
Speculative Program Parallelization with Scalable
and Decentralized Runtime Verification

Aravind Sukumaran-Rajam1, Juan Manuel Martinez Caamaño1,
Willy Wolff1, Alexandra Jimborean2, and Philippe Clauss1

1 INRIA, Team CAMUS, ICube Lab, CNRS, University of Strasbourg, France
{aravind.sukumaran-rajam,juan-manuel.martinez-caamano,

willy.wolff,philippe.clauss}@inria.fr
2 Department of Information Technology, Uppsala University, Sweden

alexandra.jimborean@it.uu.se

Abstract. Thread Level Speculation (TLS) is a dynamic code parallelization
technique proposed to keep the software in pace with the advances in hardware,
in particular, to automatically parallelize programs to take advantage of the multi-
core processors. Being speculative, frameworks of this type unavoidably rely on
verification systems that are similar to software transactional memory, and that
require voluminous inter-thread communications or centralized registering of the
performed memory accesses. The high degree of communication is against the
basic principles of high performance parallel computing, does not scale with an
increasing number of processor cores, and yields weak performance. Moreover,
TLS systems often apply one unique parallelization strategy consisting in slicing
a loop into several parallel speculative threads. Such a strategy is also against the
basic principles since loops in the original serial code are not necessarily parallel
and also, it is well-known that the parallel schedule must promote data locality
which is crucial in obtaining good performance. This situation appeals to scalable
and decentralized verification systems and new strategies to dynamically generate
efficient parallel code resulting from advanced optimizing parallelizing transfor-
mations. Such transformations require a more complex verification system that
allows intra-thread iterations to be reordered. In this paper, we propose a verifica-
tion system of this kind, based on a model built at runtime and predicting a linear
memory behavior. This strategy is part of the Apollo speculative code parallelizer
which is based on an adaptation for dynamic usage of the polyhedral model.

1 Introduction

Automatically parallelizing sequential code became increasingly important with the ad-
vent of multicore processors. However, static approaches applied at compile-time fail
in handling codes which contain intractable control and memory instructions. For in-
stance, while-loops, indirect array references or pointer accesses cannot generally be
disambiguated at compile-time, thus preventing any automatic parallelization based ex-
clusively on static dependence analysis. Such a situation appeals for the development
of runtime parallelization systems, which are granted more power by the information
discovered dynamically.

B. Bonakdarpour and S.A. Smolka (Eds.): RV 2014, LNCS 8734, pp. 124–139, 2014.
c© Springer International Publishing Switzerland 2014

Runtime Verification in the APOLLO Framework 125

Runtime parallelization techniques of loop nests are usually based on thread-level
speculation (TLS) [1–3] frameworks, which optimistically allow the parallel execution
of code regions before all dependences are known. Hardware or software mechanisms
track register and memory accesses to determine if any dependence violation occur. In
such cases, the register and memory state is rolled back to a previous valid state and
sequential re-execution is initiated. Traditional TLS systems perform a simple, straight-
forward parallelization of loop nests by simply slicing the outermost loop into con-
secutive parallel threads [1, 2, 4]. Verifying the speculations consists in ensuring that
the schedule of the accesses to shared memory locations in the parallel code matches
the one of the original code. This general verification principle is made simple in the
case of straightforward parallelization, since each parallel thread consists of a slice of
successive iterations of the original serial loop nest, thus following internally the origi-
nal sequential schedule. Modest performance improvements have been reported, due to
an expensive verification system and poor parallelizing transformations. The verifica-
tion system requires communication among the parallel threads to share which memory
addresses are accessed, in order to detect conflicts and preserve memory coherency
by rollbacking the delinquent threads. This strategy yields a high communication traf-
fic that is significantly penalizing performance, and which is against the general op-
timization principles in parallel computing. Another important consequence is that a
centralized verification system does not scale with the number of processor cores. This
situation calls for a different strategy where each thread takes part independently in the
verification of the global correctness of the speculative parallelization. Additionally,
as soon as a dependence is carried by the outermost loop, it leads to numerous roll-
backs, consequently, performance drops. Moreover, even if infrequent dependences oc-
cur, there is no guarantee that the resulting instruction schedule improves performance.
Indeed, poor data locality and a high amount of data shared between the threads can
yield a parallel execution slower than the original sequential one. To gain efficiency,
TLS systems must handle more complex code optimizing transformations that can be
selected at runtime, depending on the current execution context.

In this paper, we propose a verification strategy as an answer to these drawbacks. Our
solution relies on a prediction model which is built by first observing a small sample of
the target loop nest execution, and then it is used to verify the speculatively optimized
and parallelized code, during execution. The parallel code is generated by applying
advanced code transformations, thus, the iteration schedule in the parallel threads is no
longer in accordance with the original serial schedule of the iterations. This is equivalent
to saying that iterations are reordered not only across threads, but also within a thread.
Yet, the parallel schedule is semantically correct as long as the prediction model holds.
Each thread verifies independently that its execution is compliant with the prediction
model, hence the verification is entirely de-centralized. The model adopted in this work
to reason about the loop transformations is an adaptation of the polyhedral model to
dynamic and speculative parallelization.

The polyhedral model [5], originally designed for compile-time loop optimization
and parallelization, is known to show immense benefits for loops with linear iteration
counts and array accesses. Such loops are characteristic to scientific codes or kernels
designed for embedded systems. However, frequently, applying the polyhedral model

126 A. Sukumaran-Rajam et al.

statically is prohibited by factors such as: (i) bounds that cannot be statically predicted,
(ii) complex control flows, or (iii) pointers accessing dynamically allocated structures,
which leads to issues such as memory aliasing. Yet, such codes, although not stati-
cally analyzable, may exhibit a linear behaviour at runtime. Thus, they are amenable
to precise polyhedral dependence analysis (based on information acquired by online
profiling), in the view of performing complex parallelizing code transformations at run-
time. This has important consequences: (a) runtime verification is required to validate
the speculative code transformations; (b) an online recovery system, which will be trig-
gered upon a misspeculation, must be designed; (c) the system should be lightweight
enough to shadow the runtime overhead1.

In this paper, we focus on the verification system of a polyhedral TLS framework
called Apollo, for Automatic POLydedral Loop Optimizer. Apollo takes the best of the
two worlds: as a TLS system, it targets non-statically analyzable loop nests and mem-
ory accesses (including while-loops with memory accesses to dynamic data structures
via pointers which exhibit a linear runtime behavior); as a polyhedral optimizer, it ap-
plies polyhedral optimizations prior to parallelization, which makes Apollo novel and
conceptually different than its TLS predecessors.

The paper is organized as follows: next section describes a classic program exhibit-
ing parallel phases, depending on the input data. This kind of programs is a typical
target for Apollo. In Section 3, the global functioning of our polyhedral TLS system is
depicted, while its part dedicated to runtime verification of the speculative paralleliz-
ing and optimizing transformations is thoroughly detailed in Section 4. Related work
addressing runtime verification of speculations in TLS systems is summarized in Sec-
tion 5. Results of experiments showing the effectiveness of our approach are given in
Section 6. Finally, Section 7 presents conclusions and perspectives.

2 Motivating Example

This section underlines an example code exhibiting polyhedral behavior in some exe-
cution contexts, which cannot be detected statically, thus preventing automatic paral-
lelization at compilation time. Apollo is tailored to detect and dynamically optimize
such codes. The example is the kernel loop nest of the breadthFirstSearch (BFS) algo-
rithm from the Problem Based Benchmark Suite [6] shown in Listing 1.1.

The BFS method performs a breadth first search scan of a graph in the following
way. The vertices of the input graph GA are identified as integer values ranging from 0
to GA.n. Thus, array Visited is used to mark each vertex which has already been vis-
ited, by storing respectively 0 or 1 at the vertex index value. Array Frontier is used
to store the list of vertices whose neighbors have to be visited in some next iterations
of the outer while-loop. As long as top > bot, there are still remaining vertices that
have to be visited. Before entering the loop nest, the input starting vertex is identified by
the variable start: it is stored in array Frontier as the first and still unique vertex
whose neighbors must be visited, and the vertex itself is marked in array Visited as
having been already visited. When entering the while-loop, the current vertex whose

1 Stemming from online profiling, dynamic code transformations, support for a speculative ex-
ecution and recovery from invalid speculations.

Runtime Verification in the APOLLO Framework 127

Listing 1.1. Main loop nest of the breadthFirstSearch benchmark code

1 p a i r<i n t , i n t> BFS (i n t s t a r t , graph<i n t> GA) {
2 i n t numVer t i ces = GA. n ;
3 i n t numEdges = GA.m;
4 v e r t e x <i n t> ∗G = GA.V;
5 i n t ∗ F r o n t i e r = newA (in tT , numEdges) ;
6 i n t ∗ V i s i t e d = newA (in tT , numVer t i ces) ;
7 f o r (i n t T i = 0 ; i < numVer t i ces ; i ++) V i s i t e d [i] = 0 ;
8 i n t b o t = 0 ;
9 i n t t o p = 1 ;

10 F r o n t i e r [0] = s t a r t ;
11 V i s i t e d [s t a r t] = 1 ;
12 #pragma a p o l l o d c o p { /∗ Dynamic C o n t r o l O P t i m i z a t i o n ∗ /
13 whi l e (t o p > b o t) {
14 i n t v = F r o n t i e r [b o t + +] ;
15 i n t k = 0 ;
16 f o r (i n t j =0 ; j < G[v] . d e g r e e ; j ++) {
17 i n t ngh = G[v] . Ne ighbor s [j] ;
18 i f (V i s i t e d [ngh] == 0) {
19 F r o n t i e r [t o p ++] = G[v] . Ne ighbor s [k ++] = ngh ;
20 V i s i t e d [ngh] = 1 ; }
21 }
22 G[v] . d e g r e e = k ;
23 } / / end w h i l e
24 } / / end pragma
25 f r e e (F r o n t i e r) ; f r e e (V i s i t e d) ;
26 re tu rn p a i r<i n t , i n t > (0 ,0) ;
27 }

neighbors are going to be visited is Frontier[bot], assigned to variable v. The in-
ner for-loop is used to scan all the neighbors of this current vertex v, their count being
given by G[v].degree. For each neighbor, it is determined if it has already been
visited by testing its corresponding element of array Visited. Otherwise, i.e. when
Visited[ngh]==0, it is stored in array Frontier as a vertex whose neighbors
have to be visited in the next iterations of the while-loop. The order in which vertices
are stored and processed in array Frontier ensures the breadth first search order of
the algorithm.

Compile-time automatic parallelization, as well as manual OpenMP parallelization,
are prohibited by the presence of the while-loop. Additionally, the upper bound of the
inner for-loop is sensitive to the input data. Dependences cannot be analyzed stati-
cally since some elements of array Visited may be updated several times depend-
ing on the value of ngh = G[v].Neighbors[j], itself depending on the value of
v = Frontier[bot++]. Even if experts in parallel programming would be able
to handle its parallelization with considerable efforts, this loop nest is amenable to
automatic parallelization only speculatively, at runtime. Some TLS systems would
attempt to parallelize the outermost while-loop by slicing it into several speculative
threads, with the assumption that values of top and bot can be predicted by the

128 A. Sukumaran-Rajam et al.

speculative system. Nevertheless, this would fail since reads of uninitialized array el-
ements Frontier[bot++] at line 14 would be detected as faulty and not in com-
pliance with the original serial order. In contrast, for particular input graphs, Apollo
detects a Read-After-Write dependence between the update of Frontier[top++]
in the inner loop and the read of Frontier[bot++] in the outer loop, from the
initial run of a small instrumented slice of the outermost loop. Thus, Apollo would
not attempt parallelization of the outer loop.

The unique possible loop parallelization is on the inner for-loop (for TLS systems
also handling inner loops). Special care must be taken regarding accesses to array
G[v].Neighbors which are carrying Write-After-Read dependences, as well as re-
garding read-write accesses to the variables top and k which are carrying Read-After-
Write dependences. Without embedding a mechanism for privatizing in each parallel
thread both latter variables and predict their values, a TLS system would fail. In con-
trast, thanks to instrumentation by sampling and linear interpolation, Apollo embeds
their thread-privatization and the prediction of their values in the resulting parallel code.
In consequence, their associated Read-After-Write dependences are eliminated.

Apollo is successful in parallelizing the inner loop for certain classes of input graphs.
This example highlights a typical case where parallelization opportunities depend on
the input data: for instance, if the input graph defines a regular grid, or a complete N -
tree, then G[v].degree is constant, since by definition, each vertex has the same
fixed number of neighbors. Also in this case, the conditional Visited[ngh]==0 is
evaluated as true for a large number of successive vertices which do not share the same
neighbors. Thus, variable k is equal to variable j for large execution phases, which
enables an accurate prediction of the memory accesses and the parallelization of large
execution phases.

Let us consider a regular grid of n vertices and of degree d defined as follows: each
vertex i < n − d has d neighbors ranging from (i + 1) mod n to (i + d) mod n, and
each vertex i ≥ n − d has one neighbor which is vertex 1. Considering this grid as
input to the breadthFirstSearch algorithm (List. 1.1), Apollo was successful in automat-
ically parallelizing the inner loop on-the-fly. A first significant phase of n/d outer loop
iterations was detected as amenable for parallelization. This phase corresponds to the
continuous evaluation as true of the conditional Visited[ngh]==0. A rollback was
initiated at the end of this phase, followed by the run of a small slice of instrumented
iterations allowing Apollo to build a new prediction model and to parallelize a larger
phase of n−d−n/d outer loop iterations. This latter phase corresponds to the continu-
ous evaluation as false of the conditional Visited[ngh]==0. While this phase was
ended by rollbacking, a next instrumented slice of iterations was not able to build a lin-
ear prediction model. Thus, the execution was completed using the original serial code
for the remaining outer loop iterations. A 9× speed-up was obtained with n = 10, 000
and d = 1000 on two AMD Opteron 6172 processors, of 12 cores each, running 32
parallel threads. Details on how Apollo handled this code, and particularly on how it
ensured correctness of the speculative parallelization, are given in the next Section.

Runtime Verification in the APOLLO Framework 129

3 Dynamic and Speculative Polyhedral Parallelization with Apollo

The polytope model [7] has been proven to be a powerful mathematical and geometri-
cal framework for analyzing and optimizing for-loop nests. The requirements are that
(i) each loop iterates according to a unique index variable whose bounds are affine ex-
pressions of the enclosing loop indices, and (ii) the memory instructions are limited to
accesses to simple scalar variables or to multi-dimensional array elements using affine
expressions on the enclosing loop indices. Such loop nests are analyzed accurately with
respect to data dependences that occur among the statements and across iterations.
Thus, advanced optimizing transformations are proven to be semantically correct by
preserving the dependences of the original program. The loop nest optimizations (e.g.,
skewing, interchange) are linear transformations of the iteration domains that are rep-
resented geometrically as polyhedra. Each tuple of loop indices values is associated
with an integer point contained in the polyhedra. The order in which the iterations are
executed translates to the lexicographic order of the tuples. Thus, transformations rep-
resent a reordering of the execution of iterations and are defined as scheduling matrices,
which is equivalent to geometrically transforming a polyhedra into another equivalent
form [7]. Representing loops nests as polyhedra enables one to reason about the valid
transformations that can be performed.

Although very powerful, the polytope model is restrained to a small class of com-
pute-intensive codes that can be analyzed accurately and transformed at compile-time.
However, most legacy codes are not amenable to this model, due to dynamic data struc-
tures accessed through indirect references or pointers, which prevent a precise depen-
dence analysis to be performed statically. On the other hand, applied entirely dynami-
cally, the complex analyses and the polyhedral code transformations would entail signif-
icant overhead. As shown in Section 2, codes that do not exhibit characteristics suiting
the polytope model may still be in compliance with the model, although this compliance
can only be detected at runtime. Targeting such codes for automatic optimization and
parallelization imposes to immerse the polytope model in the context of speculative and
dynamic parallelization. In this context, runtime code analysis and transformation im-
pose strategies which induce very low time-overheads that must be largely compensated
by the gains provided by the polyhedral optimization and parallelization.

For loop nests that cannot be analyzed statically, our strategy for making the poly-
hedral model applicable at runtime relies on speculations, and thus, requires runtime
verification. It consists of observing initially the original code during a very short sam-
ple of the whole run. If a polyhedral behavior has been observed on this sample, we
speculate that the behavior will remain the same on the rest of the loop nest execu-
tion. Thus, we can abstract the loop to a polyhedral representation, reason about the
inter-iteration dependences, and validate and apply a polyhedral optimizing and paral-
lelizing transformation. As long as this prediction remains true, the generated parallel
code is semantically correct by definition of the polyhedral model. In order to verify
continuously the prediction, and thus verify the correctness of the parallel program, we
implemented a decentralized runtime verification system embedded in the parallel code,
as detailed in the next Section.

First, we recall the main steps of static polyhedral automatic parallelization and de-
scribe how these steps are handled in Apollo to turn this approach into its dynamic and

130 A. Sukumaran-Rajam et al.

speculative equivalent form. The framework description focuses on the two main goals:
building the polyhedral prediction model and applying speculative parallelization in-
cluding runtime verification of the prediction. Further details regarding dynamic code
generation and other important parts of Apollo can be found in [8], where a former pro-
totype version called VMAD is presented. Apollo consists of two main parts: a static
part implemented as passes of the LLVM compiler [9], and a dynamic part implemented
as a runtime system written in C++.

At compile-time, Apollo’s static phase: (1) analyzes precisely memory instructions
that can be disambiguated at compile-time; (2) generates an instrumented version to
track memory accesses that cannot be disambiguated at compile-time. The instrumented
version will run on a sample of the outermost loop iterations and the information ac-
quired dynamically is used to build a prediction model of these statically non-analyzable
memory accesses; (3) generates parallel code skeletons [8]. They are incomplete ver-
sions of the original loop nest and require runtime instantiation to generate the final
code. Each instantiation represents a new optimization, therefore the code skeletons
can be seen as highly generic templates that support a large set of optimizing and par-
allelizing transformations. Additionally, the skeletons embed support for speculations
(e.g. verification and recovery code).

At runtime, Apollo’s dynamic phase: (1) runs the instrumented version on a sample
of consecutive outermost loop iterations; (2) builds a linear prediction model for the
loop bounds and memory accesses; (3) computes dependences between the memory
accesses; (4) instantiates a code skeleton and generates an optimized, parallel version of
the original sequential code, semantically correct with respect to the prediction model;
(5) during the execution of the multi-threaded code, each thread verifies independently
if the prediction still holds. If not, a rollback is initiated and the system attempts to
build a new prediction model. An optimization has been designed to limit the number
of iterations required to rollback upon a misspeculation (see subsection 3.2).

3.1 Compliance with the Polyhedral Model

The programmer inserts a dedicated pragma defining regions of code in which all
loop nests will be considered for a speculative execution by Apollo. At compile-time,
the target loop nests are analyzed and first the instrumented versions are generated.
Additional counters named virtual loop iterators are systematically inserted to enable
the framework in handling uniformly any kind of loops, e.g. for-loops or while-loops.
They are also important in the speculative parallelization phase as it will be explained
later. The static analysis consists in the following steps.

Every memory instructions is classified as static or dynamic2. For static memory
accesses, the LLVM scalar evolution pass3 is successful in expressing the sequence
of accessed locations as an affine function of the enclosing loop iterators. This
approach fails on dynamic memory accesses. For each couple of static memory in-
structions where at least one is a store, alias analysis is performed using a dedicated
LLVM pass. The collected aliasing information will be used at runtime to save some

2 i.e. which can be analyzed statically or requires dynamic instrumentation.
3 http://llvm.org/devmtg/2009-10/ScalarEvolutionAndLoopOptimization.pdf

http://llvm.org/devmtg/2009-10/ScalarEvolutionAndLoopOptimization.pdf

Runtime Verification in the APOLLO Framework 131

Table 1. Prediction model characteristics for the breadthFirstSearch code

#handled scalars predicting affine functions
4 0i + 100; 100i + 1

0i + 1j + 0; 100i + 1j + 1

#memory instructions predicting affine functions
16i + 19282504; 16i + 19282496

400i + 4j + 19442512
400i + 4j + 27363348

9 400i + 4j + 19442512
400i + 4j + 23402932
400i + 4j + 27363348

16i + 0j + 19282504; 16i + 19282504

#inner loop bounds predicting affine functions
1 0i + 100

dependence types dependence equations
∀ (i, j) � (i′ , j′)

Write-After-Read
{
i − i′ = 0

Write-After-Read

⎧
⎨

⎩

i − i′ = 0

j − j′ = 0

−j + j′ ≥ 0

Write-After-Read

{
i − i′ = 0

i − j′ = 0

Write-After-Write
{
i − i + 1′ = 0

Read-After-Write

{
i − i + 1′ = 0

j − j′ = 0

dependence analysis time-overhead. Instrumentation instructions are inserted to collect
the memory addresses touched by each dynamic memory instruction. Similarly, relying
on the LLVM scalar evolution pass, Apollo attempts to build affine functions describ-
ing the loop bounds. If this attempt fails, instrumentation code is inserted to monitor the
value of the loops bounds. Scalar variables required to maintain the control flow or to
compute the memory addresses are also analyzed by scalar evolution or instrumented if
the analysis fails. These scalar variables are detected at compile-time as being defined
by phi-nodes in the LLVM Intermediate Representation (IR) which is in Static Single
Assignment (SSA) form. Linearly dependent scalars are grouped to reduce instrumen-
tation to one unique representative of the group to lower the instrumentation runtime
cost. The linear functions computed by the scalar evolution pass are stored and will be
transmitted to Apollo’s runtime system to complete the information required for runtime
dependence analysis.

The dynamic analysis consists of the following operations. When running, every
instrumented instruction generates a stream of values (memory addresses or scalar val-
ues) that are interpolated as functions of the virtual loop iterators. If every stream of
values, obtained from an execution sample, can be modeled as an affine function of the
virtual loop iterators, then the target loop nest is speculatively predicted to be compli-
ant with the polytope model. The so-built affine functions are finally used to complete
the dynamic dependence analysis which is also performed using the streams of actual
addresses that are collected from instrumentation.

In summary, the prediction model of each target loop nest is made of: (1) the de-
pendence information which is used to select and validate a parallelizing code transfor-
mation; (2) the affine functions associated with the memory instructions and the scalar
variables: these functions are essential for the runtime verification of the speculation
and to predict the starting context of the parallel threads regarding the scalars. This part
is fully detailed in the next Section. As an example, the prediction model computed by
Apollo at runtime for the first phase of the breadthFirstSearch code (see Section 2) is
detailed in Table 1, where � denotes the lexicographical order. Notice that even if some
scalars and memory instructions can be intuitively related to the source code, it is gener-
ally difficult, since they are identified at compile-time on the LLVM-IR representation
of the program, after some LLVM optimizations have been applied.

132 A. Sukumaran-Rajam et al.

3.2 Speculative Parallelization and Runtime Verification

Speculative parallelization and runtime verification are performed using the prediction
model as sketched in what follows. Runtime verification is specifically highlighted in
the next Section.

Code skeletons: At compile-time, several variants of codes are generated from each
loop nest that was marked in the source code by the user using the dedicated pragma:
an instrumented version, as described in the previous subsection, but also a number of
code skeletons, presented in detail in our previous work [8]. Skeletons can be seen as
parametrized codes where the instantiation of their parameters results in the generation
of a transformed optimized version of the target loop nest merging original computa-
tions and speculative parallelization management. They consist of three parts: the first
part applies the transformation, which is populated at runtime; the second performs the
original computation on the transformed iteration domain; and the third does the ver-
ification. Skeletons support classes of loop transformations as skewing, interchange,
tiling, etc [10]. In the current implementation, Apollo’s skeletons support skewing and
interchange.

Parallelizing code transformation: As soon as the prediction model has been built,
Apollo’s runtime system performs a dependence analysis which determines if the target
loop nest can be parallelized and optimized and what transformation has to be applied
for this purpose. A polyhedral transformation merely refers to changing the order in
which iterations are executed and is controlled by applying affine functions on the loop
iterators. The transformation is encoded as a matrix, storing the coefficients of the affine
functions which define the new schedule. Given a loop nest of depth two with iterators(
i
j

)
and a transformation matrix T , polyhedral loop transformations such as skewing,

interchange or any affine transformation of the iteration domains [7] are obtained as:
T × (

i
j

)
=
(
i′
j′
)
. This is achieved by invoking the polyhedral parallelizer Pluto [7] at

runtime. More precisely, only the scheduler kernel of Pluto is used. It has been slightly
customized to consume our dependence analysis output and to suggest a polyhedral
transformation in return. Since Pluto aims simultaneously data locality optimization
and parallelization, the generated schedule is expected to lead to a well-performing
parallel code. Notice also that Pluto is initially a source-to-source code transformer
used at compile-time, and that Apollo is the first known dynamic framework which is
using it at runtime, with very low time-overhead.

Speculative code orchestration: The different code versions (instrumented, serial orig-
inal, or instantiated skeleton) are launched in chunks of fixed sizes. These chunks are
running a slice of successive iterations of the outermost original loop nest. Thus, op-
timizing parallelizing transformations are applied on such slices. At startup, Apollo
launches a small chunk running the instrumented version in order to build the pre-
diction model and perform the dependence analysis. The transformation suggested by
Pluto from the dependence information is then used to instantiate the code skeleton de-
voted to the corresponding class of transformations. The resulting parallel code is then
launched inside a larger chunk, after having previously backed-up the memory locations
that are predicted to be updated. If the verification of the speculation detects a unpre-
dicted behavior, memory is restored to cancel the execution of the current chunk. The

Runtime Verification in the APOLLO Framework 133

execution of the chunk is re-initiated using the original serial version, in order to over-
come the faulty execution point. Finally, an instrumented chunk is launched again to
capture the changing behavior and build a new prediction model. If no miss-prediction
was detected during the run of the parallel code, a next chunk using the same parallel
code and running a next slice of the loop nest is launched.

4 Runtime Verification of Speculative Polyhedral Parallelization

The model handled currently by Apollo is the polyhedral model. Thus, the speculative
prediction model claims (i) that every memory instruction targets a sequence of ad-
dresses represented by an affine function of the loop iterators, (ii) that every scalar vari-
able, that is modified across iterations, either stores values also represented by such an
affine function, or carries a dependence, and finally (iii) that every loop upper bound is
also such an affine function (while the lower bound is 0)4. Each of these three character-
istics must be verified while running the speculative parallel code which is semantically
correct only if the prediction model holds. This is achieved thanks to dedicated code
inserted at compile-time in the parallel code skeletons, and instantiated at runtime. This
code triggers a rollback as soon as the verification fails.

The skeletons are generated automatically in the LLVM IR using our dedicated com-
pilation pass. As depicted in the previous section, they are made of three types of in-
structions: (1) instructions dedicated to apply the optimizing transformation, including
parallelization: these are the for-loops iterating over the introduced virtual iterators,
which are transformed into new iterators through the linear transformation suggested
by Pluto; and instructions in the header of each loop of the nest which are devoted to
the initialization of the predicted scalar variables; (2) instructions of the original code:
the original loop exit conditions serve as guards of the original loop bodies which are
copied in the generated skeletons at compile-time; (3) instructions devoted to the veri-
fication: these instructions are inserted at several relevant points of the skeleton code to
verify the adherence of each linear function constituting the prediction model with the
original code behavior. They are related to memory accesses, scalar initializations and
loop bounds verifications, and are detailed in the following subsections.

4.1 Target Memory Address Verification

Memory instructions executed speculatively are guarded by verification instructions,
ensuring that no unsafe write operations are performed. Recall that the prediction model
is based on representing the sequence of the addresses accessed by an instruction as
affine functions of the (virtual) loop iterators. Based on this linearity of the memory
accesses, a tightly coupled dependence analysis allows to apply an optimizing trans-
formation of the target code which is semantically correct as long as the predicited
dependences are still entirely characterizing the code. Thus, verifying completeness of
the predicted dependences translates to verifying that all memory accesses follow their
associated affine functions. This is ensured by comparing, for each memory instruction,

4 These represent the bounds of the virtual loop iterators.

134 A. Sukumaran-Rajam et al.

the actual target address against the value resulting from the evaluation of the predicting
affine function. Notice that Apollo must verify the linear functions in the transformed
space, not the linear functions which were obtained during instrumentation of the orig-
inal, untransformed, sequential code. An example of the code verifying the update of
array G[v].Neighbors in the breadthFirstSearch code of Figure 1.1 is shown in the
below pseudo source code (instead of original LLVM-IR form). Variables vi and vj
denote the virtual iterators of the two nested loops.

i f (&G[v] . Ne ighbor s [k] != l i n e a r e q (mem ins t r ID , vi , v j))
r o l l b a c k () ;

G[v] . Ne ighbor s [k ++] = ngh ;

4.2 Scalars Initialization and Verification

As depicted in previous Sections, scalar variables defined as phi-nodes in the LLVM
intermediate representation are taking part of the prediction model. These scalars are
also carrying dependences by being used and updated among loop iterations. As it is
usually done manually when parallelizing serial codes, a common approach to remove
such dependences is to privatize such scalars when possible. Privatization consists of
replacing their incremental updates by the direct computation of their successive values
using the current values of the loop iterators. For some scalars, the scalar evolution pass
of the LLVM compiler may be successful in determining statically an affine expression
to compute their values. Otherwise, Apollo’s instrumentation by sampling provides to
compute this affine function at runtime, as soon as it can be represented in this way.
However, notice that privatization of such latter scalars is therefore speculative.

Since Apollo’s code transformations may not follow the original iteration order,
scalar variables must be initialized at their correct starting values in the header of each
iteration. This is performed in the header of each loop of the target nest, as it is shown
below in pseudo source code for the breadthFirstSearch code example and its top and
bot scalar variables.

t o p = l i n e a r e q (& top , v i) ;
b o t = l i n e a r e q (& bot , v i) ;

However, since these scalar initializations are speculative, they must verified. Gen-
erally, scalars used in loops are initiating an iteration while being assigned the very last
value that has been assigned to them among the previous iterations. The same scheme
is followed by Apollo’s verification strategy: at the very end of each iteration, the pre-
diction for the next iteration initial value is compared to the actual value of the scalar,
i.e., its very last value before the initiation of the next iteration. If the verification fails,
a rollback is triggered, as it is shown below in pseudo source code form for the breadth-
FirstSearch code example and its top and bot scalar variables.

i f (t o p != l i n e a r e q (& top , v i +1) r o l l b a c k () ;
i f (b o t != l i n e a r e q (& bot , v i +1) r o l l b a c k () ;

Notice that this verification strategy is verifying initial values for the next iteration
according to the original sequential order. Since the current schedule may follow an

Runtime Verification in the APOLLO Framework 135

entirely different order resulting from a parallelizing and optimizing transformation of
the original code, some iterations may be run with scalar values that have not yet been
verified. But since all iterations are run inside the same chunk (slice of the outermost
loop), they have all been verified regarding their scalars as soon as their preceding
iteration according to the serial order has been run. Globally, all iterations inside a chunk
have been inevitably verified at the chunk completion. If any of these verifications fails
during the execution of the chunk, rollback for the whole chunk is initiated and memory
is restored.

4.3 Loop Bounds Verification

The polyhedral model imposes loop bounds to be affine functions of the enclosing loop
iterators. These bounds can be either extracted at compile-time thanks to the scalar evo-
lution pass, or must be built at runtime through interpolation and handled speculatively.
For any target loop nest, bounds of the outermost loop and of the inner loops are handled
in different ways.

When undefined at compile-time, the outermost loop bound can only be known after
completion of the loop nest execution. Thus it cannot be used by Apollo when analyzing
and transforming speculatively the target code. However, as it is addressed in subsection
3.2, the target loop nest is launched by chunks consisting of slices of the outermost loop.
Therefore, outermost loop bounds are defined by the starting and finishing borders of
the current chunk. When the original loop exit condition is met during the run of a
chunk and before its completion, a rollback is initiated and the last chunk is run again
in the serial original order. When the outermost loop bound is discovered statically,
Apollo’s runtime system is able to anticipate the final loop exit by launching the very
last chunk of parallel code with the exact convenient size in order to avoid any final
rollback. Once they cannot be obtained at compile-time, inner loop iteration counts
are being interpolated by Apollo during instrumentation. This is mostly the case with
while-loops whose exit conditions are made of values that are unknown at compile-time.
For this kind of bounds, predicted values are verified by comparison with the current
virtual iterators values. Moreover, the original exit condition must yield the same result.
Otherwise, a rollback is initiated.

5 Related Work

TLS systems are a promising solution to automatic parallelization, but suffer from a
high overhead, inherent to maintaining speculative states and version management. At-
tempts to alleviate synchronization in verifying dependences and speculations [11] lead
to increased memory management data structures and rely on hardware support.

MiniTLS [12] makes use of a compact version management structure, which
however, being centralized, requires thread synchronization. Lector [12], employs the
inspector-executor technique, where a lightweight inspector runs ahead and verifies if
dependence violations occur. Softspec [13] is a technique whose concepts represent pre-
liminary ideas of our approach, as it is based on a profiling step and a prediction model.
However, no code transformations are performed, except slicing. The runtime verifi-
cation mechanism is similar to the one presented in this paper, as it does not require

136 A. Sukumaran-Rajam et al.

inter-core communication. However, since Apollo performs advanced code transforma-
tions, it must ensure that the last iteration of the original loop may execute before other
iterations are executed within the same thread, which yields a more complex verification
system. ParExC [14] targets automatic speculative parallelization of code that has been
optimized at compile time, but it abounds in runtime checks designed to run in parallel.
ParExC speculates on a failure free execution and aborts as soon as a misspeculation is
encountered, relying on a transactional memory-based solution. Steffan et al. [15] pro-
pose a hardware-software co-design of a runtime verification based on the coherence
protocol. Recent works of Kim et al. [16] describe automatic parallelization on clus-
ters, by speculating on some memory or control dependences. The system executes a
master process, non-speculative, and several speculative worker processes. Verification
relies on transactional logs and is supported by rollback and recovery mechanisms.

Software transactional memory (STM) [17–19] was proposed to ensure the correct-
ness of speculative code. STM enables a group of read and write operations to execute
atomically, embedded in transactions. The reader is responsible for checking the cor-
rectness of execution and must ensure that no other thread has speculatively modified
the reader’s target location. If validation is successful, the transaction is committed,
otherwise aborted, causing all of its prior changes to rollback. Despite increasing paral-
lelism (speculatively), STM systems are notorious for the high overhead they introduce.
The work of Adl-Tabatabai et al. [17] develops compiler and runtime optimizations for
transactional memory constructs, using JIT. Static optimizations are employed to ex-
pose safe operations, such that redundant STM operations can be removed, while the
STM library interface is tailored to handle JIT-compiled and optimized code. STM-
lite [18] is a tool for light-weight software transactional memory, dedicated to automatic
parallelization of loops, guided by a profiling step. Raman et al. [19] propose software
multi-threaded transactions (SMTXs), which enable combining speculative work and
pipeline transformations. SMTXs use memory versioning and separate the speculative
and non-speculative states in different processes. While STMX has a centralized trans-
action commit manager, conflict detection is decoupled from the main execution.

6 Experiments

Our benchmarks were run on a platform embedding two AMD Opteron 6172 proces-
sors, of 12 cores each, at 2.1 Ghz, running Linux 3.11.0-17-generic x86 64. The set of
benchmarks has been built from a collection of benchmark suites, such that the selected
codes includes a main loop nest and highlights Apollo’s capabilities: backprop and
needle from the Rodinia benchmark suite [20], mri-q, sgemm and stencil from
the Parboil benchmark suite [21], maximalMatching andbreadthFirstSearch
from the Problem Based benchmark suite [6], and finally 2mm from the Polyhedral
benchmark suite [22]. These codes cannot be statically analyzed and transformed for
the following reasons: arrays are passed to functions using pointers, thus yielding alias-
ing issues, dynamic data structures, non-linear array references, conditionals inside loop
bodies, while loops, and references to data structures through pointers. We compiled the
original codes either using the gcc or clang compilers, with optimization flag -O3,
and considered the shortest computation time among both executables, as the baseline

Runtime Verification in the APOLLO Framework 137

Fig. 1. Speed-ups obtained from codes speculatively parallelized with Apollo

for Apollo’s speed-up (Figure 1). Apollo handled each code automatically and trans-
parently. We measured the global resulting execution times of the target loop nests for
1, 2, 12, 24 and 32 threads and computed the resulting speed-up (Original computa-
tion time / Apollo’s computation time). The execution times with Apollo from one run
to another and with the same input were as stable as when running the original codes
solely, since Apollo always selects the same transformation. Significant speed-ups were
obtained for most of the codes, of up to 16.2×. Note that although some of the appli-
cations cannot be statically analyzed, they can be parallelized manually by an expert,
as it is the case of the benchmarks extracted from Rodinia benchmark suite [20]. As
expected, straightforward manual parallelization yields higher speed-ups, since there is
no overhead incurred by instrumenting the application, generating code on-the-fly or
providing support for a speculative execution. Nevertheless, the advantages of Apollo
are emphasized by loops which only exhibit parallel phases (in contrast to OpenMP
loops which are parallel for the entire execution), or codes which have a linear behavior
and benefit from polyhedral transformations to enhance data locality or exhibit paral-
lelism. Finally, as an automatic system, Apollo is entirely transparent and relieves the
user from the parallelization effort, which is known to be an error-prone process.

An analysis of the time-overhead induced by the main processing steps of the run-
time system of Apollo shows that the significant amounts of time are spent either in
the memory backup (from 0.01% up to 24% of the whole execution time) or in the
invocation of Pluto (up to 2%). Memory backup is costly, since it obviously involves
many memory accesses. However, it has been optimized and parallelized with Apollo
since each thread takes in charge the memory locations that it is supposed to touch in
the next execution chunk. This approach also promotes a good data locality. Pluto is an
external tool that may spend considerable times in handling some codes. Apollo could
use another scheduler or define a time-out to avoid any excessive time spent by Pluto.

To exhibit the gain provided by the decentralized verification system of Apollo,
we simulated the behavior of a centralized verification system regarding its additional
required memory accesses. For this purpose, we annihilated our verification instruc-
tions that are associated to each memory instruction that is speculatively handled, and

138 A. Sukumaran-Rajam et al.

replaced them by memory writes to random addresses of a buffer which is common to
all the parallel threads. Notice that this minimal simulation is still in favor of a central-
ized system, which would also require some additional processing. The execution time
improvements provided by decentralized verification is shown in Figure 2. It shows the
significant gain that is particularly obtained when the speed-up potential is high. For ex-
ample sgemm, which is running with Apollo using 24 threads at a speed-up higher than
16×, is highly handicapped by a centralized verification system: in the Apollo parallel
execution, data locality is promoted thanks to memory accesses occurring exclusively
in separate memory areas, while a centralized system yields an important traffic in the
memory hierarchy to ensure cache coherency, thus imposing much memory latency to
the threads. Moreover, the gain improvement that can be observed for high speed-up
potential codes when increasing the number of threads shows clearly that a centralized
verification system does not scale.

Fig. 2. Percentage of speedup attributable to decentralized verification

7 Conclusion

The software architecture of the Apollo framework is typical of TLS systems which do
not require a centralized verification system and are able to apply advanced dynamic
code optimizations. It encompasses two main collaborative phases combining static
and dynamic analysis and transformation of the target loop nests, and is based on the
lightweight construction of a prediction model at runtime. Although Apollo implements
a speculative and dynamic adaptation of the polyhedral model, any model providing a
sufficiently accurate characterization of the target program semantics could be used as
soon as it allows to manage speculative and efficient parallel code. We currently inves-
tigate new models for handling codes that are not exhibiting a linear behavior. Alter-
natively, Apollo also highlights the fact that codes may exhibit interesting optimization
opportunities depending on the processed input. This phenomenon opens to investiga-
tions related to new memory allocation and access strategies that may be better handled
for code parallelization and optimization, either in software or hardware.

Runtime Verification in the APOLLO Framework 139

References

1. Rauchwerger, L., Padua, D.: The LRPD test: speculative run-time parallelization of loops
with privatization and reduction parallelization. In: PLDI 1995. ACM (1995)

2. Liu, W., Tuck, J., Ceze, L., Ahn, W., Strauss, K., Renau, J., Torrellas, J.: POSH: a TLS
compiler that exploits program structure. In: PPoPP 2006. ACM (2006)

3. Raman, E., Vachharajani, N., Rangan, R., August, D.I.: Spice: speculative parallel iteration
chunk execution. In: CGO 2008. ACM (2008)

4. Johnson, T.A., Eigenmann, R., Vijaykumar, T.N.: Speculative thread decomposition through
empirical optimization. In: PPoPP 2007. ACM (2007)

5. Feautrier, P., Lengauer, C.: Polyhedron model. In: Padua, D. (ed.) Encyclopedia of Parallel
Computing, pp. 1581–1592. Springer, US (2011)

6. Shun, J., Blelloch, G.E., Fineman, J.T., Gibbons, P.B., Kyrola, A., Simhadri, H.V., Tang-
wongsan, K.: Brief announcement: the problem based benchmark suite. In: SPAA 2012.
ACM (2012)

7. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical automatic poly-
hedral parallelizer and locality optimizer. In: PLDI 2008. ACM (2008)

8. Jimborean, A., Clauss, P., Dollinger, J.F., Loechner, V., Juan Manuel, M.: Dynamic and Spec-
ulative Polyhedral Parallelization Using Compiler-Generated Skeletons. International Jour-
nal of Parallel Programming 42(4), 529–545 (2014)

9. LLVM: LLVM compiler infrastructure, http://llvm.org
10. Banerjee, U.: Loop Transformations for Restructuring Compilers - The Foundations. Kluwer

Academic Publishers (1993)
11. Oancea, C.E., Mycroft, A., Harris, T.: A lightweight in-place implementation for software

thread-level speculation. In: SPAA 2009. ACM (2009)
12. Yiapanis, P., Rosas-Ham, D., Brown, G., Luján, M.: Optimizing software runtime systems

for speculative parallelization. ACM TACO 9(4), 39:1–39:27 (2013)
13. Bruening, D., Devabhaktuni, S., Amarasinghe, S.: Softspec: Software-based speculative par-

allelism. In: Workshop on Feedback-Directed and Dynamic Optimization 2000. ACM (2000)
14. Süßkraut, M., Weigert, S., Schiffel, U., Knauth, T., Nowack, M., de Brum, D.B., Fetzer, C.:

Speculation for parallelizing runtime checks. In: Guerraoui, R., Petit, F. (eds.) SSS 2009.
LNCS, vol. 5873, pp. 698–710. Springer, Heidelberg (2009)

15. Steffan, J.G., Colohan, C.B., Zhai, A., Mowry, T.C.: A scalable approach to thread-level
speculation. In: ISCA 2000. ACM (2000)

16. Kim, H., Johnson, N.P., Lee, J.W., Mahlke, S.A., August, D.I.: Automatic speculative doall
for clusters. In: CGO 2012. ACM (2012)

17. Adl-Tabatabai, A.R., Lewis, B.T., Menon, V., Murphy, B.R., Saha, B., Shpeisman, T.: Com-
piler and runtime support for efficient software transactional memory. In: PLDI 2006 (2006)

18. Mehrara, M., Hao, J., Hsu, P.C., Mahlke, S.: Parallelizing sequential applications on com-
modity hardware using a low-cost software transactional memory. SIGPLAN Not. 44(6),
166–176 (2009)

19. Raman, A., Kim, H., Mason, T.R., Jablin, T.B., August, D.I.: Speculative parallelization
using software multi-threaded transactions. In: ASPLOS 2010. ACM (2010)

20. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H., Skadron, K.: Rodinia: A
benchmark suite for heterogeneous computing. In: IISWC 2009. IEEE (2009)

21. Stratton, J.A., Rodrigues, C., Sung, I.J., Obeid, N., Chang, L.W., Anssari, N., Liu, G.D.:
mei W. Hwu, W.: The Parboil technical report. Technical report, IMPACT Technical Report,
IMPACT-12-01, University of Illinois, at Urbana-Champaign (2012)

22. PolyBench, http://sourceforge.net/projects/polybench

http://llvm.org
http://sourceforge.net/projects/polybench

	Speculative Program Parallelization with Scalable and Decentralized Runtime Verification
	1 Introduction
	2 Motivating Example
	3 Dynamic and Speculative Polyhedral Parallelization with Apollo
	3.1 Compliance with the Polyhedral Model
	3.2 Speculative Parallelization and Runtime Verification

	4 Runtime Verification of Speculative Polyhedral Parallelization
	4.1 Target Memory Address Verification
	4.2 Scalars Initialization and Verification
	4.3 Loop Bounds Verification

	5 Related Work
	6 Experiments
	7 Conclusion
	References

