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Summary

I Identification of parameters in jump Markov linear models.
I Theoretically established convergence properties (even for a finite

number of particles N ≥ 2 in the involved particle filter!).
I Rao-Blackwellization for decreased variance.
I Computationally more efficient than previous methods that combine

particle smoothers and EM.
I An estimate of the state space smoothing distribution explicitly

obtained as a ‘by-product’.

Contribution: Maximum Likelihood identification of jump
Markov linear models

Problem formulation

Maximum Likelihood identification? of parameters??? in jump Markov
linear models??:

?Maximum Likelihood identification:

θ̂ = argmax
θ

pθ(y1:T) (1)

?? Jump Markov linear model:

st+1∼ p(st+1|st) , πst,st+1

zt+1 = Ast+1
zt +Bst+1

ut + wt (2)

yt = Cstzt +Dstut + vt

with modes st ∈ {1, . . . ,K}, linear states zt ∈ Rnz and
covariances E

[
wT
t wt

]
= Qst+1

, E
[
vTt vt

]
= Rst+1

.

???Parameters to identify:

θ = {An, Bn, Cn, Dn, Qn, Rn, {πn,m}Km=1}
K
n=1 (3)

(K and nz are assumed to be known)

Background

Identification of nonlinear systems using Expectation Maximization
(EM) and particle smoothing has previously been proposed1, as well as
a more efficient related methodology involving stochastic
approximation and a Markov chain Monte Carlo construction,
PSAEM2. The present contribution is a Rao-Blackwellized version of
PSAEM, adopted particularly to identify jump Markov linear models.

1. Thomas B. Schön, Adrian Wills and Brett Ninness. System identification of nonlinear
state-space models. Automatica, 47(1):39-49, January 2011.

2. Fredrik Lindsten An efficient stochastic approximation EM algorithm using conditional
particle filters. Proceedings of the 38th International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), Vancouver, Canada, May 2013.

Key methods

I EM (Expectation Maximization) Framework for learning parameters
using latent variables (e.g. state space variables).

I PF (Particle Filter) A sequential Monte Carlo method for finding the
posterior distribution of state space variables.

I SAEM (Stochastic Approximation EM) Extension of EM based on
stochastic E-step (e.g. when using methods such as PF).

I MCMC (Markov Chain Monte Carlo) Framework for exploration of
(complicated) probability densities, based on the construction of a
Markov kernel related to the distribution of interest.

I PMCMC (Particle MCMC) An MCMC construction relying on a
repeated use of the PF to construct the Markov kernel.

I CPF-AS (Conditional PF with Ancestor Sampling) A particular
PMCMC method using Ancestor Sampling to increase mixing
properties.

I Rao-Blackwellization To treat the linear substructure analytically.

SA

EM SAEM

PF

MCMC PMCMC CPF-AS PSAEM

AS Rao-Blackwellization

Algorithmic strategy

[0] Intitialize θ̂0, s′1:T [0] and Q̂k(θ) ≡ 0
for k ≥ 1 do

[1] Given s′1:T [k−1] and θk−1, run RB CPF-AS to get {si1:T , wT}Ni=1

[2] Compute Q̂k(θ) = (1−γk)Q̂k−1(θ)+γk
∑
iw

i
T log pθ(y1:T , s

i
1:T)

[3] Compute θ̂k = argmax Q̂k(θ)
[4] Set s′1:T [k] = sJ1:T with P (J = i) = wi

T

end for

RB CPF-AS: Rao-Blackwellized Conditional Particle Filter with
Ancestor Sampling. See reference for algorithmic statement.

Theoretical foundation

The construction of PSAEM is well supported by MCMC theory; the
CPF-AS defines an ergodic Markov kernel with invariant distribution
pθ(s1:T , z1:T |y1:T). This implies convergence to a (not necessarily

global) maximizer θ̂ of pθ(y1:T) even for a finite number of particles
N in the particle filter.

This result is also well reflected in practice, as only N = 3 particles are
used in the numerical examples.

Numerical example

Example 1 Identification of a
one-dimensional jump Markov
linear model with 2 modes on
simulated data. The following
methods are compared:

1. Rao-Blackwellized PSAEM
with N = 3 particles,

2. Original PSAEM with N = 20,

3. PS+EM with N = 100 forward
particles and M = 20 backward
trajectories.
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RB-PSAEM, N = 3
PSAEM, N = 20
PSEM, N = 100

Mean (solid lines) and 0.5 standard
deviation (coloured areas) H2 error
for 7 runs of Rao-Blackwellized
PSAEM (black), PSAEM (blue)
and PS+EM (red).

From the figure (note the log-log scale) it is clear that our new
Rao-Blackwellized PSAEM algorithm has a significantly better
performance, both in terms of mean and in variance between different
runs, compared to the previous algorithms.

Example 2 Identification of a
two-dimensional system with 3
modes. Still, N = 3. The figure
shows the mean (over 10 runs)
H2 error for each mode. Thus,
the Rao-Blackwellized PSAEM
algorithm has the ability to catch
the system dynamics fairly well
even of multi-dimensional
systems.
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