Identification of jump Markov linear models using particle filters

Andreas Svensson ${ }^{\dagger}$, Thomas B. Schön ${ }^{\dagger}$ and Fredrik Lindsten ${ }^{\ddagger}$

${ }^{\dagger}$ Department of Information Technology, Uppsala University and \ddagger Department of Engineering, University of Cambridge

Key methods

- EM (Expectation Maximization) Framework for learning parameters using latent variables (e.g. state space variables).
- PF (Particle Filter) A sequential Monte Carlo method for finding the posterior distribution of state space variables.
- SAEM (Stochastic Approximation EM) Extension of EM based on stochastic E-step (e.g. when using methods such as PF).
- MCMC (Markov Chain Monte Carlo) Framework for exploration of (complicated) probability densities, based on the construction of a Markov kernel related to the distribution of interest.
- PMCMC (Particle MCMC) An MCMC construction relying on a repeated use of the PF to construct the Markov kernel.
- CPF-AS (Conditional PF with Ancestor Sampling) A particular PMCMC method using Ancestor Sampling to increase mixing properties.
- Rao-Blackwellization To treat the linear substructure analytically.

Maximum Likelihood identification* of parameters ${ }^{\star \star \star}$ in jump Markov linear models ${ }^{\star \star}$:

* Maximum Likelihood identification:

$$
\begin{equation*}
\widehat{\theta}=\underset{\theta}{\operatorname{argmax}} p_{\theta}\left(y_{1: T}\right) \tag{1}
\end{equation*}
$$

$\star \star$ Jump Markov linear model:

$$
\begin{align*}
s_{t+1} & \sim p\left(s_{t+1} \mid s_{t}\right) \triangleq \boldsymbol{\pi}_{s_{t}, s_{t+1}} \\
z_{t+1} & =\boldsymbol{A}_{s_{t+1}} \boldsymbol{z}_{t}+\boldsymbol{B}_{s_{t+1}} \boldsymbol{u}_{t}+\boldsymbol{w}_{t} \tag{2}\\
\boldsymbol{y}_{t} & =\boldsymbol{C}_{s_{t}} \boldsymbol{z}_{t}+\boldsymbol{D}_{s_{t}} \boldsymbol{u}_{t}+\boldsymbol{v}_{t}
\end{align*}
$$

with modes $s_{t} \in\{1, \ldots, \boldsymbol{K}\}$, linear states $z_{t} \in \mathbb{R}^{n_{z}}$ and covariances $\mathbb{E}\left[\boldsymbol{w}_{t}^{T} \boldsymbol{w}_{t}\right]=\boldsymbol{Q}_{s_{t+1}}, \mathbb{E}\left[\boldsymbol{v}_{t}^{T} \boldsymbol{v}_{t}\right]=\boldsymbol{R}_{s_{t+1}}$
$\star \star \star$ Parameters to identify:

$$
\begin{equation*}
\theta=\left\{A_{n}, B_{n}, C_{n}, D_{n}, Q_{n}, R_{n},\left\{\pi_{n, m}\right\}_{m=1}^{K}\right\}_{n=1}^{K} \tag{3}
\end{equation*}
$$

(K and n_{z} are assumed to be known)

Background

Identification of nonlinear systems using Expectation Maximization (EM) and particle smoothing has previously been proposed ${ }^{1}$, as well as a more efficient related methodology involving stochastic approximation and a Markov chain Monte Carlo construction, PSAEM ${ }^{2}$. The present contribution is a Rao-Blackwellized version of PSAEM, adopted particularly to identify jump Markov linear models.

1. Thomas B. Schön, Adrian Wills and Brett Ninness. System identification of nonlinear state-space models. Automatica, 47(1):39-49, January 2011.
2. Fredrik Lindsten An efficient stochastic approximation EM algorithm using conditional particle filters. Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, Canada, May 2013.

Algorithmic strategy

$[0]$ Intitialize $\widehat{\boldsymbol{\theta}}_{0}, s_{1: T}^{\prime}[0]$ and $\widehat{\mathcal{Q}}_{k}(\boldsymbol{\theta}) \equiv 0$
for $k \geq 1$ do
[1] Given $s_{1: T}^{\prime}[k-1]$ and θ_{k-1}, run RB CPF-AS to get $\left\{s_{1: T}^{i}, w_{T}\right\}_{i=1}^{N}$
[2] Compute $\widehat{\mathcal{Q}}_{k}(\theta)=\left(1-\gamma_{k}\right) \widehat{\mathcal{Q}}_{k-1}(\theta)+\gamma_{k} \sum_{i} w_{T}^{i} \log p_{\theta}\left(y_{1: T}, s_{1: T}^{i}\right)$
[3] Compute $\widehat{\boldsymbol{\theta}}_{k}=\operatorname{argmax} \widehat{\mathcal{Q}}_{k}(\theta)$
[4] Set $s_{1: T}^{\prime}[k]=s_{1: T}^{J}$ with $\mathbb{P}(J=i)=w_{T}^{i}$
end for
RB CPF-AS: Rao-Blackwellized Conditional Particle Filter with Ancestor Sampling. See reference for algorithmic statement.

Theoretical foundation

The construction of PSAEM is well supported by MCMC theory; the CPF-AS defines an ergodic Markov kernel with invariant distribution $p_{\theta}\left(s_{1: T}, z_{1: T} \mid y_{1: T}\right)$. This implies convergence to a (not necessarily global) maximizer $\widehat{\boldsymbol{\theta}}$ of $\boldsymbol{p}_{\boldsymbol{\theta}}\left(\boldsymbol{y}_{1: T}\right)$ even for a finite number of particles N in the particle filter.
This result is also well reflected in practice, as only $N=3$ particles are used in the numerical examples

Numerical example

Example 1 Identification of a one-dimensional jump Markov linear model with 2 modes on simulated data. The following methods are compared:

1. Rao-Blackwellized PSAEM with $N=3$ particles,
2. Original PSAEM with $N=20$,
3. PS + EM with $N=100$ forward particles and $M=20$ backward trajectories.

Mean (solid lines) and 0.5 standard deviation (coloured areas) \mathcal{H}_{2} error for 7 runs of Rao-Blackwellized PSAEM (black), PSAEM (blue) and PS+EM (red).

From the figure (note the log-log scale) it is clear that our new Rao-Blackwellized PSAEM algorithm has a significantly better performance, both in terms of mean and in variance between different runs, compared to the previous algorithms.

Example 2 Identification of a two-dimensional system with 3 modes. Still, $\mathrm{N}=3$. The figure shows the mean (over 10 runs) \mathcal{H}_{2} error for each mode. Thus, the Rao-Blackwellized PSAEM algorithm has the ability to catch the system dynamics fairly well even of multi-dimensional

Mean \mathcal{H}_{2} error for each mode. systems.

Reference

Andreas Svensson, Thomas B. Schön and Fredrik Lindsten. Identification of jump Markov linear models using particle filters. In Proceedings of the 53rd IEEE Conference on Decision and Control (CDC), Los Angeles, CA, USA, December, 2014. (accepted for publication)

