Kappa: Insights, Status
and Future Work

Elias Castegren, Tobias Wrigstad

IWACO'16

Structured Aliasing

Kappa: Insights, Status
and Future Work

Elias Castegren, Tobias Wrigstad

IWACO'16

Structured Aliasing

Concurrency Imposes Many Concerns

Is it accessed

concurrently?
Is it aliased? Is it thread-safe?

Does it

encapsulate its Are its subtypes
representation? Is thread-safe?
synchronisation

implicit or explicit?

Aliasing and Concurrency Control

assert cl.value() == 42;
cl.inc)

May ali as? ?

3., inc

assert cl value() == 43;

Aliasing and Concurrency Control

T1 T>

assert cl.value() == 42;
May alias? w2 0L ANC)

assert cl.valge(g\wﬁ.~*"/'f““

8

Properly
synchronised?

Reference Capabilities

o A capability grants access to some eseufee-
object

reference

e The type of a capability defines the interface to its object

o A capability assumes exclusive access

Thread-safety = No data-races

e How thread-safety is achieved is
controlled by the capability’s mode X: T

Modes of Concurrency Control

e Exclusive modes

Globally unique | Thread-local

e Safe modes

Precludes mutating Implicit locking
aliases

Modes of Concurrency Control

Dominating modes

linear

Guarantees
mutual exclusion

Subordinate mode

_ w,

Encapsulated

Capability = Trait + Mode

e Capabilities are introduced via traits

trait Inc trait Get

requird Fnt @ oint requirg Fnt @ oint
def inc (%" void def val +oint
this.cnt++ return this.cnt;

e Modes control why they are safe

IBLEERS Inc — Globally unique increment capability

1[e -sf Inc — Implicitly synchronised increment capability

m Get — Aread-only capability for getting the value

Classes are Composed by Capabilities

linear ;

W
W\
)
\
X
%
m \
X
\ A}
\]
'
\

L . \i»
subordinate RN
;‘1\ \
\

class Counter = ~ Inc @fﬁ’ Get {
var cnt : 1int

}

Aliasing and Concurrency Control (revisited)

class LocalCounter = Inc ® m Get

a%éért cl.value()
cl.inc();

assert cl.value() == 43;

Properly

synchronised!

class SharedCounter :Inc &) m Get
T‘\/’/?

Implemented by a readers-writer lock

Composite Capabilities

e A capability disjunction A ® B can be used as A or B, but not at the same time

e Capabilities that do not share data should be usable in parallel...

trait Fst { trait Snd {
require var fst : int require var snd : int

- }

class Pair = Fst ®Snd {

var fst : 1n
var snd : int

}
Vi

e A capability conjunction A ® B can be used as A and B, possibly in parallel

Packing and Unpacking

let p = new Pair();

let £, s = consume p;

finish{
asynci{f.set(x)}
asyncis.set(y)}

}
p

consume f + consume s

Packing and Unpacking

let p = new Pair();

let £, s = consume p;

finish{
asyncif.set(x)}
asynci{s.set(y)}

({)

= consume f + consume s

O

Packing and Unpacking

let p = new Pair();
let £, s = consume p; =i
finish{ i
asyncif.set(x)}
asynci{s.set(y)}

&

}
p

= consume f + consume s

Kappa: Insights, Status
and Future Work

Elias Castegren, Tobias Wrigstad

IWACO'16

Structured Aliasing

Subordination and Trait-Based Reuse

trait Add<T>
require var first : Link<T>

def add(elem : T) : void o Separate business logic from concurrency concerns
this :ELLi W Add<T>

e Reuse traits across different concurrency scenarios

Can assume
exclusive access

class List<T> =
var first : Link<T>

class SynchronizedlList<T> locked §
var first : Link<T>

Reference Capabilities as Primitives

class
var
var
var

Ownership

External uniqueness Single writer,

multiple readers

et
- y

Regions and effects

Tree —(UEED o Ridlid o EIEH
left : Tree
right : Tree

elem : 1int

disjoint
writers

A
. A®B {ll[}
multiple
B

Kappa: Insights,
and

Elias Castegren, Tobias Wrigstad

IWACO'16

Structured Aliasing

Active Objects as a Mode of Synchronisation

e The message queue of an active object can replace the synchronisation of locks

y . PRt =
SR
S ——

class ActiveCounter Active by default
var cnt : int

def inc() : void
this.cnt++

def get() : int
return this.cnt

class ActiveCounter : Inc @Get

var cnt : int

Active Objects as a Mode of Synchronisation

e Opens up for new combinations

Slamn - © BRET-EFEN Actor with unsynchronised initialisation methods

Sl @ FRETEEGE Actor with priority channel

active E& Actor nested in another actor

(a8 © BETGSEN Actor with parallel message queues

Array Capabilities

A Hierarchy of Capabilities

Capability

Exclusive Subordinate

Linear Thread Shared

Optimistic Pessimistic Oblivious

Atomic Lock-Free Locked Active Immutable

Conclusions

e Reference capabilities is a promising approach for thread-safe OO programming

e Brings togetherideas from a wide variety of work in a unified system

Ownership/Universe types

Linear/Unique references and external uniqueness
Read-only/Immutability

Regions and effects

Fractional permissions

Yes

”Can your system do this?”—»_ ?

No (not yet)

Reference Capabilities .

: AR
wmws for Concurrency Control -~
Same code template safe

for different use cases

ass Faine
Binaan L1 ® 1anean W

lat L. &« conmeme 3

Lanian
nps{l.uu-)
) avyne| s sntly)

Thank you!

Let’s talk more at the poster session!

UP/\\\ARC % 3‘”“”

Structured Aliasing

RYERITAS K

=7
&
$) L .4\

&

L
Sl
WY

