GPU Architectures for

Non-Graphics People

David Black-Schaffer
david.black-schaffer@it.uu.se

Uppsala Programming for
Multicore Architectures

Research Center

GPUs: Architectures for Drawing
Triangles Fas

= Where is most of the work?
= 10k triangles (30k vi

GOPs sustained
s sustained

GPGPU: General Purpose GPUs

Question: Can we use GPUs for non-graphics tasks?

Answer: Yes!

= They’ re incredibly fast and awesome
Answer: Maybe

= They’ re fast, but hard to program
Answer: Not really

= My algorithm runs slower on the GPU than on the CPU
Answer: No

= I need more precision/memory/synchronization/other

David Black-Schaffer

GPU Background

Example Shader: Water

Water
Shader

o imes 11 Tossmat tarn Ve
Texture lookups

Complex math

Function calls

)
ox, vietlectcolor, fFzesmel)1

Control flow
But...
No loops

The Achilles Heel of GPUs

GPUs are fast, but...

Getting data to the GPU is slow

Getting data to the GPU is slow

Getting data from the GPU is slow

GPU Design

GPU Design

2) Focus on throughput, not latency

= Each pixel can take a long time...
as long as we process many at the same time.

m Great scalability
= Lots of simple parallel processors
= Low clock speed (power-efficient)

Latency-optimized (f

Example CPUs Today

m Intel 8-core 45nm Nehalem (2010)

David Black-Schaffer

Same speed, just
4x as much HW
Throughput-optimized (slow, parallel)
[:[:EE[:E[:E]
Evetytl\mg needs
to be 4x faste

Paging

Branch Prediction

GPU Design
1) Process pixels in parallel

m Data-parallel:

of spatial Iocahty
yular memory access
(only need small caches)

m Great speedups
= Limited only by the amount of hardware

CPU vs. GPU Philosoph
Performance

ches, in-order,

About 2 IPC per core, 8 IPC total @3 About 1 IPC per core, 64 IPC total @1.5GHz

Example GPUs Today

Lots of Memory Controllers
Very Small Caches

C10) 100 C10] 100

Nvidia G80 AMD 5870

GPU Trends

= More of the same (proces
m More CPU features (ca inction pointers, double precision)
= More flexible (multiple kernels)

Questions So Far?

Nvidia Fermi

Architecture

= Memory Philosophy

= Latency vs. Throughput GPU MemOI‘y
Philosophy

m Instruction Bandwidth

= Divergence

Computational Intensity CPU Memory Philosophy

: ¢ 3 % Instructions
= Proportion of math ops : unique ops

Remember: memory is slow, math is fast

B + C

m Loop body: Low-intensity:
A
Al = Bl + Eill * D

A

= Loop body: High(er)-intensity:
Temp+= A *A[i]
A = exp(temp)*erf (temp)

*Unique: not already in the cache.

David Black-Schaffer

CPU Memory Philosophy

Instructions

; £+1

CPU Memory Philosophy

Instructions

Memory access will take ~100 cycles...

/st

CPU Memory Philosophy

Instructions

L1

+ Cache

David Black-Schaffer

Cycle 1

CPU Memory Philosophy

Instructions

g= f+1

CPU Memory Philosophy

Instructions

i)
Cache

CPU Memory Philosophy

Instructions

L1

+ Cache

CPU Memory Philosophy

Instructions

CPU Memory Philosophy

Instructions

L1
Cache

CPU Memory Philosophy

Instructions

L2
Cache

L1
Cache

David Black-Schaffer

CPU Memory Philosophy

Instructions

Cycle 2

CPU Memory Philosophy

Instructions

L1

iss! Hit!
[e= (@ |
c= bta Now we stall the processor for 20

2zl 1 aiting on
Cydes cycles waiting on the 1.2

CPU Memory Philosophy

Instructions

L1

Cycle 24

CPU Memory Philosophy

Instructions

Cycle 25

CPU Memory Philosophy

Instructions
Big caches + instruction window +

out-of-order + multiple-issue
Approach
Reduce memory latencies with caches

Hide memory latencies with other
instructions

GPU Memory Philosophy

Instructions

= £+1
f=1d (e
d= d+1
e=1d(d)
= bta

David Black-Schaffer

CPU Memory Philosophy

Instructions

L2

Cache
Ll
Cache

Cycle 25

How Far Away is Your Data?
Intel Nehalem 3GHz (2009)

Latency

10 20 30 60 70 90 100
(cycles) 7

-| double/cycle * 4

e

parallel for parallel for
alil+=b[il]; alil++;

GPU Memory Philosophy

Instructions

GPU Memory Philosophy

Instructions

; £+1

GPU Memory Philosophy

Instructions
g= f£+1
f=1d (e)
d= d+1

; £+1

[a= at1]

Memory

GPU Memory Philosophy

Instructions

; £+1

Memory

[c= bta]

David Black-Schaffer

GPU Memory Philosophy

Instructions

Solution: Give Up

No cache ~ 100+ cycles

e ——— e (S

GPU Memory Philosophy

Instructions

g= f+1

Memory

GPU Memory Philosophy

Instructions

; £+1

Memory

GPU Memory Philosophy

Instructions

e=1d(d),

GPU Memory Philosophy

Instructions

; £+1

First load
ready!

Memory

Cycle 102

GPU Memory Philosophy

Instructions

= £+1
Eart

First load

ready!
- e=1d(d) 1 S

Memory

Cycle 103

David Black-Schaffer

Memory

GPU Memory Philosophy

Instructions

g= f+1

1d/st

Memory

GPU Memory Philosophy

g= £+1
£=1d (e)
1

First load
ready!

Memory

Cycle 103

GPU Memory Philosophy

Instructions

g= f+1

STy

Memory

Cycle 104

GPU Memory Philosophy

sands of hardware threads
1 cycle context switching

Hardware thread scheduling

As long as there is enough work in other
threads to cover latency you get high
throughput.

Notes:
» GPUs have caches for textures]]
» Newer GPUs have (very small) data caches =
e To get full bandwidth you need good access patterns

GPU Instruction Bandwidth

= GPU compute units fetch 1 instruction per cycle...
...and share it with 8 processor cores.
= What if they don’ t all want the same instruction?

(divergent execution)

Divergent Execution for Real

Per-pixel Mandelbrot calculation:
while (x*x + y*y <= (4.0f) && iteration < max_iterations) {
float xtemp = x*x - y*y + x0;
y = 2*y*x + y0;
x = xtemp;
iterationt+;

}
color = iteration;

Color determined by iteration count...
...each color took a different number of iterations.

Every different color is a divergent
execution.

David Black-Schaffer

GPU Instruction
Bandwidth

Divergent Execution

Thread
treas thread

Instructions

t7 stalls
t0-6 stall

all wait to
reconverge

Divergent execution can dramatically hurt
performance. Avoid it on GPUs today.

Instruction Divergence

= Some architectures are worse...
= Intel’s Larabee/MIC/Knight’s Corner is 16-way SIMD
Theoretically the compiler can handle this, but I wouldn’t bet on it.

= Some architectures are getting better...
= Fermi (Nvidia) can fetch 2 instructions per cycle

= But it has twice as many c

= In general:
= Data-parallel will always be fastest
= Penalty for control-flow varies from no:

Summary &
The Future

Questions?

Memory Philosophy
Instruction Philosophy

CPU and GPU Architecture CPU/GPU Convergence

GPUs are throughput-optimized

= Each thread may take a long time, but nds of threads
CPUs are latenc

= Each thread runs as fast as le, but only a few threads

The Future

GPUs have hundreds
CPUs have a few mas

GPUs excel at re
= Lots of ALUs for math, little hardware for : = CPUs are looking more like GPUs... = GPUs are looking more like CPUs...
CPUs excel at irregular control-intensive

= Multiple cores = Caches
= Lots of hardw control, few ALUs

= Multiple threads per core = Function pointers

= Multiple memory controll = Multiple simultaneous kern

What Does CPU/GPU Convergence
Mean For You?
s Why are CPUs are moving towards GPUs?

= CPUs can’ t keep scaling performance=latency
(Power and complexity
s Why are GPUs are moving towards CPUs?
= CPUs are easier to program=flexibili

F100 AMD 4 = GPUs can afford the increased comple
€ thread: 1
AMD Fusion?) LOGE)
4CPU+XGPU s Conclusion
7 [1) If your algorithm runs well on a GPU today it will continue to run well
in the future.

CPU/GPU Convergence

2) If your algorithm does not run well on a GPU today, it may run better
in the future, but it is unlikely to scale easily in the long run.
: 3) The longer you wait, the easier GPUs will be to program.
Intel MIC?
64CPU+Vectors STI Cell?
1CPU+8SPU

David Black-Schaffer

10

Questions?

David Black-Schaffer

11

