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Abstract
We analyze a multiscale method for
Poisson’s equation with applications to
multiphase flows in porous media. Porous
media often exhibit highly varying and
heterogeneous permeability without scale
separation. We prove stability and regu-
larity independent rate of convergence
for Localized Orthogonal Decomposition
(LOD) of the Raviart–Thomas mixed fi-
nite elements. We obtain amodified ba-
sis for the flux that can, for instance, be
applied in a nonlinear iteration, where it
can be reused for efficient evolution of an
upscaled solution.

Standard discretization

We consider the mixed formulation of Pois-
son’s equation over Ω, find u and p(

a−1u,v
)

+ (∇ · v, p) = 0
(∇ · u, q) = −(f, q)

for all v and q
a — highly varying coefficient
u — velocity solution

The lowest order Raviart–Thomas (RT) ele-
ments (Vh) yield a mass conservative dis-
crete solution uh with error estimate

‖u− uh‖L2(Ω) . h|u|H1(Ω)

For coefficients varying down to scale ε, we
have |u|H1(Ω) ∼ ε−1. Then we need a small
mesh, h ≤ ε for accurate solutions.

h H

Figure 1: Left: Part of fine (h) and coarse (H) mesh.
Coarse basis function φH in red. Right: 10-logarithm
of mean flux in corrector function for noisy a.

Ideal multiscale basis

Introduce a coarse mesh with mesh size H
and an RT element space VH. Let ΠH be
the projection onto VH, preserving normal
fluxes between coarse elements. Fine scale
variations are “invisible” to ΠH, so we con-
struct the divergence free fine space

K f
h = {v ∈ Vh : ∇ · v = 0,ΠHv = 0}

For every coarse scale RT-basis function φH,
we have a divergence free fine scale cor-
rector Gh(φH) ∈ K f

h, for all vf
h ∈ K f

h

(a−1(Gh(φH)− φH),vf
h) = 0

Define the modified basis φms
H,h = φH −

Gh(φH). Solving with the modified basis, we
get a solution ums

H,h with error bound

‖u− ums
H,h‖L2(Ω) . H + h|u|H1(Ω)

with constant independent of |u|H1(Ω).

Exponential decay of basis

The correctors Gh(φH) have global support
but decay exponentially with distance
from the support of coarse basis function φH:

‖Gh(φH)‖L2(Ω\Uk(φH)) . θ γ(H/h)k‖Gh(φH)‖L2(Ω)

where 0 < θ < 1 and k is the number of
coarse layers in patch Uk(φH).

Figure 2: A one (U1(φH)) and two layer patch (U2(φH))
around support of coarse basis function φH.

Localization of modified basis

The exponential decay makes it possible to
localize (on a k layer patch) the modified
basis functions, i.e., Gk

h(φH) ∈ K f
h(Uk(φH)):

φms,k
H,h = φH −Gk

h(φH)

Solving with this basis gives error bound:

‖u− ums,k
H,h ‖L2(Ω) . H + h|u|H1(Ω)

+ kd/2γ(H/h)−1θk

Here γ(H/h) = (1 + log(H/h))−1/2. Con-
stant depends on contrast. Choose k ≈
log(1/H) to maintain order H .

Benefits

•Rate of convergence H is regularity
independent

•Modified basis can be reused for instance
in a nonlinear iteration

•Localized computations can be done in
parallel and make it possible to handle
very large meshes

•We keep mass conservation
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