Phase Behavior in Serial and Parallel Applications

Andreas Sembrant, David Black-Schaffer and Erik Hagersten
Uppsala University, Department of Information Technology
P.O. Box 337, SE-751 05 Uppsala, Sweden
{andreas.sembrant, david.black-schaffer, eh} @it.uu.se

Abstract

It is well known that most serial programs exhibit time
varying behavior, for example, alternating between memory-
and compute-bound phases. However, most research into
program phase behavior has focused on the serial SPEC
benchmark suite, with little investigations into large scale
phase behavior in parallel applications.

In this study we compare and examine the time-varying
behavior of the SPEC2006 (serial) and the PARSEC 2.1 (par-
allel) benchmarks suites, and investigate the program phase
behavior found in parallel applications with different paral-
lelization models. To this end, we extend a general purpose
runtime phase desection library to handle parallel applica-
tions.

Our results reveal that serial applications have signifi-
cantly more program phases (2.4x) with larger variation
in CPI (1.5x) compared to parallel applications. While the
number of phases are fewer in parallel applications, there
still exists interesting phase behavior. In particular, we find
that data-parallel applications have shorter phases with
more threads. This makes phase-guided runtime optimiza-
tions (e.g., dynamic voltage frequency scaling) less attractive
as the number of threads grows. Meaning it is much more
difficult to exploit runtime optimizations in parallel applica-
tions.

1. Introduction

Most programs have time varying phase behavior [39, 40,
15, 13]. This insight has been exploited in various dynamic
runtime optimizations, e.g., cache resizing [12, 41, 38, 28],
dynamic voltage frequency scaling [21], scheduling [42]
and phase-guided profiling [31, 37]. However, most of this
research is based on the SPEC [18] benchmarks. In resent
years, the focus in computer research has shifted to also
include parallel applications. The motivation for this work is
that we have seen a lot of interesting runtime optimizations
for the SPEC benchmarks. We now want to see if those
results are also representative for parallel applications. To

978-1-4673-4532-3/12/$31.00 ©2012 IEEE

do so, we examine the time varying behavior of parallel
applications and compare it with that of traditional single-
threaded applications.

We use the PARSEC 2.1 [8] benchmark suite to investi-
gate phase behavior in parallel applications. PARSEC targets
chip multiprocessors with shared memory, includes appli-
cations from emerging workloads and diverse application
domains, and utilizes different parallelization models (e.g.,
data-parallel and pipeline-parallel) and implementations (i.e.,
pthreads and OpenMP). In contrast to SPEC [39, 40, 34, 2],
only aggregated metrics (e.g., average cache miss ratio) have
been used to characterize its behavior [8, 7, 5, 6], which can
be misleading and hide the effects of program variation over
time.

To compare and examine phase behavior in serial and
parallel applications, we use the ScarPhase (Sample-based
Classification and Analysis for Runtime Phases) library from
previous work [36] to detect and classify program phases.
It divides the execution into non-overlapping windows and
assign a phase id to each window. However, ScarPhase
only supports single-threaded applications. We therefore
extend the library to detect phases in parallel applications.
This provides us with low-overhead runtime desection of
general-purpose program phases [41, 32, 36]. We then com-
bine this phase information with runtime data (e.g., cycles
per instruction (CPI)) collected during each window using
hardware performance counters to characterize the program
phase behavior in SPEC and PARSEC.

The main contributions of this paper are:

e A comparison of time varying behavior between se-
rial (SPEC2006) and parallel (PARSEC 2.1) applica-
tions on real hardware. The results show that serial
applications exhibit significantly more phases (2.4x)
and more variation (1.5 %) over time. This means that
some earlier runtime-optimization proposals based on
SPEC numbers can not easily be extended to parallel
benchmarks.

e An extension of ScarPhase [36] to detect phases in
parallel applications.

< <

Cache Size
w
n
2 2
LU R R B B B B e P |
<
<l

I O Y T N

1K 1 1
> o s

&

Time in Billions of Instructions

Figure 1. Miss-ratio (intensity) [37] as a func-
tion of time (x-axis) and cache allocation
(y-axis) for gcc/166. The detected execu-
tion phases are shown above, with shorter
phases shown in white for clarity. The black
triangles shows when the phase detector no-
tices a new phase and the runtime system
applies the best optimization for the current
phase.

e A study of program phase behavior in parallel appli-
cations and the effects of parallelization model (e.g.,
data-parallel and pipeline-parallel) on the phase behav-
ior.

e A case study of how phase behavior changes when scal-
ing the number of threads into the many-core (>16)
region. The results show that the phases in data-parallel
applications shrink (i.e., less work per thread) with
an increase in number of threads. This makes phase-
guided runtime optimizations (e.g., DVFES) less attrac-
tive as the number of threads grows, since the CPU
frequency must be changed more frequently.

2. Phase-Guided Optimizations

Before characterizing the program behavior, we give a
short background on how we detect phases at runtime, and
an overview of how program phases has been used in the past
to implement different phase-guided runtime optimizations.

2.1. Detecting Program Phases

We use the ScarPhase [36] library to detect and classify
phases. ScarPhase is an execution history based, low over-
head (2%), online phase desection library. It is based on the
application’s execution path, and detects hardware indepen-
dent phases [40, 33]. Such phases can be readily missed by

performance counter based phase desection.

To detect phases, ScarPhase monitors executed code,
based on the observation that changes in executed code
reflect changes in many different metrics [39, 40, 13, 41,
23]. To accomplish this, execution is divided into non-
overlapping windows. During each window hardware per-
formance counters are used to sample conditional branches
using Intel Precise Event Based Sampling (PEBS) [29, 19].
The address of each branch is hashed into a vector of coun-
ters called a conditional branch vector (CBRV), similar to
a basic block vector (BBV) [39] but with only conditional
branches. Each entry in the vector shows how many times
its corresponding conditional branches were sampled during
the window. The vectors are then used to determine phases
by clustering them together using an online clustering algo-
rithm [14]. Windows with similar vectors are then grouped
into the same cluster and considered to belong to the same
phase.

2.2. Phase-Guided Runtime Optimizations

Phase-guided runtime optimizations exploit the hetero-
geneous nature of an application’s phase behavior. They
monitor executed phases and apply the best runtime opti-
mization for each phase. To illustrate how this works, we
have zoomed in on a short part of gcc/166’s execution in
Figure 1 [37]. The Figure shows the miss-ratio (intensity)
as a function of time (x-axis) and cache allocation (y-axis).
The detected execution phases are shown above, with shorter
phases shown in white for clarity. The black triangles in-
dicate when the phase detector notices a phase change and
when the runtime system can apply an optimization (e.g.,
DVES) for the new phase.

Phase-guided cache resizing/dynamic voltage fre-
quency scaling [12, 41, 38, 28, 21, 30] is used to reduce
the energy consumption without sacrificing performance.
The optimal settings (i.e., cache size, voltage and frequency)
is found for each phase. When the application changes phase,
the appropriate settings are applied. For example, when gcc
changes phase from A to B in Figure 1, the cache size should
be increased, or the frequency lowered, since gcc entered a
more memory bound phase with a larger working set. This
can be seen in the figure by the increase in cache miss-ratio.

Phase-guided scheduling [42] is used to exploit hetero-
geneous multi-processors to improve throughput. When the
application enters a memory bound phase, it is migrated to a
slower core/chip, and when it returns to a compute intensive
phase, it is migrated back to the faster core. For example,
when gcc changes phase from B to D, it becomes more
compute bound, and should therefore be migrated back to a
faster core.

Phase-guided profiling [31, 37] is a method to reduce
the overhead of profiling without sacrificing accuracy, by

Whole Program CoV ---3---

Serial: SPEC

Averagespec Averageparsec

Per-Phase CoV - -

oo

Parallel: PARSEC

Average

& 80 80 |
c 707 70 |:
] *
60 [% 60 [
o
S w0 i 50
5 40 O Hosis 40
3 30 2 s S, AR K 30
£ 20 & 2 o i S A HREHEI I 20
§ 10 i @ 6.6900.5.0.0, unu_ua»a ey 5@*33‘6 e sex 10 0***
o Wi s, 0t D01 97 |9 9g0000 0008 550005000000 092050009 5%%
Q. 4. 6.6, % +6 G 526/00. 559 %, 950329,805 2 S, /5'5 6*”/’+
ooc%ooo?“of"%?‘c»‘?of‘ygocf“cf*f%f*gocf“cygé‘%; I {s%@f/ 90.0//) CERAE o o %;’6‘% 006/%/?0 9%’%% 59 AALN "/}9%’@ by 55, o"gé’o 5’0’3’0
S 7S os, . RGN O S SR R, o AN o a0 e/;f s%
VSl KD, % SR, G R, A e o v, g
S $ %%, v 7y o2 %, C U el ©, é’/ /®/0 0/+ 6t
* & & k4 /7@0, 3 '0@;))7 ® K C‘og%'@ %R O’o 75

%,

Figure 2. The CPI CoV (standard deviation divided by the mean). The figure shows how the CPI
varies over the whole program execution (Whole Program CoV) and within a phase (Per-Phase CoV).
The higher the CoV, the higher variation in CPIl. The gray area highlights the difference between
the benchmarks suites. All SPEC programs in the gray region have a higher CoV than all PARSEC
programs except dedup. This shows that with the exception of dedup (discussed in Section 4.1),
the serial SPEC benchmarks shows significantly more program variation than the parallel PARSEC

benchmarks (1.5x on average).

taking advantage of the (nominally) uniform behavior of
each program phase. This method only profiles a small
part of each phase, and then use that profile for all other
windows belonging to the same phase. The white triangles
in Figure 1 shows where phase-guided profiling decides to
profile the applications. For example, the first time gcc
executes phase B, the profiler profiles one window from
phase B. The next time phase B is executed, after phase C,
the profiler already knows the behavior of phase B, and
reuses the previous profile of phase B.

2.3. Prediction

The phase of each window is only known after the win-
dow has been executed. But, a runtime decision is needed
before the window starts to execute. To circumvent this lim-
itation, the phase of the next window can be predicted to
make a runtime decision for the next window. Advanced his-
tory predictors have been proposed [15, 41, 27, 21], where
the prediction is based on previously seen behavior. If the
phase pattern has not been seen, it falls back on last value
prediction. In this work, we use the run length encoded
markov predictor described in [41, 27] with a 256 entries
lookup table, a run length encoding of 2 and a confidence
threshold of 1.

3. Methodology

We ran our analysis on all benchmarks in the
SPEC2006 [18] and PARSEC 2.1 [8] benchmark suites.
However, we also investigated other parallel benchmarks
suites. We found that the NAS [4] benchmarks exhibited
a very limited set of phases behaviors. Most of them had

execution behaviors very similar to facesim from PARSEC.
Due to space limitation we do not include those results in
this paper. The SPEC and PARSEC experiments were run
on an Intel Xeon E5620 (Nehalem), 4-core machine, with a
window size of 100 million' instructions. All benchmarks
were run from start to completion with reference and native
input for SPEC and PARSEC respectively. We used Linux
perf_events [1] to collect runtime data (e.g., CPI, L3 miss
ratio, etc.) during each window.

4. Serial Phase Behavior

In this section we compare the serial phase behavior be-
tween SPEC and PARSEC?. To limit the amount of data
we only examine the serial versions of PARSEC. Parallel
versions of PARSEC are examined in the next sections.

4.1. Time Varying Behavior

To characterize an application’s time varying behavior,
we use the Coefficient of Variation (CoV) [40, 41, 23], that
is the standard deviation divided by the mean, a common
metric for evaluating the accuracy of phase classification.
The higher the CoV, the more heterogeneous the behavior is.
In this section we are interested in the overall performance
behavior, and we therefore use the CPI CoV. We look at
both the behavior for the whole program (i.e., the CoV is

'We chose a window size of 100M instructions because it has been
used extensively in other works to evaluate phase behavior in the SPEC
benchmarks [39, 40, 11, 3, 16, 26, 35, 36, 37]. We did preliminary tests
with a widow size of 10M instructions but found similar results.

2The parallel versions of PARSEC benchmarks may create more threads
than specified in the input parameter. We therefore use the serial version of
the benchmarks.

Whole Program Error ---3---

Serial: SPEC
60 Averagespec

Per-Phase Error - -@- -

Parallel: PARSEC Average

Averagepapsec 60

50 |
40

50 20

30

20

Relative CPI Error (%)

SO

- 33K
V2% ‘?99'99 0888 Bl 8000000 000pe

Lo %% %'goo‘},é‘eof%%gq(?oo%@ 082 2,0,50.5.85%
g5 6‘07}6’6’ o‘ﬁ»‘bé ol (/“'j/’s_/: 0054, %0, * 68?0 2 RV as
% (NN
% o Sy, G s, O, e %
A

5 G300 <%, Qs GO0 O 5575 3505 D5 O SO0 558
R S R S S e e S S R LA A S
R R WS 0, RS 75 6 o 0l RS AN
> 20 /{9(?0 ,G}oomx'/&/f/, ey AT
% %8, 58, 750, <
D5 7 R
(/\3/00

2
A
ke

R AN
RS 3
S 06 7

Figure 3. The relative CPI error between the CPI in each window and the average CPI for the whole
program (Whole Program Error) and average CPI per phase (Per-Phase Error). All SPEC programs
in the gray region have higher CPI error than all the PARSEC programs. The figure shows the im-
portance of using phase-guided runtime optimizations. The larger the difference (\) between the
top line (Program) and the bottom line (Phase), the more important it is to use phase information for
runtime optimizations. This shows that tool developers will find phase-guided runtime optimizations
to be more effective for the serial SPEC benchmarks than the parallel PARSEC benchmarks, because

SPEC has more time varying behavior.

calculated using all windows thereby ignoring phases), and
within a phase (i.e., the CoV is calculated per phase, then
weighted with the size of the phase).

Figure 2 presents the CPI CoV for the benchmarks. The
benchmarks suites have been sorted in descending order
based on whole program CPI CoV. The gray area highlights
the difference between the benchmarks suites. All SPEC
benchmarks in the gray region (42% percent of SPEC) have
higher program CPI CoV than all the PARSEC benchmarks
except dedup. On average, the whole program CPI CoV is
22% and 15% for SPEC and PARSEC respectively. With the
exception of dedup (discussed later), the SPEC benchmarks
have significantly more time varying behavior than PARSEC.
As expected, the CPI variations within phases (7.9% SPEC
and 2.8% PARSEC) is much lower compared to the whole
program. This means that examining application behavior in
terms of phases is far more accurate than just looking at the
program average for both benchmark suites. However, the
results show that it is more important to examine phases in
SPEC than PARSEC since it has larger variation in CPL

The dedup benchmark has a set of phases in the beginning
and the end of its execution (see Figure 9) with a much higher
CPI than the rest of the execution. This results in a large stan-
dard deviation, and thus a high CPI CoV. However, while this
is important for understanding the program behavior (e.g.,
phase-guided profiling), in terms of other phase-guided run-
time optimizations (e.g., DVFS), the phases are short and
can sometimes be averaged out. To examine the effects of
phase-guided runtime optimizations on SPEC and PARSEC,
we consider a hypothetical runtime system. The runtime
system can make a decision at every window. It can either
base the decision on the average CPI for the whole program
execution (Program) (e.g., for DVFS, the frequency is set

once when the application starts) or the average CPI of the
phase the window belongs to (Phase) (e.g., the frequency is
changed when the application changes phase).

Figure 3 presents the relative CPI error for the bench-
marks, and it shows the importance of using phase-guided
runtime optimizations. The larger the difference (\) be-
tween the top lines (Whole Program Error) and the bot-
tom lines (Per-Phase Error), the more important it is to use
phase information for runtime optimizations. As expected,
the dedup benchmark has a relative low program CPI error
compared the CPI CoV. All SPEC benchmarks in the gray
region (52% percent of SPEC) have higher program CPI
error than all the PARSEC benchmarks. On average, the
program CPI error is 16% and 6% for SPEC and PARSEC
respectively, and 5.6% and 2.2% for phases. This means
that phase-guided runtime optimizations (e.g., DVFS) will
have a larger impact on SPEC than PARSEC compared to
static approaches where the optimization is done once per
application. For example, swaptions (PARSEC) has negli-
gible variations in CPI. Setting the optimal CPU frequency
once at the start of the execution will therefore provide simi-
lar results as setting it per phase, but astar/lakes (SPEC) on
the other hand has large variation in CPI so that setting the
optimal frequency per phase will provide much better results
than once at the start of the execution.

4.2. Phase Behavior

In the previous section we examined the CPI and how
performance varies over time. However, several phases can
have similar CPI but different behavior in other metrics. To
understand how the phases changes over time, and not just
CPI, we look at the number of detected phases, and the

Number of Phases

90% Phase Coverage ---%--- 80% Phase Coverage @~

Serial: SPEC Parallel: PARSEC Average
Averagespec Averageparsec
L T s s s e o T T e s s] B B T L A B e e 70
60 %, 60
50 by 50
40 |4 40
ol
30 [k 30
o b
20 [k 20
10 | 00.9e0o,o.o,@.g.is.g‘éé-a&&&* iy 10 F
“““““““““““ 0 OBEEEEVEEE65000500.0.0.00066000-800 o L eReoeenegse.
4 % % . S "
S O B o DO PRI IR LTS WISASAII
R N v R o O K i S el o I SR R O R B0 es R
% GRGISR% Gy, R eSS, WY RS R s, T A S R S AL %
% o %/,;b %oy B %%//'% % e % %%&f%f@%%%%*z b %%, o8
% AT y; 00\3 %& i % 7,070 .

Figure 4. The number of phases that are needed to cover 80% and 90% of the program execution.
The gray area highlights the difference between the benchmarks suites. All SPEC programs in the
gray region have more phases than all the PARSEC program except raytrace. This shows that SPEC
has more phases (2.4x on average). This is important for the overhead with phase-guided profiling
(i.e., profile each phase once), which is proportional to the number of phases. Profiling a SPEC

benchmark will therefore on average take 2.4x longer then a PARSEC benchmark.

History-Based ---3---

Serial: SPEC
Averagepansec Averagespec

Last Value - -@- -

Parallel: PARSEC Average

Accuracy (%)

Figure 5. The prediction accuracy of predicting the phase id of the next window, using last value
prediction (LV) and history based prediction with run length encoding (RLE). The two benchmarks
suites show similar accuracy, with a slight advantage (i.e., easier to predict) to PARSEC.

corresponding pattern the phases appear in.

Figure 4 presents the number of phases that are needed to
cover 80% and 90% of the program execution®. The figure
shows that SPEC has significantly more program phases than
PARSEC. All SPEC benchmarks in the gray region (59%
percent of SPEC) have more phases than all the PARSEC
benchmarks except raytrace. On average, the number of
detected phases for 90% of the execution is 8.5 and 3.5 for
SPEC and PARSEC respectively, and 5.9 and 2.9 for 80%
of the execution.

A consequence of this is for example the overhead of
phase-guided profiling which is proportional to the number
of detected phases (i.e., one window from each phase is pro-
filed). This means that it takes on average 2.4 x longer to
profile and understand the behavior of 90% of the program
execution for a SPEC benchmark than a PARSEC bench-

3We do not consider 100% because it will include more transition-
phases [27], that is phases with windows that may appear between phase
changes and contain code from two distinct phases. The transition phases,
are few however, and can be miss leading so we ignore them in this analysis.

mark, and 2x to understand 80% of the program execution.

Applying phase-guided runtime optimizations to an ap-
plication that frequently changes phase can be more difficult
than one with fewer phase changes but the same number of
phases (e.g., A, A, B, B vs. A, B, A, B). For example, the
phases must be long enough to change frequency (DVFS)
or cache size (dynamic cache resizing). Figure 5 presents
the prediction accuracy of predicting the phase of the next
window using last value prediction and history-based pre-
diction. In addition to simply comparing the accuracies, the
last value predictor also describes how often the application
changes phase (i.e., high prediction accuracy means few
phase changes), while the history-based prediction shows
how complex the behavior is (i.e., low prediction accuracy
means a more complex pattern). History based prediction
shows as expected a better accuracy compared to last value.
For leslie3d (SPEC), nearly every window is a phase change,
hence a very low accuracy for last value*. Overall, the two

4This can happen due to aliasing and when the window size does not

gz Program-1T mmm Program-2T 3 Program-4T

% O 9
PAPAY

mmw Phase-1T Phase-2T 1 Phase-4T

Program

Coefficient of Variation (%)

Phase

Figure 6. The CPI CoV (standard deviation divided be the mean) for 1, 2 and 4 threads. The figure
shows how the CPI varies over the whole execution (Whole Program CoV) and within a phase (Per-
Phase CoV). The CPI variations increases slightly with more threads for both the whole execution
and within phases due to competition of shared resources between threads.

benchmarks suites show similar accuracies, with a slight
advantage (easier to predict) to PARSEC. On average, the
prediction accuracy for last value prediction is 72% and 84%
for SPEC and PARSEC respectively, and 85% and 87% for
history-based prediction.

4.3. Summary

The serial phase behavior characterization of SPEC and
PARSEC shows that the SPEC benchmarks have both more
program phases and exhibit larger variation in CPIL. On aver-
age, SPEC has 2.4 x more phases than PARSEC for 90% of
the execution. Using only PARSEC for testing and evalua-
tion can therefore be dangerous since all the effects of phase
variations might not be noticed to the same extent.

5. Parallel Phase Behavior

In this section we characterize the parallel phase behavior
in PARSEC when running 1 (serial), 2 and 4 threads. To de-
tect phases in parallel applications, we extend the ScarPhase
library to monitor and detect phases at runtime in multiple
threads. To do so, ScarPhase asynchronously detect phases
in the application. Whenever a thread finishes executing a
window, ScarPhase classifies what phase the window belongs
to using the same method as in the serial version, then waits
for the next window to be finished, and so on. ScarPhase
will thus alternate between threads when detecting phases.
For example, if thread 1 executes windows A, A5, A3 and
thread 2 executes B, Be, B3, ScarPhase may classify the
windows in the following order, Ay, By, A, Bo, Az, Bs. Im-
portant to remember is that the execution is divided into
executed instructions. This means that two windows can

match the underlying phase bahavior [25].

take different amount of time to complete. ScarPhase may
therefore instead classify the windows in the following or-
der, Ay, As, By, A3, Bo, Bs, if phase A executes faster than
phase B.

In addition to using shared data structures for phase clas-
sification, the prediction lookup tables for history based
prediction can also be shared between threads. For example,
if thread 1 executes phases A, A, A, B and thread 2 exe-
cutes A, A, A then we can predict that thread 2 will execute
phase B. We found however no advantage of using shared
lockup tables, the two methods produced similar results with
an average accuracy of ~ 90%.

Figure 6 shows how the CPI varies (CPI CoV) over the
whole execution (Program) and within a phase (Phase) for
different number of threads. The serial versions of blacksc-
holes and dedup have more program variations than their
parallel versions. However, because of more interference
between threads for shared resources, the overall CPI varia-
tions for all benchmarks increases slightly with more threads
for both the whole program execution and within phases. On
average, the whole program CPI CoV is 15%, 17% and 19%
for 1, 2 and 4 threads respectively. As expected, the CPI
variations within phases (2.8%, 5.1% and 8.9%) are lower
compared to the whole program.

5.1. Parallelization Models

The PARSEC benchmarks utilizes two different paral-
lelization models. The benchmarks dedup and ferret are
pipeline-parallel while the rest are data-parallel. To high-
light the difference between the two models we plotted the
phase behavior over time for facesim in Figure 7, stream-
cluster in Figure 8 and dedup in Figure 9. The figures show
the detected program phases (color) as a function of time (x-
axis) for the different threads (y-axis). The largest phases

3

© [[

e 0 o o

< < < 1

= F oo =

H 0 V
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Time in Seconds Time in Seconds Time in Seconds
(a) 1 threads (b) 2 threads (c) 4 threads

Figure 7. The detected program phases (color) using ScarPhase as a function of time (x-axis) for the
beginning of facesim’s execution. The largest detected phases are colored and named above, with
shorter (fewer executed instructions) phases shown in white for clarity. The facesim benchmark is
data-parallel and has two primary phases, A and B, executed in an alternating pattern. Data-parallel
application divide the work between threads. The length of the phase will therefore shrink with more
threads. For example, the first instance of phase A executes for 2.2 seconds with one thread, but
only for 1.1 seconds with two threads (i.e., linear speedup).

mm A zzm B ez C

;]
kel o 3 °
© [©
o 0 o 2 o
= = =
= = 1 =
0
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Time in Seconds Time in Seconds Time in Seconds
(a) 1 threads (b) 2 threads (c) 4 threads

Figure 8. The detected program phases (color) using ScarPhase as a function of time (x-axis) for
the beginning of streamcluster’s execution. The largest detected phases are colored and named
above, with shorter (fewer executed instructions) phases shown in white for clarity. The streamcius-
ter benchmark creates new threads in each iteration (i.e., thread 1 and 2 starts at to in Figure 8b
and stops at t1). Using thread private clusters for phase classification would therefore create a
significant amount of duplicated phase ids.

are colored and named above, with shorter (fewer executed all threads usually execute the same phases. However, the
instructions) phases shown in white for clarity. We record phases are not necessary aligned in time. Meaning, thread 1
when windows start and stop executing, and plot the phase could execute phase A at the same time as thread 2 execute
for each window. However, since the windows are measured phase B.
uniformly in executed instructions, they can take different The benchmark streamcluster is also data-parallel, but
amounts of time to complete. For example, windows can it has noticeably different behavior. Figure 8 shows how
be executed with different speeds depending on phase, or streamcluster creates new work-threads in each iteration.
the kernel can put the thread to sleep. A control thread (e.g., For example in Figure 8b, threads 1 and 2 start to execute at
thread O in streamcluster and dedup) that only start work- to and they terminate at ¢1, where thread 3 and 4 starts.
threads and then goes to sleep will have few execution win- Pipeline-parallel. Figure 9 shows the detected program
dows (colored in white) but the thread will take a long time phases for dedup’s whole execution. It executes different
to complete. stages (phases) in different threads. For example, in Fig-
Data-parallel. Figure 7 shows the detected program ure 9c, Stage 1 has 2 threads and executes phase A, while
phases for facesim. It has two primary phases, A and B, Stage 2 executes phase B. The three stages starts to execute
executed in an alternating pattern. Because data-parallel at to, and they stop at ¢1, ¢2 and ¢3 for stage 2, 1 and 3 respec-
application split the work between threads, the length of tivly. The program finally terminates at t4. It oversubscribes
each phase will shrink with more threads, as can be seen in the system for load balancing (i.e., stage 1 executes much
the figure. For example, the first instance of phase A has longer than stage 2 and 3). While the phase behavior in stage
a linear speedup from 1 to 2 threads. It executes for 2.2 1 and 2 is homogeneous, stage 3 has some phase changes.
seconds with 1 thread, but only 1.1 seconds with 2 threads. Only one phase is executed in stage 1 and 2. This

Another characteristic of data-parallel applications is that means that setting the frequency (DVFS) once per thread

Thread

Time in Seconds

(a) 1 threads

to bt o t3 ta Stage
el g VVVVV 1
. 2
ey
= ? e 3
0 CH
0 5 10 15 20 25 30 35 40 45
Time in Seconds
(b) 2 threads
to t1 to t3 2 Stage
] B :
T e, — — ———
o o 2
e
= - 3
0 5 10 15 20 25 30 35 40 45

Time in Seconds

(c) 4 threads

Figure 9. The detected program phases (color) using ScarPhase as a function of time (x-axis) for the
whole execution of dedup. The largest detected phases are colored and named above, with shorter
(fewer executed instructions) phases shown in white for clarity. The dedup benchmark is pipeline-
parallel and executes different stages (phases) in different threads. It oversubscribes the system for
load balancing (i.e., stage 3 executes much longer than stage 2). The three stages starts to execute
attq, and they stop att,, t> and t3 for stage 2, 1 and 3 respectivly. The program finaly terminates at
t4. While the phase behavior in stage 1 and 2 is homogeneous, stage 3 shows that pipeline-parallel
programs can still benefit from phase-guided runtime optimizations (e.g., DVFS).

in those stages will produce similar results as setting
the frequency per phase. To see if this applies to the
other programs as well, we have plotted the CPI varia-
tions (CPI CoV) for the whole program (Program), within
threads (Thread), within phases (Phase) and within phases
per thread (Phase+Thread) (i.e., the CPI CoV is calculated
per phase using windows from one thread, then averaged
across all threads) in Figure 10.

The figure shows that the CPI variations within threads
are much lower than the variation within the whole execution
for blackscholes, streamcluster and the two pipeline-parallel
benchmarks dedup and ferret. The benchmark blackscholes
has 1 control thread and 2 computation threads. The CPI is
very different between the control and computation threads,
but rather homogeneous in each thread. Streamcluster, on the
other hand, creates 10 computation threads (Figure 8). The

CoV is lower just as a consequence of dividing the execution
into smaller pieces. As expected, for facesim?, there is no
difference between the variations within threads and within
the whole execution as can be seen in Figure 7. However,
dividing the execution into phases provides better results
across all benchmarks, including pipeline-parallel applica-
tions. On average, the CPI CoV is 17%, 9%, 5% and 4% for
Program, Thread, Phase and Phase+Thread respectively.

5.2. Summary
The overall CPI variations and number of detected phases

are lower for PARSEC compared to SPEC as seen in sec-
tion 4. However, the PARSEC benchmarks show a diverse

SIf the results from the NAS [4] benchmarks were to be included, the
overall behavior would be more similar to that of facesim.

gz Program mmmm Thread ——=x3 Phase mmmm Phase+Thread

73
30 T

25

20

Coefficiant of Variation (%)
&

Q’aQ e 7777

&
)
&\%‘6

Figure 10. The CPI CoV for the whole program (Program), per thread (Thread), per phase (Phase) and
per phase within each thread (Phase+Thread) using 2 threads. Dividing the execution into threads
provides accurate results for blackscholes, streamcluster and for the two pipeline-parallel bench-
marks dedup and ferret. However, dividing the execution into phases provides better results across

all benchmarks, including pipeline-parallel applications.

set of phase behaviors which are important to understand
when developing new runtime optimizations for parallel ap-
plications.

6. Phases in the many-core era

In the previous section we ran PARSEC with 1 to 4
threads. However, next generation processors will have
many more cores. In this section, we investigate how phase-
guided optimizations are affected when scaling the number
of threads (i.e., strong scaling) into the many-core region.
To approximate the behavior of a many-core machine, we
used a Intel Xeon X6550 (Nehalem) 8 sockets machine with
8 cores per chip (64 core machine).

We examine dedup (pipeline-parallel) and fluidani-
mate (data-parallel). The benchmarks fluidanimate and
facesim have similar phase behavior, but fluidanimate has
shorter phases which makes it easier to analyze. Figure 11
shows the next window prediction accuracy for different
number of threads, using last value prediction (LV) and
history based prediction (RLE). The prediction accuracy
remains relatively unchanged for dedup since Stage 1 and
2 (Figure 9) does not have any phase changes®. However,
the length of fluidanimate’s phases shrinks (lower prediction
accuracy for last value) as the number of threads increases in
Region A (i.e., it divides the work between more threads (see
Figure 7)). When the length of the phases shrinks below the
windows size, the different phases are merged into one phase
(100% prediction accuracy) in Region B. We make three
interesting observations and discuss them below.

Both last value prediction and history based prediction have similar
prediction accuracies since history based prediction automatically falls back
to last value prediction when there is no phase patterns (i.e., only one long
phase for Stage 1 and 2).

«+@-~ fluidanimate LV —m— dedup LV

---%---- fluidanimate RLE w3 dedup RLE
&
g
5 60 .
3
<
5 40 U ¥
: A . ‘| B
o 20 “8
0 " ({ L .
1 2 4 8 16 32 64
No Threads
Figure 11. Next window prediction ac-

curacy for different number of threads
for dedup (pipeline-parallel) and fluidani-
mate (data-parallel), using last value predic-
tion (LV) and history based prediction with
run length encoding (RLE). The length of the
phases shrinks (lower prediction accuracy
for last value) as the number of threads in-
creases in Region A. When the length of the
phase shrinks below the windows size, the
different phases are merged into one phase
(100% prediction accuracy) in Region B.

Prediction. The history based predictor has a more stable
and a higher prediction accuracy than the last value predictor.
This means that more advanced phase predictors are needed
for reliable prediction across executions with different num-
ber of threads or systems that can change number of threads
at runtime.

Phase change frequency. Phase changes occurs more
frequently since the phases shrink. Usually there is a cost
associated when some phase-guided runtime optimizations
changes a setting (e.g., power and time to turn on and off
parts of the cache, or the cost of migrating a thread). This
means that the overhead of the runtime system will increase
with more threads, since the cost will be payed more fre-
quently.

Homogeneity. The final observation is that only one
phase is detected when using more than 32 threads. This
means that the runtime behavior appears homogeneous
across the whole execution. Phase-guided runtime opti-
mizations will therefore be less useful when running many
threads. For example, setting the frequency once for the
whole execution will be the same as setting it per phase.

One solution to these observations is to shrink the window
size when executing more threads. However, some runtime
optimizations have a fixed limit on how fast they can re-
act (e.g., time before the new CPU frequency can take effect).
Another solution is to also use weak scaling (i.e., scale the
problem size when using more threads). The amount of work
per thread would therefore remain the same, meaning that the
length of the phases would not change. However, scaling the
problem size is not always feasible or desirable (e.g., encod-
ing a movie with x264). Both the number of threads (strong
scaling), problem size (weak scaling) and the speed (win-
dow size) of the runtime optimization must therefore be
considered when implementing phase-guided runtime opti-
mizations for parallel applications.

7. Related Work

Perelman et al. [35] extended SimPoint [40] to detect
phases in parallel applications, and they used it to find ar-
chitecture simulation points in the OpenMP version of the
NAS [4] benchmarks. We also investigated the NAS bench-
marks, but found that they exhibited a very limited set of
phase behaviors. Most of them had execution behaviors very
similar to facesim. Due to space limitation we do not include
those results in this paper.

Biesbrouck et al. [9, 10] suggested a co-phase ma-
trix to reduce the overhead of simulating symmetric-
multithreading (SMT). The idea is to only simulate each
phase combination once. However, they looked at multi-
process workloads using SPEC (e.g., co-schedule gcc with
mcf) and not multi-threaded applications. A co-phase ma-
trix could be combined with ScarPhase to find unique phase
combination across the threads, which we plan to investigate
in future work.

Ipek et al. [20] extended hardware-based phase track-
ing [41, 27] for parallel processors with distributed shared-
memory. They observed that the relationship between exe-
cuted code and CPI decreased with the number of threads.

Whether a co-phase matrix would solve this problem was
not investigated, instead they proposed to also track data
contention and data distribution along with the executed
code.

Various related phase researchers [39, 24, 2] have ob-
served that phase behavior depends on the size of the sam-
pled windows. Dividing the execution into windows effec-
tively averages the execution: the smaller the windows are,
the larger the variations will be, and vice versa. Transi-
tion phases (i.e., windows between two phases) can also be
misleading, since they contain code from two phases. One
solution is to not divide the execution into windows, but to
instead monitor the call stack [17, 22, 28], and divide the
execution when the call stack changes depth (i.e., phase).

Bienia et al. [7] compared PARSEC with SPLASH-2 [43].
However, they only looked at aggregated values and focused
on metrics related to multi-processors. Bhadauria et al. [5]
examined PARSEC using a range of different performance
metrics on several multi-processors and Bhattacharjee et
al. [6] characterized the TLB behavior.

8. Conclusions

In this paper we have compared the difference in run-
time phase behavior between SPEC and PARSEC. We
found that the SPEC benchmarks have many more program
phases (2.4x) and larger variations in CPI (1.5x). Using
only SPEC for evaluating phase-guided runtime optimiza-
tions may therefore be misleading, and not show all the
possible performance improvements. For example, a new
DVFS optimization will have more opportunities to change
the frequency in SPEC than PARSEC, and it gets worse with
more threads. In the future, we plan to look at other parallel
workloads (e.g., commercial and database applications).

We then extended the ScarPhase library to detect phases
in parallel applications and used it to characterize the phase
behavior in PARSEC. Even though the CPI variations are not
as significant as SPEC’s, it contains a diverse set of phase
behaviors.

Finally, we performed a case study to investigate how
phase-guided optimizations are effected when scaling the
number of threads into the many-core region. We showed
that as the number of threads increases, the phases shrink un-
til all phases are smaller than the window size. The runtime
behavior will then appear homogeneous which can prevent
phase-guided runtime optimizations.

References

[1] Linux perf_events. URL
Linux/include/linux/perf_event.h.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

K. K. Agaram, S. W. Keckler, C. Lin, and K. S. McKin-
ley. Decomposing memory performance: data struc-
tures and phases. In Int. Symposium on Memory man-
agement, 2006.

M. Annavaram, R. Rakvic, M. Polito, J.-Y. Bouguet,
R. A. Hankins, and B. Davies. The fuzzy correlation
between code and performance predictability. In Int.
Symposium on Microarchitecture, 2004.

D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning,
R. L. Carter, D. Dagum, R. A. Fatoohi, P. O. Freder-
ickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The nas
parallel benchmarks. Int. Journal of Supercomputer
Applications, 1991.

M. Bhadauria, V. M. Weaver, and S. A. McKee. Under-
standing parsec performance on contemporary cmps. In
Int. Symposium on Workload Characterization, 2009.

A. Bhattacharjee and M. Martonosi. Characterizing the
tlb behavior of emerging parallel workloads on chip
multiprocessors. In Int. Conf. on Parallel Architectures
and Compilation Techniques, 2009.

C. Bienia, S. Kumar, and K. Li. Parsec vs. splash-2: A
quantitative comparison of two multithreaded bench-
mark suites on chip-multiprocessors. In Int. Symposium
on Workload Characterization, 2008.

C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec
benchmark suite: Characterization and architectural
implications. In Int. Conf. on Parallel Architectures
and Compilation Techniques, 2008.

M. V. Biesbrouck, T. Sherwood, and B. Calder. A
co-phase matrix to guide simultaneous multithreading
simulation. In Int. Symposium on Performance Analysis
of Systems and Software, 2004.

M. V. Biesbrouck, L. Eeckhout, and B. Calder. Consid-
ering all starting points for simultaneous multithread-
ing simulation. In Int. Symposium on Performance
Analysis of Systems and Software, 2006.

B. Davies, J. Bouguet, M. Polito, and M. Annavaram.
ipart : An automated phase analysis and recognition
tool. Technical Report IR-TR-2004-1-iPART, Intel
Corporation, 2004.

A. S. Dhodapkar and J. E. Smith. Managing multi-
configuration hardware via dynamic working set anal-
ysis. In Int. Symposium on Computer Architecture,
2002.

[13]

[14]

[23]

[24]

A. S. Dhodapkar and J. E. Smith. Comparing pro-
gram phase detection techniques. In Int. Symposium
on Microarchitecture, 2003.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Clas-
sification, chapter 10.11. On-line Clustering, pages
559-565. Wiley-Interscience, 2 edition, 2001. ISBN
0-471-05669-3.

E. Duesterwald, C. Cascaval, and S. Dwarkadas. Char-
acterizing and predicting program behavior and its vari-
ability. In Int. Conf. on Parallel Architecture and Com-
pilation Techniques, 2003.

L. Eeckhout, J. Sampson, and B. Calder. Exploiting
program microarchitecture independent characteristics
and phase behavior for reduced benchmark suite simu-
lation. In Int. Symposium on Workload Characteriza-
tion, 2005.

A. Georges, D. Buytaert, L. Eeckhout, and K. De Boss-
chere. Method-level phase behavior in java workloads.
In Int. Conf. on Object-Oriented Programming, Sys-
tems, Languages, and Applications, 2004.

J. L. Henning. Spec cpu2006 benchmark descriptions.
SIGARCH Comput. Archit. News, 2006.

Intel 64 and IA-32 Architectures Software Developer’s
Manual. Intel Corporation, volume 3b: system pro-
gramming guide edition, September 2010. 30.4.4 Pre-
cise Event Based Sampling (PEBS).

E. Ipek, J. Martinez, B. de Supinski, S. McKee, and
M. Schulz. Dynamic program phase detection in dis-
tributed shared-memory multiprocessors. In Int. Sym-
posium on Parallel and Distributed Processing, 2006.

C. Isci, G. Contreras, and M. Martonosi. Live, runtime
phase monitoring and prediction on real systems with
application to dynamic power management. In Int.
Symposium on Microarchitecture, 2006.

J. Kim, S. V. K. W. chung Hsu, D. J. Lilja, and P. chung
Yew. Dynamic code region (dcr)-based program phase
tracking and prediction for dynamic optimizations. In
Int. Conf. on High Performance Embedded Architec-
tures and Compilers, 2005.

J. Lau, S. Schoemackers, and B. Calder. Structures for
phase classification. In Int. Symposium on Performance
Analysis of Systems and Software, 2004.

J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and
B. Calder. Motivation for variable length intervals
and hierarchical phase behavior. In Int. Symposium on
Performance Analysis of Systems and Software, 2005.

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and
B. Calder. Motivation for variable length intervals
and hierarchical phase behavior. In Int. Symposium on
Performance Analysis of Systems and Software, 2005.

J. Lau, J. Sampson, E. Perelman, G. Hamerly, and
B. Calder. The strong correlation between code signa-
tures and performance. In Int. Symposium on Perfor-
mance Analysis of Systems and Software, 2005.

J. Lau, S. Schoenmackers, and B. Calder. Transition
phase classification and prediction. In Int. Symposium
on High-Performance Computer Architecture, 2005.

J. Lau, E. Perelman, and B. Calder. Selecting soft-
ware phase markers with code structure analysis. In

Int. Symposium on Code Generation and Optimization,
2006.

D. Levinthal. Performance analysis guide for intel core
i7 processor and intel xeon 5500 processors. Technical
Report Version 1.0, Intel Corporation, 2009.

K. Meng, R. Joseph, R. P. Dick, and L. Shang. Multi-
optimization power management for chip multiproces-
sors. In Int. Conf. on Parallel Architectures and Com-
pilation Techniques, 2008.

P. Nagpurkar, C. Krintz, and T. Sherwood. Phase-
aware remote profiling. In Int. Symposium on Code
Generation and Optimization, 2005.

P. Nagpurkar, C. Krintz, M. Hind, P. F. Sweeney, and
V. T. Rajan. Online phase detection algorithms. In

Int. Symposium on Code Generation and Optimization,
2006.

N. Peleg and B. Mendelson. Detecting change in pro-
gram behavior for adaptive optimization. In Int. Conf.
on Parallel Architecture and Compilation Techniques,
2007.

E. Perelman, G. Hamerly, and B. Calder. Picking sta-
tistically valid and early simulation points. In Int. Conf.
on Parallel Architecture and Compilation Technique,
2003.

[35]

[42]

E. Perelman, M. Polito, J.-Y. Bouguet, J. Sampson,
B. Calder, and C. Dulong. Detecting phases in parallel
applications on shared memory architectures. In Int.
Symposium on Parallel and Distributed Processing,

2006.

A. Sembrant, D. Eklov, and E. Hagersten. Efficient
software-based online phase classification. In Int. Sym-
posium on Workload Characterization, 2011.

A. Sembrant, D. Black-Schaffer, and E. Hagersten.
Phase guided profiling for fast cache modeling. In

Int. Symposium on Code Generation and Optimization,
2012.

X. Shen, Y. Zhong, and C. Ding. Locality phase pre-
diction. In Int. Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems, 2004.

T. Sherwood, E. Perelman, and B. Calder. Basic block
distribution analysis to find periodic behavior and sim-
ulation points in applications. In Int. Conf. on Parallel
Architecture and Compilation Techniques, 2001.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program be-
havior. In Int. Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems, 2002.

T. Sherwood, S. Sair, and B. Calder. Phase tracking
and prediction. In Int. Symposium on Computer Archi-
tecture, 2003.

T. Sondag and H. Rajan. Phase-based tuning for better
utilization of performance-asymmetric multicore pro-
cessors. In Int. Symposium on Code Generation and
Optimization, 2011.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The splash-2 programs: characterization
and methodological considerations. In Int. Symposium
on Computer Architecture, 1995.

