Localized Orthogonal Decomposition for Raviart-Thomas elements

Fredrik Hellman*, Patrick Henning[†], Axel Målqvist[‡]

*Department of Information Technology, Uppsala University, Sweden. †Institute for Computational and Applied Mathematics, University of Münster, Germany. ‡Department of Mathematical Sciences, University of Gothenburg, Sweden.

Abstract

We analyze a **multiscale** method for Poisson's equation with applications to multiphase flows in porous media. Porous media often exhibit highly varying and heterogeneous permeability without scale separation. We prove stability and **regularity independent** rate of convergence for Localized Orthogonal Decomposition (**LOD**) of the Raviart–Thomas mixed finite elements. We obtain a **modified basis** for the flux that can, for instance, be applied in a nonlinear iteration, where it can be **reused** for efficient evolution of an upscaled solution.

Standard discretization

We consider the mixed formulation of Poisson's equation over Ω , find ${\bf u}$ and p

$$(a^{-1}\mathbf{u}, \mathbf{v}) + (\nabla \cdot \mathbf{v}, p) = 0$$
$$(\nabla \cdot \mathbf{u}, q) = -(f, q)$$

for all \mathbf{v} and q

a — highly varying coefficient

u — velocity solution

The lowest order Raviart-Thomas (RT) elements (V_h) yield a **mass conservative** discrete solution \mathbf{u}_h with error estimate

$$\|\mathbf{u} - \mathbf{u}_h\|_{L^2(\Omega)} \lesssim h |\mathbf{u}|_{H^1(\Omega)}$$

For coefficients varying down to scale ϵ , we have $|\mathbf{u}|_{H_1(\Omega)} \sim \epsilon^{-1}$. Then we need a small mesh, $h \leq \epsilon$ for accurate solutions.

Figure 1: Left: Part of fine (h) and coarse (H) mesh. Coarse basis function ϕ_H in red. Right: 10-logarithm of mean flux in corrector function for noisy a.

Ideal multiscale basis

Introduce a coarse mesh with mesh size H and an RT element space V_H . Let Π_H be the projection onto V_H , preserving **normal** fluxes between coarse elements. Fine scale variations are "invisible" to Π_H , so we construct the **divergence free fine space**

$$K_h^{\mathrm{f}} = \{ \mathbf{v} \in V_h : \nabla \cdot \mathbf{v} = 0, \Pi_H \mathbf{v} = 0 \}$$

For every coarse scale RT-basis function ϕ_H , we have a divergence free **fine scale cor-** $\mathbf{rector}\ G_h(\phi_H) \in K_h^{\mathrm{f}}$, for all $\mathbf{v}_h^{\mathrm{f}} \in K_h^{\mathrm{f}}$

$$(a^{-1}(G_h(\phi_H) - \phi_H), \mathbf{v}_h^f) = 0$$

Define the **modified basis** $\phi_{H,h}^{\text{ms}} = \phi_H - G_h(\phi_H)$. Solving with the modified basis, we get a solution $\mathbf{u}_{H,h}^{\text{ms}}$ with error bound

$$\|\mathbf{u} - \mathbf{u}_{H,h}^{\mathrm{ms}}\|_{L^2(\Omega)} \lesssim H + h|\mathbf{u}|_{H^1(\Omega)}$$

with constant independent of $|\mathbf{u}|_{H_1(\Omega)}$.

Exponential decay of basis

The correctors $G_h(\phi_H)$ have global support but **decay exponentially** with distance from the support of coarse basis function ϕ_H :

$$||G_h(\phi_H)||_{L^2(\Omega\setminus U_k(\phi_H))} \lesssim \theta^{\gamma(H/h)k} ||G_h(\phi_H)||_{L^2(\Omega)}$$

where $0 < \theta < 1$ and k is the number of coarse layers in **patch** $U_k(\phi_H)$.

Figure 2: A one $(U_1(\phi_H))$ and two layer patch $(U_2(\phi_H))$ around support of coarse basis function ϕ_H .

Localization of modified basis

The exponential decay makes it possible to **localize** (on a k layer patch) the modified basis functions, i.e., $G_h^k(\phi_H) \in K_h^f(U_k(\phi_H))$:

$$\phi_{H,h}^{\mathrm{ms},k} = \phi_H - G_h^k(\phi_H)$$

Solving with this basis gives error bound:

$$\|\mathbf{u} - \mathbf{u}_{H,h}^{\text{ms},k}\|_{L^{2}(\Omega)} \lesssim H + h|\mathbf{u}|_{H^{1}(\Omega)} + k^{d/2}\gamma(H/h)^{-1}\theta^{k}$$

Here $\gamma(H/h) = (1 + \log(H/h))^{-1/2}$. Constant depends on contrast. **Choose** $k \approx \log(1/H)$ to maintain order H.

Benefits

- Rate of convergence H is **regularity** independent
- Modified basis can be **reused** for instance in a **nonlinear iteration**
- Localized computations can be done in parallel and make it possible to handle very large meshes
- We keep mass conservation

References

- [1] A. Målqvist and D. Peterseim.

 Localization of elliptic multiscale problems.

 Math. Comp., 83:2583–2603, 2014.
- [2] P. Henning and A. Målqvist.

 Localized orthogonal decomposition techniques for boundary value problems.

 SIAM J. Sci. Comp., 36:A1609–A1634, 2014.
- [3] A. Målqvist.

Multiscale methods for elliptic problems.

Multi. Model. Simul., 9:1064–1086, 2011.

F.H. is funded by Centre for Interdisciplinary Mathematics (CIM), Uppsala University.

