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We analyze a multiscale method for
Poisson’s equation with applications to
multiphase flows in porous media. Porous
media often exhibit highly varying and
heterogeneous permeability without scale
separation. We prove stability and regu-
larity independent rate of convergence
for Localized Orthogonal Decomposition
(LOD) of the Raviart—Thomas mixed fi-
nite elements. We obtain a modified ba-
sis for the flux that can, for instance, be
applied in a nonlinear iteration, where it
can be reused for efficient evolution of an
upscaled solution.

Standard discretization

We consider the mixed formulation of Pois-
son’s equation over {2, find u and p

(a_lu,v) +(V-v,p) =0
(V'H,Q) — _(f7Q)

for all v and ¢

a — highly varying coeflicient
u — velocity solution
The lowest order Raviart—Thomas (RT) ele-

ments (V) yield a mass conservative dis-
crete solution uy with error estimate
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For coefhicients varvine down to scale €. we
,
—1 Then we need a small

have |U|H1(Q) ~ €
mesh, h < e for accurate solutions.

Figure 1: Left: Part of fine (h) and coarse (H) mesh.
Coarse basis function ¢g in red. Right: 10-logarithm

of mean flux in corrector function for noisy a.

Ideal multiscale basis

Introduce a coarse mesh with mesh size H
and an R element space V. Let llg be
the projection onto Vg, preserving normal
Huxes between coarse elements. Fine scale
variations are “invisible” to Ilg, so we con-
struct the divergence free fine space

K,={veV,:V-v=01Igv=0}

For every coarse scale RT-basis function ¢g,
we have a divergence free fine scale cor-

rector G,(¢y) € K, for all vi € K}

(@ (Gi(ou) — du),vy) =0

Define the modified basis ¢y, = ¢op —
Gr(¢n). Solving with the modified basis, we
get a solution ujy’;, with error bound

with constant independent of |u| g, o).

Exponential decay of basis

The correctors G,(¢g) have global support
but decay exponentially with distance
from the support of coarse basis function @g:
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where 0 < 6 < 1 and k is the number of
coarse layers in patch Ug(op).

Figure 2: A one (Ui(¢g)) and two layer patch (Uz(¢n))

around support of coarse basis function ¢p.

Localization of modified basis

The exponential decay makes it possible to
localize (on a k layer patch) the modified

basis functions, i.e., G}(¢y) € Ki(Ui(on)):

ms, k
mh = ¢u — Gp(on)
Solving with this basis gives error bound:
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lu—ugj |l S H+ hju|go
+ kY2~ (H/B) 710"

Here v(H/h) = (1 + log(H/h))~*?. Con-
stant depends on contrast. Choose £ =~
log(1/H) to maintain order H.

Benetfits

« Rate of convergence H is regularity
independent

= Modified basis can be reused for instance
in a nonlinear iteration

« Localized computations can be done in
parallel and make it possible to handle
very large meshes

« We keep mass conservation
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