Partial differential equations and optimization: optimizing forcing terms

Martin Berggren
Department of Information Technology
Uppsala University

Optimization for differential equations

Inverse/control problems

An inverse/control problem for steady heat conduction

- u: temperature field in a homogeneous, isotropic solid Ω (e.g. a metal)
- Held at constant temperature at the boundary $\partial \Omega$
- f: Heat sources (e.g. electric wires) distributed in Ω
- u can be measured at each point in $\omega \subset \Omega$

Mathematical model

$$-\Delta u = f \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega.$$ (1)
Inverse/control problems

- An **analysis** problem: given \(f \), compute \(u|_\omega \)
- An **inverse** or **control** problem: given a target temperature \(z \) within \(\omega \), find \(f \) so that \(u|_\omega = z \)
- Thus, properties of the mapping \(A : f \mapsto u|_\omega \) of interest
- Sometimes called the “forward map”: \(A : L^2(\Omega) \to L^2(\omega) \). (In fact, \(A \) is a bounded, linear map.)
- Is the system “controllable”: can we find a \(f \) so that “every” \(u|_\omega \) can be reached?

Cf.: \(u = Af \), \(A \) an \(n \)-by-\(m \) matrix. “Controllable” if for each \(u \in \mathbb{R}^n \) there is an \(f \in \mathbb{R}^m \) such that \(u = Af \)

- What is \(\mathcal{R}(A) = \{ u \mid u = Af \text{ for some } f \in \mathbb{R}^m \} \)?
- \(\mathcal{R}(A) \subseteq \mathbb{R}^n \); controllable if \(\mathcal{R}(A) = \mathbb{R}^n \)

Method: check which vectors that are orthogonal to reachable \(u \)'s. If from \(0 = v^T u = v^T Af \ \forall f \in \mathbb{R}^m \) follows that \(v = 0 \), then \(\mathcal{R}(A) = \mathbb{R}^n \).

Remark: We are then really computing the **null space** of \(A^T \): \(\mathbb{R}^n \) can be split in the orthogonal spaces \(\mathcal{R}(A) \) and \(\mathcal{N}(A^T) (\mathbb{R}^n = \mathcal{R}(A) \oplus \mathcal{N}(A^T)) \).
Inverse/control problems

Back to problem (1)

Theorem
If \(v \in L^2(\omega) \) satisfies, for each \(f \in L^2(\Omega) \),

\[
\int_\omega v u = 0 \tag{2}
\]

where \(u \) is corresponding (weak) solution to equation (1), then \(v \equiv 0 \)

Proof. Let \(p \) be the (weak) solution to

\[
-\Delta p = \chi_\omega v \quad \text{in } \Omega
\]

\[
p = 0 \quad \text{on } \partial\Omega \tag{3}
\]

where

\[
\chi_\omega = \begin{cases}
1 & \text{in } \omega \\
0 & \text{in } \Omega \setminus \omega
\end{cases}
\]

Multiply each side of equation (3) with \(u \) and integrate by parts:

\[
0 = \int_\omega u v \quad \text{[by (2)]}
\]

\[
= -\int_\Omega u \Delta p = -\int_{\partial\Omega} \left(u \frac{\partial p}{\partial n} - \frac{\partial u}{\partial n} p \right) - \int_\Omega \Delta u \ p \quad \text{[by (1), (3)]}
\]

\[
= \int_\Omega f p \quad \forall f \in L^2(\Omega)
\]

implying that \(p \equiv 0 \), from which it follows that \(v \equiv 0 \) (multiply each side of equation (3) with \(\chi_\omega v \) and integrate)
Recall $\mathcal{A} : L^2(\Omega) \to L^2(\omega); u|_{\omega} = \mathcal{A} f$

The theorem says that only the zero function is orthogonal to $\mathcal{R}(\mathcal{A})$

As opposed the the matrix case, cannot say that $\mathcal{R}(\mathcal{A}) = L^2(\omega)$

We can only say that $\mathcal{R}(\mathcal{A})$ is dense in $L^2(\omega)$ ($\overline{\mathcal{R}(\mathcal{A})} = L^2(\omega)$)

That is, for each $z \in L^2(\omega)$ there is a sequence $\{ f_n \}_{n=1}^{\infty}$ such that

$$\lim_{n \to \infty} \mathcal{A} f_n = z$$

The generalization of matrix theorem

$$\mathbb{R}^n = \mathcal{R}(\mathcal{A}) \oplus \mathcal{N}(\mathcal{A}^T)$$

to bounded linear operators $\mathcal{A} : W \to V$ between Hilbert spaces W and V is

$$V = \overline{\mathcal{R}(\mathcal{A})} \oplus \mathcal{N}(\mathcal{A}^T)$$

Note that $p = \mathcal{A}^T v$, where p is the solution to equation (3)
We summarize

Theorem

\[u|_{\omega} \] spans a dense subspace of \(L^2(\omega) \) as \(f \) spans \(L^2(\Omega) \)

- This property is sometimes called “approximate controllability”
- Generally the best that can be achieved for elliptic (and parabolic) PDE’s
- Thus, for each given target temperature distribution \(z \in L^2(\omega) \), there is a \(f \in L^2(\Omega) \) so that \(\int_{\omega} (u - z)^2 \) can be made arbitrary small
- Is this good news or bad news?

Almost controllable but ill-posed

Problem: there are many \(z \in L^2(\omega) \) that are not in \(\mathcal{R}(A) \) (any discontinuous function e. g.)

Let \(z \notin \mathcal{R}(A) \), and let \(\{ f_n \}_{n=1}^{\infty} \subset L^2(\Omega) \),

\[
-\Delta u_n = f_n \quad \text{in } \Omega, \\
u_n = 0 \quad \text{on } \partial \Omega.
\]

such that

\[
\| Af_n - z \|^2 = \int_{\omega} (u_n - z)^2 \to 0
\]

Then, \(\int_{\Omega} f_n^2 \) will diverge. (Otherwise would \(z \in \mathcal{R}(A) \))

Also difficult if \(z \in \mathcal{R}(A) \). Any noise would take \(z \) outside of \(\mathcal{R}(A) \) and cause the above problems.
Inverse/control problems

Regularization

The easiest strategy to overcome the above problems: make sure $\|f\|$ does not blow up.

Introduce the Tikhonov regularization parameter $\epsilon > 0$ and the objective function, defined for any target function $z \in L^2(\Omega)$

$$J(f) = \frac{\epsilon}{2} \int_{\Omega} f^2 + \frac{1}{2} \int_{\omega} (u - z)^2$$

and solve the problem

Find $f^* \in L^2(\Omega)$ such that

$$J(f^*) \leq J(f) \quad \forall f \in L^2(\Omega),$$

where u is obtained from f by solving equation (1).

Sensitivity analysis

We will mimic the previous linear-algebra reasoning

Differentiating objective function (4) with respect to an arbitrary variation δf yields

$$\delta J = \epsilon \int_{\Omega} \delta f \ f + \int_{\omega} \delta u (u - z)$$

where δu is the directional derivative of u with respect to δf. Differentiating state equation (1) gives an equation for δu:

$$-\Delta \delta u = \delta f \quad \text{in } \Omega,$$ \(7a\)

$$\delta u = 0 \quad \text{on } \partial \Omega.$$ \(7b\)

Multiplying (7a) with an arbitrary smooth function p and integrating by parts yields
\[
\int_{\Omega} p \delta f = - \int_{\Omega} p \Delta \delta u = - \int_{\partial \Omega} p \frac{\partial \delta u}{\partial n} + \int_{\partial \Omega} \frac{\partial p}{\partial n} \delta u - \int_{\Omega} \Delta p \delta u
\]
[by (7b)] = - \int_{\partial \Omega} p \frac{\partial \delta u}{\partial n} - \int_{\Omega} \Delta p \delta u
\]

(8)

So far, \(p \) is an arbitrary smooth function. Now choose \(p \) to be the solution to the adjoint equation

\[-\Delta p = \chi_{\omega} (u - z) \quad \text{in} \ \Omega \]
\[p = 0 \quad \text{on} \ \partial \Omega\]

(9)

so that (8) reduces to

\[
\int_{\Omega} p \delta f = \int_{\omega} (u - z) \delta u
\]

(10)

Substituting (10) into (6) yields

\[
\delta J = \int_{\Omega} \delta f (\epsilon f + p)
\]

(11)

Expression (11) reveals that the (Frechét) derivative of \(J \) is the function

\[
DJ = \epsilon f + p
\]

Problem (5) is an unconstrained minimization problem (in fact, a linear least-squares problem), and the first-order optimality conditions is thus

\[
DJ = \epsilon f + p = 0
\]
Optimality system

The state equation, the adjoint equation, and the first-order optimality conditions are together known as the **optimality system**

\[-\Delta u = f \text{ in } \Omega, \quad -\Delta p = \chi_\omega(u - z) \text{ in } \Omega\]

\[u = 0 \text{ on } \partial\Omega, \quad p = 0 \text{ on } \partial\Omega.\]

(12)

\[\epsilon f + p = 0 \text{ in } \Omega\]

- The above derivation used a nested approach: we computed the derivative of \(\phi \mapsto J\)
- An alternative non-nested approach: view state equation as constraints and compute the stationary points of a Lagrangian

Finite-element discretization

FE discretizations are applied on variational forms of the PDE. Multiply equation (1) with an arbitrary smooth function \(v\) that vanishes on \(\partial\Omega\) and integrate by parts:

\[-\int_\Omega v\Delta u = -\int_{\partial\Omega} v\frac{\partial u}{\partial n} + \int_\Omega \nabla v \cdot \nabla u = \int_\Omega \nabla v \cdot \nabla u = \int_\Omega vf\]

Thus, if \(u\) is a solution to equation (1) then \(u\) satisfies the variational form

\[\int_\Omega \nabla v \cdot \nabla u = \int_\Omega vf\]

for each smooth function vanishing on \(\partial\Omega\)
Now “forget” about the PDE (1), define the **energy space**

\[V = \left\{ v \mid \int_{\Omega} |\nabla u|^2 < +\infty, u = 0 \text{ on } \partial\Omega \right\} \]

(admissible temperature fields are only those with bounded heat energy), and consider the problem

Find \(u \in V \) such that

\[\int_{\Omega} \nabla v \cdot \nabla u = \int_{\Omega} vf \quad \forall v \in V, \tag{13} \]

which has a unique solution by the Riesz representation theorem. The solution to problem (13) is called a **weak solution** to PDE (1).

We may approximate problem (13) on any finite-dimensional subspace \(V_h \subset V \)

Find \(u_h \in V_h \) such that

\[\int_{\Omega} \nabla v_h \cdot \nabla u_h = \int_{\Omega} v_h f_h \quad \forall v_h \in V, \tag{14} \]

In FEM, we **triangulate** the domain, and let \(v_h|_T \) be a polynomial for each triangle \(T \).

Theorem

Let \(v_h|_T \) be a polynomial for each triangle \(T \). Then \(\int_{\Omega} |\nabla v_h|^2 < +\infty \) if and only if \(v_h \) is continuous on \(\bar{\Omega} \).

Thus, for piecewise polynomials to be a subset of \(V \), they need to be continuous in \(\bar{\Omega} \).
Choose V_h to be a space of continuous functions that are some polynomial on each triangle and that vanish at $\partial \Omega$

Each $u_h \in V_h$, for V_h being a finite-element space, can be expanded in terms of basis functions N_j:

$$u_h(x) = \sum_{j=1}^{N} u_j N_j(x) \quad (15)$$

Simplest case: V_h is the space of continuous function, linear on each triangle. Then expansion (15) interpolates the values of u_h at the mesh vertices x_j: $u_h(x_j) = u_j$

Inserting expansion (15) into (14), expanding $f_h(x) = \sum_{j=1}^{n} f_j N_j(x)$, and choosing $v_h = N_i, i = 1, \ldots, N$ yields

$$\sum_{j=1}^{N} u_j \int_{\Omega} \nabla N_i \cdot \nabla N_j = \sum_{j=1}^{N} f_j \int_{\Omega} N_i N_j,$$

or

$$Ku = Mf,$$

where

$$K_{ij} = \int_{\Omega} \nabla N_i \cdot \nabla N_j, \quad M_{ij} = \int_{\Omega} N_i N_j$$

$$u = (u_1, \ldots, u_N)^T \quad f = (f_1, \ldots, f_N)^T$$
Discrete inverse/control problem

Discrete objective function:

\[J_h(f_h) = \frac{\epsilon}{2} \int_{\Omega} f_h^2 + \frac{1}{2} \int_{\omega} (u_h - z)^2 \]

(16)

where \(u_h \in V_h \) such that

\[\int_{\Omega} \nabla v_h \cdot \nabla u_h = \int_{\Omega} v_h f_h \quad \forall v_h \in V_h, \]

(17)

The discrete inverse/control problem

Find \(f_h^* \in V_h \) such that

\[J_h(f_h^*) \leq J_h(f_h) \quad \forall f_h \in V_h, \]

Sensitivity analysis in the discrete case

Two approaches:

1. Discretize the state equation (1), the adjoint equation (9), and use the discrete quantities in the gradient expression (11). ("differentiate-then-discretize"; "continuous adjoint")

2. Discretize the state equation and the objective function, derive corresponding discrete adjoint equation and gradient expression ("discretize-then-differentiate"; "discrete adjoint")

- In current case: these approaches are equivalent if the same approximations are used throughout
- In general, these approaches may give different results!
Recommendation: if at all possible, use strategy 2.

- Yields the exact gradient of the discrete problem, the one actually solved in the computer.
- Most optimization algorithms very sensitive to gradient accuracy
- Sometimes strategy 2 too complicated. Often easier algebra with strategy 1.

Discrete sensitivity analysis (strategy 2)

Differentiate objective function (16) and state equation (17):

$$\delta J_h = \epsilon \int_{\Omega} \delta f_h f_h + \int_{\omega} \delta u_h (u_h - z)$$ \hspace{1cm} (18)

where

$$\int_{\Omega} \nabla v_h \cdot \nabla \delta u_h = \int_{\Omega} v_h \delta f_h \quad \forall v_h \in V_h$$ \hspace{1cm} (19)

Now let $p_h \in V_h$ be the solution to the discrete adjoint equation

$$\int_{\Omega} \nabla p_h \cdot \nabla w_h = \int_{\omega} w_h (u_h - z) \quad \forall w_h \in V_h$$ \hspace{1cm} (20)

Choosing $v_h = p_h$ in (19) and using (20), we find that

$$\int_{\omega} \delta u_h (u_h - z) = \int_{\Omega} p_h \delta f_h$$ \hspace{1cm} (21)
Substituting (21) into (18) yields

$$\delta J_h = \int_\Omega \delta f_h (\epsilon f_h + p_h)$$

So, the derivative will again be $D J_h = \epsilon f_h + p_h$

Solution algorithms

Objective function (16) can be written

$$J_h(f_h) = \frac{\epsilon}{2} \| f_h \|_{L^2(\Omega)}^2 + \frac{1}{2} \| A_h f_h - z \|_{L^2(\omega)}^2,$$

where $A_h f_h = u_h$. (The matrix representation of A_h is $K^{-1} M$). Also

$$\nabla J_h = \epsilon f_h + A_h^T (A_h f_h - z)$$

(22)
Solution algorithms

Cf. the algebraic least-squares problem

\[
\min_x \frac{1}{2} \| Ax - b \|^2, \tag{23}
\]

where \(x \in \mathbb{R}^n \), \(b \in \mathbb{R}^m \), and \(A \) is \(m \)-by-\(n \); typically \(m \gg n \)

Theorem

Problem (23) has always at least one solution for any matrix \(A \) and vector \(b \), and the solution is unique if the columns of \(A \) are linearly independent.

▶ A least-squares solution makes \(\| Ax - b \| \) small but \(x \) can be ugly; \(\| x \| \) can become very large e. g.

▶ Tichonov regularization can also here be applied:

\[
\min_x \frac{\epsilon}{2} \| x \|^2 + \frac{1}{2} \| Ax - b \|^2, \tag{24}
\]

▶ Problem (24) has a unique solution for each \(A \) and \(b \). Can be written in previous form

\[
\min_x \frac{1}{2} \| \tilde{A} x - \tilde{b} \|, \tag{25}
\]

with

\[
\tilde{A} = \begin{pmatrix} \epsilon^{\frac{1}{2}} I \\ A \end{pmatrix}, \quad \tilde{b} = \begin{pmatrix} 0 \\ b \end{pmatrix}
\]
A solution to (24) satisfies the \textit{normal equations}

\[
(\epsilon I + A^T A)x = A^T b
\]

(The normal equations for (23) or (25), set \(\epsilon = 0\).)

- The recommended solution method, at least for the full-rank case (linearly independent columns in \(A\)) relies on a \textit{QR-factorization} of \(A\) (or \(\tilde{A}\) in the regularized case). Memory demanding for large \(A\).
- Alternatively, since \(A^T A\) is symmetric and positive definite, we can use the \textit{conjugate gradient} algorithm to solve the normal equation. Then, matrix \(A\) need not to be available explicitly, only the action of \(A\) and \(A^T\) on vectors.

Canned software for the conjugate-gradient algorithm formulated as algorithm for solving \(Sx = r\) with \(S\) symmetric positive definite. The algorithm needs

- the right-hand-side vector \(r\) (at the beginning)
- the vector \(Sw\) for a given vector \(w\) (at each iteration)
- For the inverse problem, \(r\) is the degrees of freedom for \(A_h^T z\)
- For the inverse problem, \(Sw\) is the degrees of freedom for \(\epsilon w_h + A_h^T A_h w_h\)
Right-hand side: \(q_h = \mathcal{A}_h^T z \)
\(q_h \in V_h \) such that
\[
\int_{\Omega} \nabla q_h \cdot \nabla v_h = \int_{\omega} v_h z \quad \forall v_h \in V_h
\]

Matrix–vector product: \(g_h = \epsilon w_h + \mathcal{A}_h^T \mathcal{A}_h w_h \)
Given \(w_h \in V_h \), first compute \(u_h \in V_h \) such that
\[
\int_{\Omega} \nabla v_h \cdot \nabla u_h = \int_{\Omega} v_h w_h \quad \forall v_h \in V_h,
\]
than compute \(p_h \in V_h \) such that
\[
\int_{\Omega} \nabla p_h \cdot \nabla v_h = \int_{\omega} v_h u_h \quad \forall v_h \in V_h
\]
and set \(g_h = \epsilon w_h + p_h \)