N-Body Simulations — Background
Suppose the answer at each point depends on data at all
the other points

» Electrostatic, gravitational force

» Solution of elliptic PDEs

» Graph partitioning

(o]

Seems to require at least O(n2) work, communication

(o]

If the dependence on “distant” data can be compressed
 Because it gets smaller, smoother, simpler...

o

Then by compressing data of groups of nearby points,
can cut cost (work, communlcatlong)at distant points

o Apply idea recursively: cost drops to O(n log n) or even O(n)

Examples:
 Barnes-Hut or Fast Multipole Method (FMM) for electrostatics/gravity/...
» Multigrid for elliptic PDE



Fast Multiple Method (FMM)

o

“A fast algorithm for particle simulation”, L. Greengard and V.
Rokhlin, J. Comp. Phys. V. 73, 1987, many later papers

« Many awards

Differences from Barnes-Hut
« FMM computes the potential at every point, not just the force

e FMM uses more information in each box than the CM and TM, so it is both
more accurate and more expensive

* In compensation, FMM accesses a fixed set of boxes at every level,
independent of D/r

« BH uses fixed information (CM and TM) in every box, but # boxes increases
with accuracy. FMM uses a fixed # boxes, but the amount of information per
box increase with accuracy.

o

FMM uses two kinds of expansions

« Outer expansions represent potential outside node due to particles inside,
analogous to (CM,TM)

* Inner expansions represent potential inside node due to particles outside;
Computing this for every leaf node is the computational goal of FMM

First review potential, then return to FMM
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Gravitational/Electrostatic Potential

FMM will compute a compact expression for potential ¢(x,y,z)
which can be evaluated and/or differentiated at any point

In 3D with x,y,z coordinates
e Potential = o(x,y,z) = -1/r = -1/(x2 + y2 + z2)1/2

e Force = -grad ¢(x,y,z) = - (d¢/dx , d/dy , do/dz) = -(X,y,z)/r3

In 2D with X,y coordinates
e Potential = ¢(x,y) =log r = log (x2 + y2)1/2

 Force = -grad ¢(x,y) = - (d¢/dx , de/dy ) = -(x,y)/r2

° In 2D with z = x+iy coordinates, i =sqrt(-1)
e Potential = ¢(z) =log |z| =Real(log z)

... because log z = log |z|e!® = log |z]| + i0
e Drop Real() from calculations, for simplicity

e Force =-(x,y)Ir2 = -z /|z|2



2D Multipole Expansion (Taylor expansion in 1/z) (1/2)

¢(z) = potential due to zx k=1....n-1
- 2k mk *log |z - zk|
= Real( Zx mk *log (z - zk) )
... sincelog z =log |z|ei® =log |z| + i0
... drop Real() from now on
=Xk mk *[log(z) +log (1-2k/7) ]

... how logarithms work

=M *log(z) + Zx mk *log (1 - zk/z)
... where M = Zx mg
=M *log(z) - Tk Mk * T s>1 (zK/2)°/s
... Taylor expansion converges if |zk/z| < 1
=M*log(2) - X s>1 2S Tk Mk zKk°/s
... sSwap order of summation
=M*log(z) - £ s>1 25 ag
... where ag = X mk zk3/s ... called Multipole Expansion



2D Multipole Expansion (Taylor expansion in 1/z) (2/2)

¢(z) = potential due to zx k=1....n-1

- 2k mk *log |z - zk|

= Real( Zx mk *log (z - zk) )
... drop Real() from now on

=M*log(z) -Xs>125as ... Taylor Expansion in 1/z
... where M = 2k mg = Total Mass and
as = Sk Mk zK°> /s
... This is called a Multipole Expansion in z

=M*log(z) - Z >s>1 2S5 ag +error(r)
... r =number of terms in Truncated Multipole Expansion
...and error(r) =-X r<sZS ag

* Note that a1 = Zx mk zx = CM*M
so that M and a1 terms have same info as Barnes-Hut

= error(r) = O({maxy |zk| /|z[}F+1)
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Error in Truncated 2D Multipole Expansion

° error(r) =0O({maxy |z¢| /|z|}'*1)
Suppose maxy |zk|/ |z| £c < 1, so
error(r) =0(cr+l)
Suppose all particles z lie inside a D-by-
D square centered at origin Error outside larger box is
Suppose z is outside a 3D-by-3D O(c™(-r))
square centered at the origin
° ¢ =(D/sqrt(2))/(1.5*D) ~.47< .5 | |
° each term in expansion adds :
1 bit of accuracy | ..
24 terms enough for single precision, A N

o

53 terms for double precision

o

In 3D, can use spherical harmonics
or other expansions




Outer(n) and Outer Expansion

¢(z) ~M*10g(z - zn) - Z r>s>1 (Z-Zn) S as

[e]

Outer(n)=(M, o1 ,02, ... ,0, Zn)
° Stores data for evaluating potential ¢(z) outside
node n due to particles inside n
Zn = center of node n
Cost of evaluating ¢(z) is O(r ), independent of
the number of particles inside n
Cost grows linearly with desired number of bits of
precision ~r
Will be computed for each node in QuadTree
Analogous to (TM,CM) in Barnes-Hut

M and a1 same information as Barnes-Hut

o

o

o

o



Inner(n) and Inner Expansion

(o]

Outer(n) used to evaluate potential outside node n
due to particles inside n

Inner(n) will be used to evaluate potential inside
node n due to particles outside n

L1X o<s<r Bs * (z-zn)S

° zp = center of node n, a D-by-D box

" Inner(n)=(Bo.P1, .- Br,zn)

° Particles outside n must lie outside 3D-by-3D box
centered at zp,




Top Level Description of FMM

(1) Build the QuadTree
= (2) Call Build_Outer(root), to compute outer expansions

of each node n in the QuadTree
... Traverse QuadTree from bottom to top,
... combining outer expansions of children
. to get out outer expansion of parent
(3) Call Build_ Inner(root), to compute inner expansions
of each node n in the QuadTree
... Traverse QuadTree from top to bottom,
... converting outer to inner expansions
... and combining them
(4) For each leaf node n, add contributions of nearest particles
directly into Inner(n)
... final Inner(n) is desired output: expansion for potential at
each point due to all particles



Step 2 of FMM: Outer_shift: converting Outer(np) to Outer(ny) (1/3)

° For step 2 of FMM (as in step 2 of BH) we want to compute
Outer(n) cheaply from Outer( c ) for all children c of n

How to combine outer expansions around different points?

o Ok(2) ~ Mk *log(z-zk) - Z 1>s>1 (z-zk)S ask expands around zk , k=1,2

» First step: make them expansions around same point
Using Choterr_Shift ta convert Oatar{nl) to Chaterin2)

n1is a child (subsquare) of n»
Zx = center(ny) for k=1,2

Outer(nq) expansion accurate outside

blue dashed square, so also accurate

outside black dashed square a

So there is an Outer(n») expansion
with different ax and center zo which ___________________ !
represents the same potential as '

Outer(n4) outside the black dashed box



Outer_shift: Details (2/3)

° Given

¢1(2) = M1 *log(z-z1) + 2 r>s>1 (z-21)S as1

° Solve for M2 and ag2 in

¢1(2) ~ ¢2(z) = M2 *109(z-22) + X r>s>1 (z-22)S a2

Get M2 = M1 and each ag? is alinear combination of the a5

« multiply r-vector of ag1 values by a fixed r-by-r matrix to get ag?2

> (M2,012, ... ,0¢2 ,2z2)=0Outer_shift(Outer(nq), z2)
= desired Outer(n»y)
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Step 2 of FMM: compute Outer(n) for each node n in QuadTree (3/3)

... Compute Outer(n) for each node of the QuadTree
outer = Build_Outer(root)

function (M, a1,...,0r , zn) = Build_Outer(n) ... compute outer expansion of node n
if nif aleaf ... it contains 1 (or a few) particles
compute and return Outer(n) = (M, a1,...,0r , Zpn) directly from
its definition as a sum

else ... “post order traversal”: process parent after all children
Outer(n) =0
for all children c(k) of n ... k=1,2,3,4 [nner Loop of Build_Outer
Outer( c(k) ) = Build_Outer( c(k)) o s
Outer(n) = Outer(n) + n

Outer_shift( Outer(c(k)) , center(n))

... just add component by component Outer(e(4)) Outer(e(3))
endfor Outer-Shiti ™~y " Outer-Shif
return Outer(n)

end if Outgr(n)

Cost = O(# nodes in QuadTree) = O(N) Outer-Stift 7 S Outer- St

Outer{e({l)) Outer{e({2))
same as for Barnes-Hut

e(l) c(2)
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Top Level Description of FMM

(1) Build the QuadTree
(2) Call Build_Outer(root), to compute outer expansions
of each node n in the QuadTree
... Traverse QuadTree from bottom to top,
... combining outer expansions of children
. to get out outer expansion of parent

- (3) Call Build _Inner(root), to compute inner expansions

of each node n in the QuadTree
... Traverse QuadTree from top to bottom,
... converting outer to inner expansions
... and combining them
(4) For each leaf node n, add contributions of nearest particles
directly into Inner(n)
... final Inner(n) is desired output: expansion for potential at
each point due to all particles
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Step 3 of FMM: Computing Inner(n) from other expansions

> Which other expansions?
» As few as necessary to compute the potential accurately

* Inner expansion of parent(n) will account for potential from
particles far enough away from parent (red nodes below)

* Outer expansions will account for potential from particles in boxes
at same level in Interaction Set (nodes labeled i below)

Interaction Set(n) for the Fast Multipole Method

p = parent{n)
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Step 3 of FMM: Compute Inner(n) for each n in QuadTree

o o

Need Inn_ergnl) = Need Inner(ny) =
Inner_shift(lnner(ns), nq) Convert(Outer(nsz), ny)

Converting Inner(n2) to Inner(nl)

I n? :
I : n3 z.tl
l i :
: 2l :

n2 = parent(nl)
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®
Step 3 of FMM: Inner(ny) = Inner_shift(Inner(ny), nq)

Converting Inner(n2) to Inner(nl)

Inner(ny) =

(Bok » Bik » -+ » Brk » z )

.....................

Inner expansion = X g<s<r Bsk * (z-2K)S

Solve 2 o<s<r Bs1 * (2-21)8 = 2 ggs<r Bs2 * (2-22)8
for Bs1 given zq, Bs2, and zo
° (r+1) x (r+1) matrix-vector multiply

16
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.

o

Step 3 of FMM: Inner(ny) = Convert(Outer(ng), na)

| nner (n 4) — Convarting Cuter{n3) to Innerind)

(ﬁOiﬁli ’ﬁr124)
Outer(ny) =

(M,al;GZ;---,ar,ZS) E " i

Solve 2 p<s<r Bs * (z-24)5 = M*log (z-23) + 2 o<s<r 05 * (2-23)™S

for Bs givenzy, ae , and z3
° (r+1) x (r+1) matrix-vector multiply

nd
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Step 3 of FMM: Computing Inner(n) from other expansions

o

We will use Inner_shift and Convert to build each
Inner(n) by combing expansions from other nodes

° Which other nodes?

» As few as necessary to compute the potential accurately

* Inner_shift(Inner(parent(n)), center(n)) will account for potential
from particles far enough away from parent (red nodes below)

« Convert(Outer(i), center(n)) will account for potential from particles
In boxes at same level in Interaction Set (nodes labeled i below)

Interaction Set(n) for the Fast Multipole Method

p = parent{n)
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Step 3 of FMM: Interaction Set

* Interaction Set ={ nodes i that are children of a neighbor of
parent(n), such that i is not itself a neighbor of n}

 For each iin Interaction Set , Outer(i) is available, so that
Convert(Outer(i),center(n)) gives contribution to Inner(n) due to
particles in i

« Number of i in Interaction Set is at most 62 -32 =27 in 2D
« Number of i in Interaction Set is at most 63 -33 =189 in 3D

Interaetion_Set{n) for the Fast Multipole Method

P = parent{n)
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Step 3 of FMM: Compute Inner(n) for each n in QuadTree

... Compute Inner(n) for each node of the QuadTree
outer = Build _Inner( root)

function ( B1,....Br , zn) = Build_Inner(n) ... compute inner expansion of node n
p = parent(n) ... p=nilif n =root
Inner(n) = Inner_shift( Inner(p), center(n) ) ... Inner(n) =0if n =root
for all i in Interaction_Set(n) ... Interaction_Set(root) is empty
Inner(n) = Inner(n) + Convert( Outer(i), center(n) )
... add component by component
end for
for all children c of n ... complete preorder traversal of QuadTree
Build_Inner(c)
end for

Cost = O(# nodes in QuadTree)
=O(N)
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Top Level Description of FMM

(1) Build the QuadTree
(2) Call Build_Outer(root), to compute outer expansions
of each node n in the QuadTree
... Traverse QuadTree from bottom to top,
... combining outer expansions of children
. to get out outer expansion of parent
(3) Call Build_ Inner(root), to compute inner expansions
of each node n in the QuadTree
... Traverse QuadTree from top to bottom,
... converting outer to inner expansions
... and combining them

-(4) For each leaf node n, add contributions of
nearest particles directly into Inner(n)

... If 1 node/leaf, then each particles accessed once,
...S0cost=0(N)
... final Inner(n) is desired output: expansion for potential at

each point due to all particles
21



Parallelizing Hierachical N-Body codes

Barnes-Hut, FMM and related algorithm have similar computational
structure:

1) Build the QuadTree

2) Traverse QuadTree from leaves to root and build outer expansions
(just (TM,CM) for Barnes-Hut)

3) Traverse QuadTree from root to leaves and build any inner expansions

4) Traverse QuadTree to accumulate forces for each particle

One parallelization scheme will work for them all
 Based on D. Blackston and T. Suel, Supercomputing 97
- UCB PhD Thesis, David Blackston, “Pbody”
- Autotuner for N-body codes
» Assign regions of space to each processor
 Regions may have different shapes, to get load balance
- Each region will have about N/p particles

« Each processor will store part of Quadtree containing all particles (=leaves) in its
region, and their ancestors in Quadtree

- Top of tree stored by all processors, lower nodes may also be shared

 Each processor will also store adjoining parts of Quadtree needed to compute forces
for particles it owns

- Subset of Quadtree needed by a processor called the Locally Essential Tree (LET)

« Given the LET, all force accumulations (step 4)) are done in parallel, without

communication
22



Performance Results

Optimizing and Tuning the
Fast Multipole Method for Multicore
and Accelerator Systems

Georgia Tech
— Aparna Chandramowlishwaran, Aashay Shringarpure, llya Lashuk;

George Biros, Richard Vuduc

Lawrence Berkeley National Laboratory
— Sam Williams, Lenny Oliker

° Presented at IPDPS 2010
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Summary

»First cross-platform single-node multicore study of
tuning the fast multipole method (FMM)

Explores data structures, SIMD, multithreading, mixed-precision, and
tuning

Show
25x speedups on Intel Nehalem —
2-sockets x 4-cores/socket x 2-thr/core = 16 threads
9.4x on AMD Barcelona
2-sockets x 4-cores/socket x 1-thr/core = 8 threads
37.6x on Sun Victoria Falls

2-sockets x 8-cores/socket x 8-thr/core 128 threads

»Surprise? Multicore ~ GPU in performance & energy
efficiency for the FMM

Source: Richardtuduc



Algorithmic Tuning of g = Max pts / box - Nehalem
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Shape of curve changes as we introduce optimizations.

Source: Richar%SVuduc
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