SpMV in Compressed Sparse Row (CSR) Format

CSR format is one of many possibilities

Matrix-vector multiply kernel: $y(i) \leftarrow y(i)+A(i, j) \cdot x(j)$

```
for each row i
    for k=ptr[i] to ptr[i+1] do
        y[i] = Y[i] + val[k]*x[ind[k]]
02/14/2007

\section*{Parallel Sparse Matrix-vector multiplication}
- \(y=A^{*} x\), where \(A\) is a sparse \(n \times n\) matrix
- Questions
- which processors store
- \(y[i], x[i]\), and \(A[i, j]\)
- which processors compute

- \(y[i]=\operatorname{sum}(\) from 1 to \(n) A[i, j]\) * \(x[j]\)
\[
=(\text { row i of } A)^{*} x \quad \ldots \text { a sparse dot product }
\]
- Partitioning
- Partition index set \(\{1, \ldots, \mathrm{n}\}=\mathrm{N} 1 \cup \mathrm{~N} 2 \cup \ldots \cup \mathrm{~Np}\).

May require communication
- For all i in Nk, Processor \(k\) stores \(y[i], x[i]\), and row \(i\) of \(A\)
- For all \(i\) in Nk, Processor \(k\) computes \(y[i]=(\) row \(i\) of \(A){ }^{*} x\)
- "owner computes" rule: Processor k compute the y[i]s it Owns.

\section*{Matrix Reordering via Graph Partitioning}
- "Ideal" matrix structure for parallelism: block diagonal
- p (number of processors) blocks, can all be computed locally.
- If no non-zeros outside these blocks, no communication needed
- Can we reorder the rows/columns to get close to this?
- Most nonzeros in diagonal blocks, few outside


\section*{Goals of Reordering}

\section*{- Performance goals}
- balance load (how is load measured?).
- Approx equal number of nonzeros (not necessarily rows)
- balance storage (how much does each processor store?).
- Approx equal number of nonzeros
- minimize communication (how much is communicated?).
- Minimize nonzeros outside diagonal blocks
- Related optimization criterion is to move nonzeros near diagonal
- improve register and cache re-use
- Group nonzeros in small vertical blocks so source (x) elements loaded into cache or registers may be reused (temporal locality)
- Group nonzeros in small horizontal blocks so nearby source (x) elements in the cache may be used (spatial locality)
- Other algorithms reorder for other reasons
- Reduce \# nonzeros in matrix after Gaussian elimination
- Improve numerical stability

\section*{Graph Partitioning and Sparse Matrices}
- Relationship between matrix and graph

- Edges in the graph are nonzero in the matrix: here the matrix is symmetric (edges are unordered) and weights are equal (1)
- If divided over 3 procs, there are 14 nonzeros outside the diagonal blocks, which represent the 7 (bidirectional) edges

\section*{Graph Partitioning and Sparse Matrices}
- Relationship between matrix and graph

- A "good" partition of the graph has
- equal (weighted) number of nodes in each part (load and storage balance).
- minimum number of edges crossing between (minimize communication).
- Reorder the rows/columns by putting all nodes in one partition together.```

