigarrow t_0 = t_2
```

Substitution:

```
have P(s) . . . . also have s=t . . . . also/finally \leadsto P(t)
```

From = $to \le and <$

Transitivity:

```
have t_0 \leq t_1 \ldots also have \ldots \leq t_2 \ldots also/finally \rightsquigarrow
```

From = $to \le and <$

Transitivity:

```
have t_0 \le t_1 \dots also have \dots \le t_2 \dots also/finally \rightsquigarrow t_0 \le t_2
```

From = *to* < *and* <

Transitivity:

```
have t_0 \le t_1 \dots also have \dots \le t_2 \dots also/finally \rightsquigarrow t_0 \le t_2
```

Substitution:

```
have r \leq f(s) . . . . also have s < t . . . . also/finally \leadsto
```

From = *to* < *and* <

Transitivity:

```
have t_0 \leq t_1 \ldots also have \ldots \leq t_2 \ldots also/finally \leadsto t_0 \leq t_2
```

Substitution:

```
have r \le f(s) . . . . also have s < t . . . . also/finally \leadsto (\bigwedge X. \ X < y \Longrightarrow f(X) < f(y)) \Longrightarrow r < f(t)
```

From = *to* < *and* <

Transitivity:

```
have t_0 \leq t_1 \ldots also have \ldots \leq t_2 \ldots also/finally \leadsto t_0 \leq t_2
```

Substitution:

```
have r \le f(s) . . . . also have s < t . . . . also/finally \leadsto (\bigwedgeX. X < Y \Longrightarrow f(X) < f(Y)) \Longrightarrow r < f(t)
```

Similar for all other combinations of =, \leq and <.

All about also

To view all combinations in Proof General: $Is abelle/Is ar \rightarrow Show \ me \rightarrow Transitivity \ rules$

Demo: monotonicity reasoning