
Online Dynamic Dependence Analysis

for Speculative Polyhedral Parallelization

Alexandra Jimborean1, Philippe Clauss2,
Juan Manuel Martinez2, and Aravind Sukumaran-Rajam2

1 UPMARC, University of Uppsala, Sweden
alexandra.jimborean@it.uu.se

2 Team CAMUS, INRIA, ICube lab., University of Strasbourg, France
{philippe.clauss,juan-manuel.martinez-caamano,

aravind.sukumaran-rajam}@inria.fr

Abstract. We present a dynamic dependence analyzer whose goal is
to compute dependences from instrumented execution samples of loop
nests. The resulting information serves as a prediction of the execution
behavior during the remaining iterations and can be used to select and
apply a speculatively optimizing and parallelizing polyhedral transforma-
tion of the target sequential loop nest. Thus, a parallel lock-free version
can be generated which should not induce any rollback if the prediction
is correct. The dependence analyzer computes distance vectors and linear
functions interpolating the memory addresses accessed by each memory
instruction, and the values of some scalars. Phases showing a changing
memory behavior are detected thanks to a dynamic adjustment of the
instrumentation frequency.

The dependence analyzer takes part of a whole framework dedicated
to speculative parallelization of loop nests which has been implemented
with extensions of the LLVM compiler and an x86-64 runtime system.

Keywords: Dynamic online dependence analysis, polyhedral transfor-
mations, speculative, parallelization, optimization, runtime.

1 Introduction

Speculative parallelization is a classic strategy for automatically parallelizing
codes that cannot be handled at compile-time due to the use of dynamic data and
control structures. However, since this parallelization scheme requires on-the-fly
semantics verification, it is in general difficult to perform advanced transfor-
mations for optimization and parallelism extraction. Most speculative systems
dedicated to loop nest parallelization launch slices of the original sequential
outermost loop in parallel threads, without handling any other code transfor-
mations. Thus, verification consists merely in monitoring concurrent updates of
the same memory locations using a centralized data structure – which is an im-
portant performance bottleneck – and in validating the ones occurring at the
earliest iteration according to the original loop indices. However, as soon as the

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 191–202, 2013.
© Springer-Verlag Berlin Heidelberg 2013

192 A. Jimborean et al.

outermost loop carries a dependence, this parallelization strategy fails in nu-
merous rollbacks. Also, it does not consider the current execution context or
other factors that impact performance, such as data locality. Hence, more ad-
vanced parallelizing and optimizing transformations are required, comparable to
the ones applied at compile time when possible. But a new verification strat-
egy is required, ensuring that not only memory writes, but also reads, have to
be performed in a semantically correct order. This requires the computation of
dependences between memory accesses and the verification of their constancy
during the speculatively parallel execution of loop nests.

In this paper, we present a dynamic dependence analyzer of loop nests which
incurs a minimal time overhead, such that its results can be used online, in
the attempt of speculatively optimizing and parallelizing the code. It is based
on a code instrumentation system specifically dedicated to loop nests, which is
applied on small execution samples. This loop sampling mechanism relies on a
multiversioning scheme, in which instrumented and non-instrumented versions
of each target loop are generated at compile time. Additionally, it embeds a
switching mechanism allowing to alternate the execution of instrumented and
non-instrumented loop bodies. The instrumented bodies contain instructions de-
voted to collect the addresses that are accessed by the memory instructions and
the values that are assigned to some specific scalars called basic scalars. From
the collected information, the dependence analyzer computes distance vectors
and linear functions interpolating the memory addresses and the values assigned
to the basic scalars in order to allow their privatization when parallelizing.

The dependence analyzer is supported by a runtime system which alternates
the execution of different versions of the target loop nest. Thus, phases showing
a changing memory behavior are detected by launching instrumented versions at
some execution points. The frequency in which they are launched can be either
fixed or adjusted according to the constancy of the memory behavior. Since the
dependence analysis is performed based on instrumenting execution samples, it
serves as a prediction for the remaining iterations of the loop nest. Based on
its results, the runtime system selects and applies a speculatively optimizing
and parallelizing polyhedral transformation, generating a lock-free parallel code,
which does not induce any rollback, if the prediction is correct. When paral-
lelizing speculatively, the associated verification system consists in verifying the
constancy of the linearly interpolating functions, instead of monitoring concur-
rent memory accesses, which is the classical approach in speculative systems.
Hence, verification is completely distributed among the threads, and does not
require any centralized data structure.

We show on a set of benchmarks that our analyzer is successful in identifying
dependences across the iterations of a loop nest with a negligible runtime over-
head. This property makes it insensitive to any variations of the input data or
to program phases, since it can be applied repeatedly during one execution of
the application, preceding the runtime optimizations.

Online Dynamic Dependence Analysis 193

2 Description of the Framework

This proposal focuses on the advanced dynamic dependence analysis we propose
as part of the TLS framework [4], called VMAD, designed to apply polyhedral
transformations at runtime, such as tiling, skewing, interchange, etc., by spec-
ulating on the linearity of the loop bounds, of the memory accesses and of the
values taken by specific variables, the basic scalars. Speculations are guided by
online profiling phases. The instrumentation and analysis processes are thor-
oughly described in our previous work [6]. The current proposal extends the
dependence analyzer described previously [6], with the computation of the exact
distance vectors, which are employed in validating more complex loop transfor-
mations, rather than straightforward parallelization.

A key aspect is instrumentation by sampling, in which the execution of instru-
mented and non-instrumented loop versions are alternated. The instrumented
version is executed for a small number of consecutive iterations of each loop in
the nest to collect sufficient information for performing the dynamic dependence
analysis. Next, a non-instrumented version is launched, to limit the overhead.
Instrumentation is re-launched with a varying frequency, in the view of detecting
new phases characterized by a different pattern of the memory accesses. When
there is a change of phases, the runtime system triggers a new instrumentation.
This guarantees that the minimal amount of instrumentation is performed dur-
ing the execution of the loop nest, but sufficient to characterize each new phase.
Please note that in case the system detects frequent changes of phases (i.e. an
instable behavior of the nest), it aborts the instrumentation and the attempt to
speculatively parallelize the nest, since the speculations would most probably be
invalidated. Hence, the system is able to self-control its overhead.

Using the chunking mechanism presented in Fig. 1(a), we slice the iteration
space of the outermost loop into successive chunks, as detailed in our previous
work [4]. Each chunk represents a subset of consecutive iterations of the outer-
most loop and can embed a different loop version (either instrumented, original
or optimized). Note that chunking is performed at the level of the outermost loop
only, nevertheless, during the execution of the profiling chunk, the instrumented
and non-instrumented versions of the innerloops alternate, as presented in [6], to
incur a minimal overhead. Following the results of the profiling, the dependence
analysis validates a suitable polyhedral transformation for each loop phase. In
this paper we focus on the process of computing the cross-iteration data depen-
dences and validating polyhedral transformations, addressing the reader to our
previous work [4] for more details regarding the TLS framework which applies
the results of the dependence analyzer. During the speculative execution, the
predictions are verified, initiating a rollback upon a misspeculation and resum-
ing the execution with a sequential chunk. Misspeculations indicate a change
of phase and they trigger a new instrumentation and analysis phase, after the
faulty iterations are reexecuted sequentially. If validation succeeds, a new paral-
lel chunk is launched. The process is depicted in Fig. 1(a). The implementation
of VMAD consists of two parts: a static part, implemented in the LLVM com-
piler [10], designed to prepare the loops for instrumentation and parallelization,

194 A. Jimborean et al.

��
��

���
�	 �
�
����

�������
�

�
�
����
�������

�

������������	����

������
����
�

�
���
����
������
����

�
�����
�

���������

�
�����

�
�
����
�������

�

�
�
����
�������

�

������
����
�

�
���
����

���

��
��

���
�	

���������

�
�����

��������
�
�������

(a) The chunking mechanism

�������	

�����

�
��
��
�
�
��
��

��
��
��

��
��

�
��
��
�

��
��
��

��
��
���
���
��

��
��
��
��
�
�

��
��
���
���
��

��
��
��
��
�

���!��"
�#�$

��������
�%������
�#�$

����������%������
�#�$

���	
��	���

�
�����
���
������
�����
�
����

������������

	�����

(b) Alternate execution of different
versions during one loop nest’s run

Fig. 1. Multiversioning

and a dynamic part, in the form of an x86-64 runtime system whose role is
to build interpolating functions, to perform dynamic dependence analysis and
transformation selection and to guide the execution.

Static Component. Our modified LLVM compiler generates customized versions
of each loop nest of interest: original, instrumented and several parallel code
patterns, together with a mechanism for switching between the versions. The
patterns represent parameterized code versions, instantiated at runtime based
on the results of the dependence analysis. To complete the loop’s execution
and adapt to the current phase, we automatically link at runtime the different
versions of the original code. Each version is launched in a chunk to execute a
subpart of the loop which is followed by the others, as in relay races. The support
for chunking the outermost loop and linking distinct versions is illustrated in
Fig. 1(b). The instrumented, original and two parallel code patterns are built at
compile time. At runtime, one or another version is automatically selected to be
executed for a number of iterations.

Dynamic Component. The runtime system collaborates tightly with the static
component. During the instrumentation phase, it retrieves the accessed memory
locations, the values assigned to the basic scalars, and computes interpolating
linear functions of the enclosing loop indices. Instrumentation is performed on
samples to limit the time overhead and is followed by the dependence analysis
which evaluates whether a polyhedral transformation can be efficiently applied. If
successful, this information can be useful in speculatively executing an optimized
and parallelized version of the loop.

3 Dynamic Dependence Computation

A dedicated pragma allows the user to mark interesting loop nests in the source
code. We have implemented dedicated extensions to the LLVM compiler that
generate automatically, for our instrumentation purposes, two different versions
of each target loop nest: instrumented and non-instrumented.

Online Dynamic Dependence Analysis 195

Instrumentation. The instrumented version associates to each memory instruc-
tion additional code which collects the target memory address and writes it in
a buffer that will be read by the runtime system. Similarly, other instrumenting
instructions are associated to monitor some specific scalars, called basic scalars.
They have the interesting property of being at the origin of the computations of
all other scalars used in the loop bodies, as for instance the target address compu-
tations. The basic scalars are identified at compile-time, being defined in the loop
bodies as φ-nodes, since the intermediate representation of the LLVM compiler
is in static single assignment form (SSA). They also carry dependences, since
their values in a given iteration depend on the values they have been assigned
in previous iterations. Hence, the opportunity for applying loop transformations
and parallelizations depends on the possibility of privatizing them by predicting
their values at each iteration. For this purpose, in the parallel code patterns, the
basic scalars are initialized using the predicting linear functions (depending only
on the indices of the transformed loops, and not on their value in the previous
iterations). Straightforward examples of such basic scalars are the loop indices
of for-loops, which are incremented at each iteration.

Since any kind of loops – for, while, do-while – are targeted, the instrumented
and non-instrumented versions generated at compile-time contain one new iter-
ator per loop, initialized with zero and incremented with a step of one. These
iterators are injected by the compiler and used in the computation of the inter-
polating linear functions, as detailed in [5,6].

�������	��	
�

����
��

��

�������	��	
������	��	

����
������
��

���������

����
�
�����������
�

�������	��	
�

����
��

�������	��	
�

����
��

�

� �

�

(a) Sampling mechanism
for a 3-depth loop nest

��� ��� �

���	
��� ���	��� ���	��� ���

�����

�����

�����

�
���

���

���

���

���

���

���

���

��� �

�

�

�����������	�

������������

�����������	�

������������

�����������	�

������������

��

��

��

�� � �� ! �
� ! �

�

�� � �� ! �
� ! �

�

�� � �
 ! �
� ! �

�

(b) Online distance vector computation

Fig. 2. Instrumentation by sampling and computation of distance vectors

Dedicated Sampling. Executions of the instrumented versions of the target loop
nests are obviously more time-consuming than the original versions. However,
these versions are run for small slices of the outermost loops of the target nests
using the chunking mechanism presented in the previous section. Additionally, we
implemented a dedicated sampling system allowing to instrumented only slices of
each loop composing the nest. Thus, instrumentation activation does not depend
only on the current loop, but also on the parent loops, making instrumented
and non-instrumented bodies alternate, as illustrated in figure 2(a). Sizes of the
instrumented slices can be either fixed or adjusted at runtime.

Polyhedral Transformations. The dynamic dependence analyzer is designed to
compute distance vectors, and then verify if these distance vectors characterize

196 A. Jimborean et al.

completely the memory behavior observed during the run of the instrumented
version. This latter verification is achieved using an address value range analysis
and a GCD test, as explained below. If the computed distance vectors conve-
niently characterize the target code, then they are used to select an optimizing
parallelizing transformation of the loop nest, which results in the generation of a
lock-free multithreaded version that should not induce any rollback if the mem-
ory behavior remains stable.Transformations that may be applied are polyhedral
transformations [2] that change the order in which the iterations are scanned,
such that at least one parallel loop is exhibited and the iteration schedule is op-
timized to address important issues, like data locality. Such a transformation is
defined by a unimodular matrix T , applied to the space of the loop indices. T is
valid w.r.t. any dependence distance vector d if the transformed vector T ·d = d′

is lexicographically positive, i.e., if its first non-null component is positive. This
component gives the depth of the loop which carries the associated dependence,
therefore this loop cannot be parallelized. The outermost parallel loop is then
the outermost loop which does not carry any dependence, considering all the
transformed distance vectors.

Distance Vectors Computation. The runtime system reads the values communi-
cated through the buffer and, when possible, builds linear interpolating functions
for each memory instruction or basic scalar assignment, whose variables are the
loop indices. It also computes linear functions to interpolate the loop bounds
of the inner loops. Simultaneously, the collected memory addresses are used to
compute online dependence distance vectors. The addresses are stored in a table
whose entries also contain the access type (Read or Write), the loop index val-
ues at which the memory access occurred and the memory instruction identifier.
Each time a new entry is created, a table look-up finds the previous accesses at
the same address, computes the corresponding distance vectors and removes the
entries that are becoming useless. The implemented algorithm is shown in the
first part of table 1 and illustrated by figure 2(b).

Since only a sample of the execution tracks the memory accesses, the so-
computed distance vectors may not entirely characterize the dependences that
may occur during the whole execution of the target loop nest. If the instrumenta-
tion is performed on a loop slice of size S, a dependence whose distance is greater
than S can obviously occur. We handle this issue by considering each couple of
memory instructions, where at least one is a write, and for which no distance vec-
tor has been computed. Their associated interpolating linear functions are then
used to verify if any dependence may occur between these instructions. First, a
value range analysis is performed. For each linear function, their maximum and
minimum reached values are computed using the interpolated loop bounds. If the
respective ranges of touched addresses overlap, then a dependence may occur. In
this case, a second analysis is performed through the GCD test, concluding if there
may be a solution when considering the integer equation where both functions are
equal. The algorithm is shown in the second part of table 1. These latter depen-
dence tests are obviously less time-consuming than exact solving of integer equa-
tions, which would induce an overhead unacceptable for a dynamic parallelization

Online Dynamic Dependence Analysis 197

system. Moreover, an empty solution of these tests guarantees that the computed
distance vectors entirely characterize the dependences, which allows one to vali-
date the correctness of polyhedral transformations with a high probability, for a
significant part of the execution.

Table 1. Dependence analysis algorithms

Distance vector computation algorithm.

create an entry in the table
if the current access is a write

look for all reads at the same address, until finding a write
for each found read, compute a distance vector which characterizes
an anti-dependence

if a write has been found, compute a distance vector which characterizes
an output dependence

remove all these entries excepting the current one
if the current access is a read

look for a previous write at the same address
if a write has been found, compute a distance vector which characterizes
a flow dependence

Value range and GCD tests application algorithm.

build the couples of memory instructions not characterized by distance vectors,
where at least one instruction is a write

for each couple
compute their respective ranges of touched addresses by computing
the extreme values reached by their associated linear functions

if their ranges overlap
perform the GCD test on the corresponding integer equation
if the test fails (empty solution), the couple does not carry any dependence
else, the couple may carry a dependence

else, the couple does not carry any dependence

4 Experiments

Experiments were conducted on the Polybench benchmark suite [12]. For each
program, we selected the most time-consuming loop nest. Although these codes
can be analyzed statically to detect dependences, we stressed our system to
extract dependences at runtime, in order to show its accuracy and ability in
deducing speculative parallelizations. To test the ability of our system in de-
tecting dependence phases, we modified the Polybench codes by introducing
if-statements in the innermost loop body in order to alternate between three
successive phases, each being characterized by slightly modified memory accesses
that may introduce dependences. For instance, for a nest whose outermost loop
ranges from 0 to N , we inserted if-statements that induce different memory be-
haviors for each subset of N/3 iterations. We modified the memory references for
two of the three subsets by adding some integer constants to the original array
references.

198 A. Jimborean et al.

Our measurements are presented in table 2, where the kernel loop nest of
each program is analyzed. The left part of the table shows the measurements
performed on the original programs of the Polybench suite, while the right part
shows the measurements performed on the modified programs exhibiting phases
with different dependences. The second column shows the size of the instru-
mented chunks. For each program, we execute successively three instrumented
runs with different instrumented chunk sizes (3, 10, 20) in order to compare the
accuracy of the analyses, relatively to the number of instrumented iterations,
as well as their respective overheads. The third column shows the percentage of
time-overhead induced by instrumenting execution samples and determining de-
pendences, computed as: (instrumentationTime - originalTime)/originalTime.
The original codes were compiled using Clang-LLVM 3.0 with flag O3, on an
AMD Opteron 6172, 2.1 Ghz, running Linux 3.2.0-27-generic x86 64.

For the experiments reported in this paper, the number of instrumented
chunks launched by the runtime system depends on the number of iterations
of the outermost loop, following the strategy: the first instrumented chunk is
followed by a non-instrumented chunk of 100 iterations. Then again an instru-
mented chunk is launched. If the result of the dependency is equal to the result
obtained from the previous instrumentation, then a non-instrumented chunk of
100 × 2 = 200 iterations is launched. Thus, the size of the non-instrumented
chunk is doubled continuously as long as the dependences remain the same. If
the dependences change, then the size of the non-instrumented chunk is reset to
100, as a new phase is detected. Please note that this strategy is devoted solely
to the goal of performing online dependence analysis. In a complete speculatively
parallelizing system, it is the speculation verification performed by the specula-
tively parallel code which would detect new phases and provoke the launching
of an instrumented chunk. Additional experiments indicate that adjusting the
frequency of the instrumentation based on phases detected at runtime by the
TLS system, reduces the overhead of the analyzer to 15% at most, since it is
performed only once for each phase, and the number of instrumented iterations
is small, relative to the total number of iterations. However, this is out of the
scope of the current article.

The fourth and fifth columns show the number of instrumented memory in-
structions and base scalar assignments, respectively; the sixth column shows the
computed distance vectors for each phase and their types; finally, the seventh
column suggests speculative parallelizations that could be applied considering
the distance vectors and the results of the GCD tests.

The right part of the table illustrates the results on the modified programs
exhibiting dependence phases. A new column shows the number of detected
phases, and only one row per phase is presented for some instrumented chunk
sizes, due to space constraints. For the same reason, although we successfully
analyzed the dependences of all Polybench codes, it is impossible to show the
results obtained for all of them. Only some representative ones are selected.

Online Dynamic Dependence Analysis 199

T
a
b
le

2
.
O
n
li
n
e
d
y
n
a
m
ic

d
ep

en
d
en

ce
a
n
a
ly
si
s
o
n
b
en

ch
m
a
rk

p
ro
g
ra
m
s

P
r
o
g
r
a
m

I
n
s
t
r
.
C
h
u
n
k

D
D
A

#
M

e
m

o
r
y

#
B
a
s
ic

D
e
p
.
D

is
t
.
V
e
c
t
o
r
s

S
p
e
c
u
la

t
iv

e
P
a
r
.

D
D
A

#
M

e
m

o
r
y

#
B
a
s
ic

#
P
h
a
s
e
s

D
e
p
.
D

is
t
.
V
e
c
t
o
r
s

S
p
e
c
u
la

t
iv

e
P
a
r
.

S
iz

e
s

o
v
e
r
h
e
a
d

A
c
c
e
s
s
e
s

S
c
a
la

r
s

o
u
t
p
u
t

-
fl
o
w

-
a
n
t
i

O
p
p
o
r
t
u
n
it
ie

s
o
v
e
r
h
e
a
d

A
c
c
e
s
s
e
s

S
c
a
la

r
s

o
u
t
p
u
t

-
fl
o
w

-
a
n
t
i

O
p
p
o
r
t
u
n
it
ie

s

c
o
r
r
e
la

t
io

n
/
p
h
a
s
e

1
3

2
.9

6
%

5
3

(
0

0
1

:
f
)

o
u
t
e
r
m

o
s
t

lo
o
p

3
.2

5
%

9
4

2
(
0

0
1

:
f
)

o
u
t
e
r
m

o
s
t

lo
o
p

p
h
a
s
e

2

(
0

0
1

:
o

-
f
-
a

1
0

0
:
o

-
a

)
2
n
d

lo
o
p

p
h
a
s
e
s

1
,2

1
0

3
.6

2
%

5
3

s
a
m

e
a
s

a
b
o
v
e

s
a
m

e
a
s

a
b
o
v
e

5
.6

3
%

9
4

2
s
a
m

e
a
s

a
b
o
v
e

s
a
m

e
a
s

a
b
o
v
e

p
h
a
s
e
s

1
,2

2
0

6
7
.7

4
%

5
3

s
a
m

e
a
s

a
b
o
v
e

s
a
m

e
a
s

a
b
o
v
e

2
0
6
.1

6
%

9
4

2
s
a
m

e
a
s

a
b
o
v
e

s
a
m

e
a
s

a
b
o
v
e

c
h
o
le

s
k
y
/
p
h
a
s
e

1
3

2
2
4
.5

5
%

5
4

⎛ ⎜ ⎜ ⎝

1
−

1
1

:
a

1
0

1
:
a

1
1

1
:
a

.
.

.
..
.

⎞ ⎟ ⎟ ⎠

⎛ ⎝
1

1
1

0
1

0
0

0
1

⎞ ⎠
2
2
6
.5

6
%

7
4

3

⎛ ⎜ ⎜ ⎝

1
−

1
1

:
a

1
0

1
:
a

1
1

1
:
a

.
.

.
..
.

⎞ ⎟ ⎟ ⎠

⎛ ⎝
1

1
1

0
1

0
0

0
1

⎞ ⎠

p
h
a
s
e

2

⎛ ⎝
1

7
1

:
a

8
1

1
:
a

.
.

.
..
.

⎞ ⎠

⎛ ⎝
1

1
1

0
1

0
0

0
1

⎞ ⎠

p
h
a
s
e

3

⎛ ⎝
5

−
3

1
:
a

4
−

3
1

:
a

.
.

.
..
.

⎞ ⎠

⎛ ⎝
1

1
1

0
1

0
0

0
1

⎞ ⎠

p
h
a
s
e
s

1
,2

,3
1
0

2
3
9
.6

7
%

5
4

⎛ ⎝
1

−
1

1
:
a

1
0

1
:
a

.
.

.
..
.

⎞ ⎠

⎛ ⎝
1

1
1

0
1

0
0

0
1

⎞ ⎠
2
4
8
.4

8
%

7
4

3
la

r
g
e
r

s
e
t

t
h
a
n

a
b
o
v
e

⎛ ⎝
1

1
1

0
1

0
0

0
1

⎞ ⎠

p
h
a
s
e
s

1
,2

,3
2
0

2
4
0
8
.0

3
%

5
4

⎛ ⎝
1

−
1

1
:
a

1
0

1
:
a

.
.

.
..
.

⎞ ⎠

⎛ ⎝
1

1
1

0
1

0
0

0
1

⎞ ⎠
4
5
6
6
.8

1
%

7
4

3
la

r
g
e
r

s
e
t

t
h
a
n

a
b
o
v
e

⎛ ⎝
1

1
1

0
1

0
0

0
1

⎞ ⎠

a
d
i/

p
h
a
s
e

1
3

3
.1

9
%

9
2

(
0

1
:
f
-
a
)

o
u
t
e
r
m

o
s
t

lo
o
p

1
.4

7
%

1
9

3
3

(
0

1
:
f
-
a
)

o
u
t
e
r
m

o
s
t

lo
o
p

p
h
a
s
e

2

⎛ ⎝
0

1
:
f
-
a

1
0

:
a

1
1

:
a

⎞ ⎠
(

1
1

0
1

)

p
h
a
s
e

3

⎛ ⎝
0

1
:
f
-
a

1
0

:
f

1
−

1
:
f

⎞ ⎠
(

2
1

1
0

)

p
h
a
s
e
s

1
,2

,3
1
0

4
.7

%
9

2
s
a
m

e
a
s

a
b
o
v
e

s
a
m

e
a
s

a
b
o
v
e

7
.1

3
%

1
9

3
3

s
a
m

e
a
s

a
b
o
v
e

s
a
m

e
a
s

a
b
o
v
e

p
h
a
s
e
s

1
,2

,3
2
0

6
7
.8

8
%

9
2

s
a
m

e
a
s

a
b
o
v
e

s
a
m

e
a
s

a
b
o
v
e

1
3
1
.5

2
%

1
9

3
3

s
a
m

e
a
s

a
b
o
v
e

s
a
m

e
a
s

a
b
o
v
e

b
ig

c
/
p
h
a
s
e

1
3

3
1
.0

8
%

8
2

(
1

0
:
o

-
a

0
1

:
f

)
(

1
1

0
1

)
1
8
9
.0

3
%

1
0

2
3

(
1

0
:
o

-
a

0
1

:
f

)
(

1
1

0
1

)

p
h
a
s
e

2

⎛ ⎜ ⎜ ⎝

1
0

:
o

-
a

0
1

:
o

-
f

1
−

1
:
a

.
.

..
.

⎞ ⎟ ⎟ ⎠
n
o
n
e

p
h
a
s
e

3

⎛ ⎜ ⎜ ⎝

1
0

:
o

-
a

0
1

:
o

-
f

1
−

1
:
a

.
.

..
.

⎞ ⎟ ⎟ ⎠
n
o
n
e

p
h
a
s
e
s

1
,2

,3
1
0

3
6
.3

4
%

8
2

s
a
m

e
a
s

a
b
o
v
e

s
a
m

e
a
s

a
b
o
v
e

2
0
6
.9

3
%

1
0

2
3

s
a
m

e
a
s

a
b
o
v
e

s
a
m

e
a
s

a
b
o
v
e

p
h
a
s
e
s

1
,2

,3
2
0

1
7
8
.2

6
%

8
2

s
a
m

e
a
s

a
b
o
v
e

s
a
m

e
a
s

a
b
o
v
e

6
0
0
.4

8
%

1
0

2
3

s
a
m

e
a
s

a
b
o
v
e

s
a
m

e
a
s

a
b
o
v
e

g
e
m

m
/
p
h
a
s
e

1
3

-1
4
.1

2
%

4
3

(
0

0
1

:
f
)

o
u
t
e
r
m

o
s
t

lo
o
p

-1
3
.7

1
%

1
0

3
2

(
0

0
1

:
f
)

o
u
t
e
r
m

o
s
t

lo
o
p

p
h
a
s
e

2

(
0

0
1

:
f

1
0

0
:
a

)
2
n
d

lo
o
p

p
h
a
s
e
s

1
,2

1
0

-1
3
.8

5
%

4
3

s
a
m

e
a
s

a
b
o
v
e

s
a
m

e
a
s

a
b
o
v
e

-1
3
.4

8
%

1
0

3
2

s
a
m

e
a
s

a
b
o
v
e

s
a
m

e
a
s

a
b
o
v
e

p
h
a
s
e
s

1
,2

2
0

-3
.7

3
%

4
3

s
a
m

e
a
s

a
b
o
v
e

s
a
m

e
a
s

a
b
o
v
e

1
6
.1

%
1
0

3
2

s
a
m

e
a
s

a
b
o
v
e

s
a
m

e
a
s

a
b
o
v
e

3
m

m
/
p
h
a
s
e

1
3

-2
2
.4

9
%

3
3

(
0

0
1

:
f
)

o
u
t
e
r
m

o
s
t

lo
o
p

-1
0
.5

8
%

4
3

2
(
0

0
1

:
f
)

o
u
t
e
r
m

o
s
t

lo
o
p

p
h
a
s
e

2
(
0

1
0

:
a
)

o
u
t
e
r
m

o
s
t

lo
o
p

p
h
a
s
e
s

1
,2

1
0

8
.3

8
%

3
3

s
a
m

e
a
s

a
b
o
v
e

s
a
m

e
a
s

a
b
o
v
e

-1
0
.3

8
%

4
3

2
s
a
m

e
a
s

a
b
o
v
e

s
a
m

e
a
s

a
b
o
v
e

p
h
a
s
e
s

1
,2

2
0

1
9
.4

1
%

3
3

s
a
m

e
a
s

a
b
o
v
e

s
a
m

e
a
s

a
b
o
v
e

3
0
.0

9
%

4
3

2
s
a
m

e
a
s

a
b
o
v
e

s
a
m

e
a
s

a
b
o
v
e

200 A. Jimborean et al.

Results in the table obviously show that larger instrumented chunks yield
larger time overheads. In particular, one can observe a change of scale when
considering chunks of size 20. However, since the accuracy of the dependency
analysis is not significantly better with such large chunks, it argues to limit
chunk sizes to at most 10. We observed that a high accuracy is often achieved
with the smallest size of the instrumented chunk, 3. This is also due to the reg-
ularity of the handled benchmarks whose dependences are constant. In general,
10 iterations are sufficient to obtain a good accuracy, with a relatively low over-
head. For the smallest instrumented chunk size, the overheads vary from -14%
to 226%. Speed-ups can be explained by beneficial side-effects of chunking, or
different optimizations triggered on our code versions compared to the ones gen-
erated by Clang on the original codes. When the time-overhead is the highest,
it still remains acceptable: less than 3.5× with sizes 3 and 10, since paralleliza-
tion should provide speed-ups that would substantially hide this overhead. With
size 20, the overhead can become dangerously high in some cases, showing that
instrumentation by sampling must remain under a relatively small threshold.

Our experiments also indicate that some codes require more advanced trans-
formations than just parallelizing the original loops. It often occurs that every
loop carries dependences. A standard TLS system would continuously rollback
in such cases. On the other hand, a loop transformation, as the ones suggested
by the transformation matrices in the table, would yield a semantically equiva-
lent nest with at least one dependence-free loop that can be parallelized. This
emphasizes the need of relatively accurate dependence analysis for TLS systems.

5 Related Work

Dependence analysis is an essential aspect in systems designed to perform au-
tomatic optimizations. However, previous research works focused on performing
dynamic dependence analysis dedicated to an offline usage, thus, the overhead in-
curred by such profilers varies from 3×[13] to 70×[9]. Traditional TLS
systems either rely on the results of such profilers or perform an optimistic, sim-
ple, straightforward parallelization of the outermost loop, for which no advanced
dependence analysis is required. In contrast, we developed an ultra-fast dynamic
dependence analyzer that can be used online and applied repeatedly during one
execution, to adapt to different phases. This has been made possible thanks to
a specific instrumentation system dedicated to loop nests, and able to switch be-
tween instrumented and non-instrumented code following a counter of the number
of instrumented iterations. A similar approach to reduce the cost of instrumented
code is presented in [1]. Our instrumentation system has two major differences.
It is dedicated to loop nests and thus includes specific sampling management to
coordinate loop levels as a whole. It also includes a different sampling mechanism
provided by the chunking system to instrument only a small slice of the outermost
loop. In the following, we review various state of the art techniques, however they
are expected to be used offline, due to their large overhead.

Kim et al. [8] describe the fragility of static analysis, pleading for specula-
tive parallelization, by speculating on some memory or control dependences.

Online Dynamic Dependence Analysis 201

Statically, a PDG (program dependence graph) is built. All dependences occur-
ring less frequently than a certain threshold are speculatively removed from the
PDG and the code is parallelized. Nevertheless, the dependence analysis is very
simple and cannot be employed in validating aggressive code transformations,
other than straightforward parallelization. The work of Praun et al. [14] identi-
fies potential candidates for speculative parallelization by analyzing the density
of runtime dependences in critical sections, w.r.t. the total number of executed
instructions. Similarly to our proposal, the model can adapt to different program
phases, and detect the ones suitable for speculative parallelization. No informa-
tion regarding the profiler’s overhead is presented, thus we conclude that the re-
sults of the analysis are used offline. The recent work of Vanka et al. [13] proposes
a form of dependence analysis based on set operations using software signatures.
In contrast to other works relying on sampling to achieve better performance,
they group dependent operations into sets, and operate on relationships between
sets, instead of considering pair-wise dependences. Additionally, they only pro-
file queries relevant to the optimization being performed, rather than all possible
queries. Thus, the profiler is highly accurate and well performing in comparison
to previous works, introducing a 2.97× slowdown in average. Similarly, Oancea
and Mycroft [11] propose a dynamic analysis for building dependence patterns.
They map dependent iterations on the same thread, such that no dependence
violations occur. Mapping is based on congruences of sets, computed from the
dependence pattern. Still, the system incurs a considerable overhead.

Ketterlin and Clauss propose a system called Parwiz [7] that empirically builds
a data dependence graph, after instrumenting samples or complete executions
of an application with several representative inputs. Their goal is to identify
potentially parallel regions of sequential programs and provide hints to the pro-
grammer. Similar tools analyze the data dependences across one execution and
suggest parallelization strategies. Embla [3] performs an offline dynamic analysis
and reports all occurring dependences, exhibiting parallelization opportunities.
SD3 [9] performs dynamic dependence analysis to provide suggestions to the
developer on which modifications are desirable, such that the code becomes suit-
able for parallelization. SD3 shows a 70× slowdown on average. Alchemist [15]
is designed to identify dependences across loop iterations, loop boundaries and
methods. It can be used offline by speculative systems, as it provides a very
precise dependence analysis, analyzing complex data. Nevertheless, it induces a
large overhead and it is not aimed for a runtime usage.

6 Conclusion

The increasing usage complexity of multi-core architectures require to shift ad-
vanced parallelization techniques from static to dynamic. Related to this pur-
pose, we presented a dynamic dependence analyzer for loop nests dedicated to
capture cross-iteration dependences, with a minimal time-overhead. Thus, it can
be integrated in a TLS system for an online usage and even invoked repeatedly to
characterize each new phase. The analyzer relies on instrumentation by sampling

202 A. Jimborean et al.

and computes distance vectors, which can be employed in validating polyhedral
transformations for each phase of the nest.

References

1. Matthew Arnold and Barbara G. Ryder. A framework for reducing the cost of
instrumented code. In Proceedings of the ACM SIGPLAN 2001 conference on
Programming language design and implementation, PLDI ’01, pages 168–179, New
York, NY, USA, 2001. ACM.

2. U. Banerjee. Loop Transformations for Restructuring Compilers - The Founda-
tions. Kluwer Academic Publishers, 1993.

3. K-F Faxén, K. Popov, S. Jansson, and L. Albertsson. Embla - data dependence
profiling for parallel programming. In Proceedings of the 2008 International Con-
ference on Complex, Intelligent and Software Intensive Systems, CISIS ’08, pages
780–785, Washington, DC, USA, 2008. IEEE Computer Society.

4. A. Jimborean, Ph. Clauss, B. Pradelle, L. Mastrangelo, and V. Loechner. Adapting
the polyhedral model as a framework for efficient speculative parallelization. In
PPoPP ’12, 2012.

5. A. Jimborean, M. Herrmann, V. Loechner, and Ph. Clauss. VMAD: A virtual
machine for advanced dynamic analysis of programs. In Proceedings of the IEEE
International Symposium on Performance Analysis of Systems and Software, IS-
PASS ’11, pages 125–126, Washington, DC, USA, 2011. IEEE Computer Society.

6. A. Jimborean, L. Mastrangelo, V. Loechner, and Ph. Clauss. VMAD: An Advanced
Dynamic Program Analysis and Instrumentation Framework. In Michael OBoyle,
editor, Compiler Construction, volume 7210 of Lecture Notes in Computer Science,
pages 220–239. Springer Berlin Heidelberg, 2012.

7. A. Ketterlin and Ph. Clauss. Profiling Data-Dependence to Assist Paralleliza-
tion: Framework, Scope, and Optimization. In MICRO-45, The 45th Annual
IEEE/ACM International Symposium on Microarchitecture, Canada, 2012.

8. H. Kim, N.P. Johnson, J. W. Lee, S. A. Mahlke, and D. I. August. Automatic
speculative doall for clusters. In CGO ’12. ACM, 2012.

9. M. Kim, H. Kim, and C-K Luk. SD3: a scalable approach to dynamic data-
dependence profiling. In MICRO ’43. IEEE Computer Society, 2010.

10. LLVM compiler infrastructure. http://llvm.org.
11. C. E. Oancea and A. Mycroft. Set-congruence dynamic analysis for thread-level

speculation (TLS). In LCPC ’08. Springer-Verlag, 2008.
12. Polybenchs. http://www-rocq.inria.fr/pouchet/software/polybenchs.
13. R. Vanka and J. Tuck. Efficient and accurate data dependence profiling using

software signatures. In Proceedings of the Tenth International Symposium on Code
Generation and Optimization, CGO ’12, pages 186–195, NY, USA, 2012.

14. C. von Praun, R. Bordawekar, and C. Cascaval. Modeling optimistic concurrency
using quantitative dependence analysis. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming, PPoPP ’08, pages
185–196, New York, NY, USA, 2008. ACM.

15. X. Zhang, A. Navabi, and S. Jagannathan. Alchemist: A transparent dependence
distance profiling infrastructure. In CGO ’09. IEEE Computer Society, 2009.

http://llvm.org

	Online Dynamic Dependence Analysisfor Speculative Polyhedral Parallelization
	1 Introduction
	2 Description of the Framework
	3 Dynamic Dependence Computation
	4 Experiments
	5 Related Work
	6 Conclusion
	References

