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Background and contribution

Accelerometers and gyroscopes (inertial sensors) are used to measure linear
acceleration and angular velocity, respectively. These sensors have many
different applications in for example navigation, orientation estimation and
motion capture. Inertial sensors are widely available, for instance in
smartphones. To obtain accurate position and orientation estimates, it is
important that the sensors are properly calibrated. We present ongoing work
where a practical calibration algorithm for inertial sensors is developed.

Formulation of the calibration problem

Similarly to Kok et al. (2014)1, we formulate the calibration problem as an
orientation estimation problem in the presence of unknown model parameters
θ. A nonlinear state space model is used

xt+1 = ft(xt, ωt, vt, θ), (1)

yt = ht(xt, θ) + et, (2)

where the state xt, t ∈ {1, ...,N}, represents the sensor orientation. The
nonlinear functions ft(·) and ht(·) represent the dynamic model and the
measurement model, respectively. The negative log-likelihood is approximated
and used to formulate the cost function

V(θ) =
1

2

N∑
t=1

∥yt − ŷt|t−1(θ)∥2S−1
t (θ)

+ log det St(θ), (3)

where ∥yt − ŷt|t−1(θ)∥S−1
t (θ) is the residual norm with covariance matrix St(θ)

obtained from an Extended Kalman Filter (EKF). A Maximum Likelihood
estimator for θ is then formulated as

θ̂ = argmin
θ

V(θ). (4)

1 M. Kok and T. B. Schön, Maximum likelihood calibration of a magnetometer using inertial sensors.
Proceedings of the 19th World Congress of the International Federation of Automatic Control (IFAC), pp. 92-97, Cape Town,
South Africa, August 2014.

Dynamic model with gyroscope input

The dynamic model uses the gyroscope measurements as input to predict the
orientation of the sensor as

xt+1 = xt ⊙ exp
T

2
ωt, (5)

where the state variables xt are unit quaternions, ⊙ denotes the quaternion
multiplication and exp the vector exponential. The input to the dynamic model
is the angular velocity ωt, sampled with interval T. The gyroscope
measurements, which are used to estimate ωt, are modelled as

yω,t = ωt + bω + vt, (6)

where bω ∈ R3×1 is the gyroscope bias and vt ∼ N (0,Σω) is Gaussian
measurement noise.

Accelerometer measurement model

The accelerometer measurements are modelled as

ya,t = DR(xt)g+ ba + ea,t, (7)

using the assumption that the sensor only measures the gravitational acceleration
g, which is true for stationary sensors. The rotation matrix R(xt) describes the
orientation of the sensor. Sensor errors are modelled by the matrix D ∈ R3×3,
which include non-orthogonality and gain of the sensitive axes. Bias is modelled
by the vector ba ∈ R3×1 and ea,t ∼ N (0,Σa) is Gaussian measurement noise.
The calibrated accelerometer measurements are then calculated as

ycala,t = D−1(ya,t − ba). (8)

The accelerometer measurements can
be visualized in 3D. This figure shows an
example with simulated accelerometer
measurements. The calibrated
measurements (blue) are centered on
the sphere with radius ∥g∥2 and its
center in origo, while the uncalibrated
measurements (red) form an ellipsoid
centered around the sensor bias.
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Calibration algorithm

1. Estimate accelerometer and gyroscope covariance, gyroscope bias and
the initial orientation of the sensor, Σ̂a, Σ̂ω, b̂ω, x̂0 from a stationary por-
tion of the sampled measurements.
2. Set i = 0 and repeat:
3. Run the EKF using the current estimates θ̂i = {D̂i, b̂a,i} and initial
orientation x̂0.
4. Calculate θ̂i+1 by solving (4) as an unconstrained optimization problem
using a Gauss-Newton method, the numerical gradient and approximate
Hessian of the cost function (3), and a line search algorithm.
5. Set i = i+ 1 and repeat from step 3 until convergence.

Simulations

1000 Monte Carlo simulations were
performed with randomly generated
parameters θ. In the simulations the
sensors were rotated once around each
axis.

Root mean square errors (RMSE)
Param. D ba[m/s2] bω[rad/s]
RMSE 0.02304 0.0858 0.01149
Param. Σa Σω

RMSE 0.01206 0.001325
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Real sensor data

Data was collected from the inertial
sensors in a Samsung Galaxy S5
smartphone. The phone was rotated by
hand, which violates the assumption
that the accelerometer only measures
the gravitational acceleration since the
sensors will not always be stationary.
The magnitude of the accelerometer
measurements varies for different
orientations before the calibration and
becomes centered around the local
gravity magnitude after calibration. The
bursts in the measurements come from
rotating the phone by hand.

Even in the presence of these
disturbances the algorithm is able to
calibrate the accelerometer.
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Future work

I Algorithm robustness against increasing noise levels and outliers.
I Find a method to detect outliers and exclude them from the measurements.
I Deriving a lower bound for the estimates.
I More experiments on real data, for example to see how long a sensor

calibration remains valid.
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