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Abstract. A psi-calculus is an extension of the pi-calculus with nominal data types for
data structures and for logical assertions and conditions. These can be transmitted be-
tween processes and their names can be statically scoped as in the standard pi-calculus.
Psi-calculi can capture the same phenomena as other proposed extensions of the pi-calculus
such as the applied pi-calculus, the spi-calculus, the fusion calculus, the concurrent con-
straint pi-calculus, and calculi with polyadic communication channels or pattern matching.
Psi-calculi can be even more general, for example by allowing structured channels, higher-
order formalisms such as the lambda calculus for data structures, and predicate logic for
assertions.

We provide ample comparisons to related calculi and discuss a few significant applica-
tions. Our labelled operational semantics and definition of bisimulation is straightforward,
without a structural congruence. We establish minimal requirements on the nominal data
and logic in order to prove general algebraic properties of psi-calculi, all of which have been
checked in the interactive theorem prover Isabelle. We are the first to formulate a truly
compositional labelled operational semantics for calculi of this calibre. Expressiveness and
therefore modelling convenience significantly exceeds that of other formalisms, while the
purity of the semantics is on par with the original pi-calculus.
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1. Introduction

The pi-calculus [MPW92] has a multitude of extensions where higher-level data struc-
tures and operations on them are given as primitive. To mention only two there are the
spi-calculus by Abadi and Gordon [AG99] focusing on cryptographic primitives, and the ap-
plied pi-calculus of Abadi and Fournet [AF01] where agents can introduce statically scoped
aliases of names for data, used e.g. to express how knowledge of an encryption is restricted.
It is also parametrised by an arbitrary signature for expressing data and an equation sys-
tem for expressing data equalities. The impact of these enriched calculi is considerable
with hundreds of papers applying or developing the formalisms. As Abadi and Fournet
rightly observe there is a tradeoff between “purity”, meaning the simplicity and elegance of
the original pi-calculus, and modelling convenience; expressing complicated schemes in the
original pi-calculus can simply become too gruesome and error prone.

But the modelling convenience of many high-level primitives comes at a price. The
theory of the formalism may instead become gruesome and error prone, and it can be difficult
to assess the effects of modifications to it. For example, the semantics of the applied pi-
calculus is defined using two levels of processes (pure and extended), an inductively defined
reduction relation, an algebraically defined structural congruence, and (in order to achieve
compositionality) a notion of a barb and an explicit quantification over contexts. The
authors therefore propose a more tractable semantics based on inductively defined labelled
transitions, but as we show in Section 3.1 below it turns out to be non-compositional and
in fact does not agree with the reduction semantics. For other examples, the labelled
semantics of the concurrent constraint pi-calculus by Buscemi and Montanari [BM08] turns
out to be non-compositional, as we show in Section 3.2, and our own earlier attempt to
extend the pi-calculus [JPVB08] where the requirements for the scope extension law to
hold are incomplete (see Section 2.6). The fact that such mistakes can go unnoticed for
years indicates the complexity of the proofs.

Our contribution in this paper is to define psi-calculi: a framework where a range of
calculi can be formulated with a lean and symmetric semantics, and where proofs can be
conducted using straightforward induction without resorting to a structural congruence or
explicit quantification of contexts. We claim to be the first to formulate such truly compo-
sitional labelled operational semantics for calculi of this calibre. Psi-calculi accommodate
not only the examples mentioned above, but also extensions such as the pi-calculus with
polyadic synchronisation [CM03], fusion [WG05], and concurrent constraints [BM07].

The main idea is that a psi-calculus is obtained by extending the basic untyped pi-
calculus with three parameters. The first is a set of data terms which can function as both
communication channels and communicated objects. The second is a set of conditions, for
use in conditional constructs such as if statements. The third is a set of assertions, used to
express e.g. constraints or aliases, which can resolve the conditions. These sets need not
be disjoint, and one of our main results is to identify minimal requirements on them. They
turn out to be quite general and natural.

Psi-calculi go beyond our previous work on extended pi-calculi [JPVB08] since we allow
arbitrary assertions (and not only declarations of aliases), and arbitrary conditions (and
not only equality tests). Also, we base our exposition on nominal data types and these
accommodate e.g. alpha-equivalence classes of terms with binders. For example, we can
use a higher-order logic for assertions and conditions, and higher-order formalisms such
as the lambda calculus for data terms and channels. Last but not least the formalisation
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is leaner and more symmetric. Thus we get the best of two worlds: expressiveness and
therefore modelling convenience significantly exceeds that of the applied pi-calculus, while
the “purity” of the semantics is on par with the original pi-calculus.

The straightforward definitions make our proofs suitable for checking in a theorem
prover. We have implemented our framework in Isabelle [NPW02] using its nominal data
type package [Urb08], also known as Nominal Isabelle, and proved all results in Sec-
tion 5 [BP09]. This gives us absolute certainty of general results for a large class of calculi
— at least to the point of the current state of the art for machine checked proofs.

In the next section we give the basic definitions of the syntax and semantics of psi-
calculi. In Section 3 we relate to other work and demonstrate the expressiveness by showing
how a variety of calculi can be formulated. Section 4 contains more substantial examples
on frequency hopping spread spectrum, multiple local services with a common global name,
and cryptographic mechanisms including the Diffie-Hellman key agreement protocol. In
Section 5 we introduce a notion of bisimilarity, establish the expected algebraic results
about it, and demonstrate the proof of the most difficult parts. In Section 6 we discuss the
full formalisation and implementation in Isabelle. Finally Section 7 concludes with ideas
for further work.

2. Definitions

2.1. Nominal data types. We base psi-calculi on nominal data types. A reader unfamiliar
with these need not fear: we shall provide what little background is needed and be generous
with examples. A traditional data type can be built from a signature of constant symbols,
functions symbols, etc. A nominal data type is more general, for example it can also contain
binders and identify alpha-variants of terms. Formally a nominal data type is not required
to be built in any particular way; the only requirements are related to the treatment of the
atomic symbols called names as explained below.

As usual we assume a countably infinite set of atomic names N ranged over by a, . . . , z.
Intuitively, names will represent the symbols that can be statically scoped, and also repre-
sent symbols acting as variables in the sense that they can be subjected to substitution. A
typed calculus would distinguish names of different kinds but our account will be untyped.
A typing may certainly contribute to clarity of expressions but it is not necessary for our
results.

A nominal set [Pit03, GP01] is a set equipped with name swapping functions written
(a b), for any names a, b. An intuition is that for any member X it holds that (a b) ·X is
X with a replaced by b and b replaced by a. Formally, a name swapping is any function
satisfying certain natural axioms such as (a b) · ((a b) ·X) = X. One main point of this is
that even though we have not defined any particular syntax we can define what it means
for a name to “occur” in an element: it is simply that it can be affected by swappings. The
names occurring in this way in an element X constitute the support of X, written n(X).
We write a#X, pronounced “a is fresh for X”, for a 6∈ n(X). In an inductively defined
data type without binders we will have a#X if a does not occur syntactically in X. In for
example the lambda calculus where alpha-equivalent terms are identified (i.e. the elements
are alpha-equivalence classes of terms) the support corresponds to the free names. If A is
a set of names we write A#X to mean ∀a ∈ A . a#X.
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We require all elements to have finite support, i.e., n(X) is finite for all X. It follows
that for any X there are infinitely many a such that a#X. Some elements will have
empty support, a prime example is the identity function in the lambda calculus, or a term
of a traditional data type not containing any names. Such elements satisfy equivariance,
(a b) ·X = X for all a, b. A function f is equivariant if (a b) · f(X) = f((a b) ·X) holds for
all X, and similarly for functions and relations of any arity. Intuitively, this means that all
names are treated equally.

A nominal data type is a nominal set together with a set of equivariant functions on it.
In particular we require a substitution function, which intuitively substitutes elements for
names. If X is an element of a data type, ã is a sequence of names without duplicates and Ỹ
is an equally long sequence of elements, the substitution X[ã := Ỹ ] is an element of the same
data type as X. In a traditional data type substitution can be thought of as replacing all
occurrences of names ã by Ỹ . In a calculus with binders it can be thought of as replacing the
free names, alpha-converting any binders to avoid capture. Formally, we define substitution
as any equivariant function satisfying the substitution laws, e.g. z#(X, Ỹ )⇒ z#X[ã := Ỹ ].
The full list is given in Section 6.

The main point of using nominal data types is that we obtain a general framework,
allowing many different instantiations. Our only requirements are on the notions of support,
name swapping, and substitution. This corresponds precisely to the essential ingredients
for data transmitted between agents. Since names can be statically scoped and data sent
into and out of scope boundaries, it must be possible to discern exactly what names are
contained in what data items, and this is just the role of the support. In case a data element
intrudes a scope, the scoped name needs to be alpha converted to avoid clashes, and name
swapping can achieve precisely this. When a term is received in a communication between
agents it must replace all occurrences of the placeholder in the input construct, in other
words, the placeholder is substituted by the term.

Since these are the only things we assume about data terms we can handle data types
that are not inductively defined, such as equivalences classes and sets defined by compre-
hension or co-induction. Examples include higher-order data types such as the lambda
calculus, and even agents of a psi-calculus. As long as it satisfies the axioms of a nominal
data type it can be used in our framework. Similarly, the notions of conditions, i.e., the
tests on data that agents can perform during their execution, and assertions, i.e. the facts
that can be used to resolve conditions, are formulated as nominal data types. This means
that logics with binders and even higher-order logics can be used. Moreover, alpha-variants
of terms can be formally equated by taking the quotient of terms under alpha equality,
thereby facilitating the formalism and proofs.

2.2. Terms, conditions, and assertions. Formally, a psi-calculus is defined by instanti-
ating three nominal data types and four operators:

Definition 1 (Psi-calculus parameters). A psi-calculus requires the three (not necessarily
disjoint) nominal data types:

T the (data) terms, ranged over by M,N
C the conditions, ranged over by ϕ
A the assertions, ranged over by Ψ
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and the four equivariant operators:
.↔: T×T→ C Channel Equivalence
⊗ : A×A→ A Composition
1 : A Unit
`⊆ A×C Entailment

The binary functions above will be written in infix. Thus, if M and N are terms then
M

.↔ N is a condition, pronounced “M and N are channel equivalent” and if Ψ and Ψ′ are
assertions then so is Ψ⊗Ψ′. Also we write Ψ ` ϕ, pronounced “Ψ entails ϕ”, for (Ψ, ϕ) ∈ `.

The data terms are used to represent all kinds of data, including communication chan-
nels. Intuitively, two agents can communicate if one sends and the other receives along the
same channel. This is why we require a condition M

.↔ N to say that M and N represent
the same communication channel. For example, in the pi-calculus .↔ would be just identity
of names.

The assertions will be used to declare information necessary to resolve the conditions.
Assertions can be contained in agents and represent constraints; they can contain names and
thereby be syntactically scoped and represent information known only to the agents within
that scope. The operator ⊗ on assertions will, intuitively, be used to represent conjunction
of the information in the assertions. The assertion 1 is the unit for ⊗.

The intuition of entailment is that Ψ ` ϕ means that given the information in Ψ, it
is possible to infer ϕ. We say that two assertions are equivalent if they entail the same
conditions:

Definition 2 (assertion equivalence). Two assertions are equivalent, written Ψ ' Ψ′, if for
all ϕ we have that Ψ ` ϕ⇔ Ψ′ ` ϕ.

We can now formulate our requisites on valid psi-calculus parameters:

Definition 3 (Requisites on valid psi-calculus parameters).

Channel Symmetry: Ψ `M .↔ N =⇒ Ψ ` N .↔M
Channel Transitivity: Ψ `M .↔ N ∧ Ψ ` N .↔ L

=⇒ Ψ `M .↔ L

Compositionality: Ψ ' Ψ′ =⇒ Ψ⊗Ψ′′ ' Ψ′⊗Ψ′′

Identity: Ψ⊗1 ' Ψ
Associativity: (Ψ⊗Ψ′)⊗Ψ′′ ' Ψ⊗(Ψ′⊗Ψ′′)
Commutativity: Ψ⊗Ψ′ ' Ψ′⊗Ψ

Our requisites on a psi-calculus is that the channel equivalence is a partial equivalence
relation, that ⊗ is compositional, and that the equivalence classes of assertions form an
abelian monoid. These requisites turn out to be strictly minimal for our results in Section 5
to hold. Note that channel equivalence is not required to be reflexive. Thus it is possible
to have data terms that are not channel equivalent to anything at all, meaning that they
cannot be used as channels.

As an example, we can choose data terms inductively generated by some signature,
assertions and conditions to be elements of a first-order logic with equality over these terms,
entailment to be logical implication, ⊗ to be conjunction and 1 to be true. To verify that
this indeed is a psi-calculus one needs to check the requirements on a nominal data type
(meaning the notions of swapping, support and substitution are defined and fulfills the
required properties), and that the requisites in Definition 3 hold.
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2.3. Frames. Assertions can contain information about names, and names can be scoped
using the familiar pi-calculus operator ν. For example, in a cryptography application an
assertion Ψ could be that the a datum represents the encoding of a message using a key k.
This Ψ can occur under the scope of νk, to signify that the key is known only locally. In
order to admit this in a general way we use the notion of a frame, first introduced by Abadi
and Fournet [AF01]. Basically, a frame is just an assertion with additional information
about which names are scoped. The example above where Ψ occurs under the scope of k
will be written (νk)Ψ, to signify a frame consisting of the assertion Ψ where the name k is
local.

In the following ã means a finite (possibly empty) sequence of names, a1, . . . , an. The
empty sequence is written ε and the concatenation of ã and b̃ is written ãb̃. When occurring
as an operand of a set operator, ã means the corresponding set of names {a1, . . . , an}. We
also use sequences of terms, conditions, assertions etc. in the same way.

Definition 4 (Frame). A frame is of the form (νb̃)Ψ where b̃ is a sequence of names that
bind into the assertion Ψ. We identify alpha variants of frames. 1

We use F,G to range over frames. Since we identify alpha variants we can always choose
the bound names freely.

Notational conventions: We write just Ψ for (νε)Ψ when there is no risk of confusing a
frame with an assertion, and⊗ to mean composition on frames defined by (νb̃1)Ψ1⊗(νb̃2)Ψ2 =
(νb̃1b̃2)Ψ1⊗Ψ2 where b̃1 # b̃2,Ψ2 and vice versa. We write (νc)((νb̃)Ψ) to mean (νcb̃)Ψ.

Intuitively a condition is entailed by a frame if it is entailed by the assertion and does
not contain any names bound by the frame. Two frames are equivalent if they entail the
same conditions:

Definition 5 (Equivalence of frames). We define F ` ϕ to mean that there exists an alpha
variant (νb̃)Ψ of F such that b̃#ϕ and Ψ ` ϕ. We also define F ' G to mean that for all
ϕ it holds that F ` ϕ iff G ` ϕ.

Continuing the example of first-order logic with equality, assume that the term enc(M,k)
represents the result of encoding message M with key k. Let Ψ be the assertion C =
enc(M,k), stating that the ciphertext C is the result of encoding M by k. If an agent
contains this assertion the environment of the agent will be able to use it to resolve tests
on the data, in particular to infer that C = enc(M,k). In other words, if the environment
receives C it can test if this is the encryption of M . In order to restrict access to the key
k it can be enclosed in a scope νk. The environment of the agent will then have access to
the frame (νk)Ψ rather than Ψ itself. This frame is much less informative, for example it
does not hold that (νk)Ψ ` C = enc(M,k). Here great care has to be made to formulate
the class of allowed conditions. If these only contain equivalence tests of terms, (νk)Ψ will
entail nothing but tautologies and be equivalent to 1. But if quantifiers are allowed in the
conditions, then by existential introduction Ψ ` ∃k.C = enc(M,k), and since this condition
has no free k we get (νk)Ψ ` ∃k.C = enc(M,k). In other words the environment will learn
that C is the encryption of M for some key k. We shall return to examples related to
cryptography in Section 3.1.

1In some presentations frames have been written just as pairs 〈eb,Ψ〉. The notation in this paper better
conveys the idea that the names bind into the assertion, at the slight risk of confusing frames with agents.
Formally, we establish frames and agents as separate types, although a valid intuition is to regard a frame
as a special kind of agent, containg only scoping and assertions. This is the view taken in [AF01].
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Most of the properties of assertions carry over to frames. Channel symmetry and
channel transitivity, identity, associativity and commutativity all hold, but compositionality
in general does not. In other words, there are psi-instances with frames F,G,H where F ' G
but not F⊗H ' G⊗H. An example is if there are assertions Ψ, Ψ′ and Ψa for all names a,
conditions ϕ′ and ϕa for all names a, and where the entailment relation satisfies Ψa ` ϕa and
Ψ′ ` ϕ′. Suppose composition is defined such that Ψ⊗Ψ = Ψ and all other compositions
yield Ψ′. By adding a unit element this satisfies all requirements on a psi-calculus. In
particular ⊗ is trivially compositional because no two different assertions are equivalent.
Also (νa)Ψa ' Ψ, but Ψ⊗(νa)Ψa 6' Ψ⊗Ψ since Ψ⊗Ψa = Ψ′ ` ϕ′.

2.4. Agents.

Definition 6 (psi-calculus agents). Given valid psi-calculus parameters as in Definitions 1
and 3, the psi-calculus agents, ranged over by P,Q, . . ., are of the following forms.

M N .P Output
M(λx̃)N .P Input
case ϕ1 : P1 [] · · · [] ϕn : Pn Case
(νa)P Restriction
P |Q Parallel
!P Replication
(|Ψ|) Assertion

In the Input M(λx̃)N.P we require that x̃ ⊆ n(N) is a sequence without duplicates, and
the names x̃ bind occurrences in both N and P . Restriction binds a in P . We identify alpha
equivalent agents. An assertion is guarded if it is a subterm of an Input or Output. In a
replication !P there may be no unguarded assertions in P , and in case ϕ1 : P1 [] · · · [] ϕn : Pn
there may be no unguarded assertion in any Pi.

In the Output and Input forms M is called the subject and N the object. Output
and Input are similar to those in the pi-calculus, but arbitrary terms can function as both
subjects and objects. In the input M(λx̃)N.P the intuition is that there is a pattern
matching where the pattern (λx̃)N can match any term obtained by instantiating x̃, e.g.,
M(λx, y)f(x, y).P can only communicate with an output M f(N1, N2) for some data terms
N1, N2. This can be thought of as a generalisation of the polyadic pi-calculus where the
patterns are just tuples of names. Another significant extension is that we allow arbitrary
data terms also as communication channels. Thus it is possible to include functions that
create channels.

The case construct as expected works by behaving as one of the Pi for which the cor-
responding ϕi is true. case ϕ1 : P1 [] · · · [] ϕn : Pn is sometimes abbreviated as case ϕ̃ : P̃ ,
or if n = 1 as if ϕ1 then P1. In psi-calculi where a condition > exists such that Ψ ` > for
all Ψ we write P +Q to mean case > : P [] > : Q.

Input subjects are underlined to facilitate parsing of complicated expressions; in simple
cases we often omit the underline. In the traditional pi-calculus terms are just names and
its input construct a(x) . P can be represented as a(λx)x.P . In some of the examples to
follow we shall use the simpler notation a(x) . P for this input form.

Some further notational conventions: We define the inert agent 0 as (|1|), and in some
examples we omit a trailing 0, writing just M N for M N .0. If the object of an Output is
a long term we enclose it in brackets 〈 〉 to make it easier to parse.
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For a simple example, the pi-calculus [MPW92] can be represented as a psi-calculus
where the only data terms are names, the only assertion is 1, and the conditions are equality
tests on names. Formally:

T = N
C = {a = b : a, b ∈ T} ∪ {a .↔ b : a, b ∈ T}
A = {1}
⊗ = λΨ1,Ψ2. 1
` = {(1, a = a) : a ∈ N} ∪ {(1, a .↔ a) : a ∈ N}

Here we can let > be a = a and can thus represent pi-calculus sum through case. We obtain
the polyadic pi-calculus by adding the tupling symbols tn for tuples of arity n to T., i.e.
T = N ∪ {tn(a1, . . . , an) : a1, . . . , an ∈ N}. The polyadic output is to simply output the
corresponding tuple of object names, and the polyadic input a(b1, . . . , bn) . P is represented
by a pattern matching a(λb1, . . . , bn)tn(b1, . . . , bn) . P . Strictly speaking this allows tuples
also in subject position in agents, but as we shall see such prefixes will not give rise to any
transition, since in this psi-calculus M .↔ M is only entailed when M is a name, i.e., only
names are channels.

In a psi-calculus the channels can be arbitrary terms. This means that it is possible to
introduce functions on channels (e.g., if M is a channel then so is f(M)). It also means
that a channel can contain more than one name. An extension of this kind is explored by
Carbone and Maffeis [CM03] in the so called pi-calculus with polyadic synchronisation, eπ.
Here action subjects are tuples of names, and it is demonstrated that this allows a gradual
enabling of communication by opening the scope of names in a subject, results in simple
representations of localities and cryptography, and gives a strictly greater expressiveness
than standard pi-calculus. We can represent eπ by using tuples of names in subject position.
The only modification to the representation of the polyadic pi-calculus is to extend ` to
`= {(1,M .↔M) : M ∈ T}, and to remove the conditions of type M = N (since they can
be encoded in eπ).

The data terms can be also be drawn from a higher-order formalisms. It is thus
possible to transmit functions between agents. For example, let T be the lambda cal-
culus, containing abstractions λx.M and applications MN . In the parallel composition
a 〈λx.M〉 . P | a(z) . b 〈zN〉 . Q the left hand component transmits the function λx.M to
the right, where the application of it to N is transmitted along b. Reduction would be
represented as a binary predicate over lambda terms and could be tested in psi-calculus
conditions (the reduction rules would be part of the definition of entailment). In this sense
psi can resemble a higher-order calculus. It is even possible to let the terms be the psi-
calculus agents themselves. An agent transmitted as a term cannot directly communicate
with the agent that sent or received it, but there is a possibility of indirect interaction
through the entailment relation. This area we leave for further study.

2.5. Operational semantics. In this section we define an inductive transition relation on
agents. In particular it establishes what transitions are possible from a parallel composition
P |Q. In the standard pi-calculus the transitions from a parallel composition can be uniquely
determined by the transitions from its components, but in psi-calculi the situation is more
complex. Here the assertions contained in P can affect the conditions tested in Q and vice
versa. For this reason we introduce the notion of the frame of an agent as the combination
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of its top level assertions, retaining all the binders. It is precisely this that can affect a
parallel agent.

Definition 7 (Frame of an agent). The frame F(P ) of an agent P is defined inductively
as follows:

F(M(λx̃)N.P ) = F(M N.P ) =
F(case ϕ̃ : P̃ ) = F(!P ) = 1

F((|Ψ|)) = Ψ
F(P |Q) = F(P ) ⊗ F(Q)
F((νb)P ) = (νb)F(P )

For a simple example, if a#Ψ1:

F((|Ψ1|) | (νa)((|Ψ2|) |M N.(|Ψ3|)) = (νa)(Ψ1⊗Ψ2)

Here Ψ3 occurs under a prefix and is therefore not on top level. An agent where all assertions
are guarded thus has the frame 1. In the following we often write (νb̃P )ΨP for F(P ),
but note that this is not a unique representation since frames are identified up to alpha
equivalence.

The actions α that agents can perform are of three kinds: output actions, input actions
of the early kind, meaning that the input action contains the received object, and the silent
action τ . The operational semantics will consist of transitions of the form Ψ � P

α−→ P ′.
This transition intuitively means that P can perform an action α leading to P ′, in an
environment that asserts Ψ.

Definition 8 (Actions). The actions ranged over by α, β are of the following three kinds:

M (νã)N Output, where ã ⊆ n(N)
M N Input
τ Silent

For actions we refer to M as the subject and N as the object. We define bn(M (νã)N) =
ã, and bn(α) = ∅ if α is an input or τ . We also define n(τ) = ∅ and n(α) = n(N) ∪ n(M)
if α is an output or input. As in the pi-calculus, the output M (νã)N represents an action
sending N along M and opening the scopes of the names ã. Note in particular that the
support of this action includes ã. Thus M (νa)a and M (νb)b are different actions.

Definition 9 (Transitions). A transition is of the kind Ψ � P
α−→ P ′, meaning that when

the environment contains the assertion Ψ the agent P can do an α to become P ′. The
transitions are defined inductively in Table 1. We write P α−→ P ′ to mean 1 � P

α−→ P ′.

Both agents and frames are identified by alpha equivalence. This means that we can
choose the bound names fresh in the premise of a rule. In a transition the names in bn(α)
count as binding into both the action object and the derivative, and transitions are identified
up to alpha equivalence. This means that the bound names can be chosen fresh, substituting
each occurrence in both the object and the derivative. This is the reason why bn(α) is in
the support of the output action: otherwise it could be alpha-converted in the action alone.
Also, for the side conditions in Scope and Open it is important that bn(α) ⊆ n(α). The
freshness conditions on the involved frames will ensure that if a name is bound in one agent
its representative in a frame is distinct from names in parallel agents, and also (in Par)
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In
Ψ `M .↔ K

Ψ � M(λỹ)N.P K N [ey:=eL]−−−−−−−→ P [ỹ := L̃]
Out

Ψ `M .↔ K

Ψ � M N.P
K N−−−→ P

Case
Ψ � Pi

α−→ P ′ Ψ ` ϕi
Ψ � case ϕ̃ : P̃ α−→ P ′

Com
ΨQ⊗Ψ � P

M (νea)N−−−−−→ P ′ ΨP⊗Ψ � Q
K N−−−→ Q′ Ψ⊗ΨP⊗ΨQ `M

.↔ K

Ψ � P |Q τ−→ (νã)(P ′ |Q′)
ã#Q

Par
ΨQ⊗Ψ � P

α−→ P ′

Ψ � P |Q α−→ P ′|Q
bn(α)#Q Scope

Ψ � P
α−→ P ′

Ψ � (νb)P α−→ (νb)P ′
b#α,Ψ

Open
Ψ � P

M (νea)N−−−−−→ P ′

Ψ � (νb)P M (νea∪{b})N−−−−−−−−→ P ′
b#ã,Ψ,M
b ∈ n(N) Rep

Ψ � P | !P α−→ P ′

Ψ � !P α−→ P ′

Table 1: Operational semantics. Symmetric versions of Com and Par are elided. In the
rule Com we assume that F(P ) = (νb̃P )ΨP and F(Q) = (νb̃Q)ΨQ where b̃P is
fresh for all of Ψ, b̃Q, Q,M and P , and that b̃Q is correspondingly fresh. In the
rule Par we assume that F(Q) = (νb̃Q)ΨQ where b̃Q is fresh for Ψ, P and α. In
Open the expression νã ∪ {b} means the sequence ã with b inserted anywhere.

that it does not occur on the transition label. We defer a more precise account of this to
Section 6.

The environmental assertions Ψ � · · · in Table 1 express the effect that the environment
has on the agent: enabling conditions in Case, giving rise to action subjects in In and Out
and enabling interactions in Com. Thus Ψ never changes between hypothesis and conclusion
except for the parallel operator, where an agent is part of the environment for another agent.
In a derivation tree for a transition, the assertion will therefore increase towards the leafs
by application of Par and Com. If all environmental assertions are erased and channel
equivalence replaced by identity we get the standard laws of the pi-calculus enriched with
data structures.

In comparison to the applied pi-calculus and the concurrent constraint pi calculus one
main novelty is the inclusion of environmental assertions in the rules. They are necessary to
make our semantics compositional, i.e., the effect of the environment on an agent is wholly
captured by the semantics. In contrast, the labelled transitions of the applied and the
concurrent constraint pi-calculi must rely on an auxiliary structural congruence, containing
axioms such as scope extension (νa)(P |Q) ≡ (νa)P |Q if a#Q. With our semantics such
laws are derived rather than postulated. The advantage of our approach is that proofs of
metatheoretical results such as compositionality are much simpler since there is only the
one inductive definition of transitions.
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2.6. Illustrative examples. For a simple example of a transition, suppose for an assertion
Ψ and condition ϕ that Ψ ` ϕ. Assume that

∀Ψ′.Ψ′ � Q
α−→ Q′

i.e., Q has an action α regardless of the environment. Then by the Case rule we get

Ψ � if ϕ then Q
α−→ Q′

i.e., if ϕ then Q has the same transition if the environment is Ψ. Since F((|Ψ|)) = Ψ and
Ψ⊗1 = Ψ we get by Par that

1 � (|Ψ|) | if ϕ then Q
α−→ (|Ψ|) |Q′

Data terms may also represent communication channels and here the channel equiva-
lence comes into play. For example, in a polyadic pi-calculus the terms include tuples and
projection functions with the usual equalities, for example π1(t2(a, b)) = a. If these terms
can represent channels then they must represent the same channel, consequently we must
have Ψ ` π1(t2(a, b)) .↔ a for all Ψ. As an example,

a N .P | π1(t2(a, b)) (y) . Q τ−→ P |Q[y := N ]

Agents such as π1(t2(a, b)) (y) . Q can arise naturally if tuples of channels are transmitted
as objects. For example, an agent that receives a pair of channels along c and then inputs
along the first of them is written c(x) . π1(x)(y) . Q. When put in parallel with an agent that
sends t2(a, b) along c it will have a transition leading to the agent where x is substituted
by t2(a, b), i.e. π1(t2(a, b)) (y) . Q.

The semantics makes no particular provision for an equality of terms in object position.
Thus, the agents c a . P and c π1(t2(a, b)) . P have different transitions, and correspond to
sending out the unevaluated “texts” a and π1(t2(a, b)) respectively. To represent agents
which send evaluated “values” we can do as in the applied pi-calculus where assertions
declare equivalence of terms and agents send freshly generated aliases, e.g.

(νz)(c z . P | (|z = π1(t2(a, b))|))
This agent has the same transition as (νz)(c z . P | (|z = a|)). Any agent receiving the z will
not be able to distinguish if z is a or t2(a, b)) since these terms are equated by all assertions.
Also, if a and b are scoped as in

(νa, b, z)(c z . P | (|z = π1(t2(a, b))|))
then their scopes will not open as a consequence of the output. In the applied pi-calculus
this is the only form of communication and it is not possible to directly transmit data
structures containing channel names, like the name tuples of the polyadic pi-calculus above.
In psi-calculi these communication possibilities can coexist.

The main technical issue in the semantics is the treatment of scoping, as illustrated
by the following example where the terms are just names. The intuition is that there is a
communication channel available to all agents, and agents can declare any name to represent
it through an assertion. The assertions are thus sets of names, and any name occurring in
the assertion can be used as the subject of an action. Any two names in the assertion are
deemed channel equivalent. Formally,
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T = N
C = {a .↔ b : a, b ∈ T}
A = Pfin(N )
⊗ = ∪
1 = ∅
` = {(Ψ, a .↔ b) : a, b ∈ Ψ}

Omitting the action and prefix objects we get

{a, b} � a .0 a−→ 0

and also
{a, b} � a .0 b−→ 0

By the Par rule we have

∅ � a .0 | (|{a, b}|) a−→ 0 | (|{a, b}|)
and

∅ � a .0 | (|{a, b}|) b−→ 0 | (|{a, b}|)
Applying a restriction we get

∅ � (νa)(a .0 | (|{a, b}|)) b−→ (νa)(0 | (|{a, b}|))
but no corresponding action with subject a because of the side condition on Scope. Thus,
a communication through Com can be inferred from

(νa)(a .0 | (|{a, b}|)) | b .0
but not from

(νa)(a .0 | (|{a, b}|)) | a .0
This instance of a psi-calculus also illustrates two features of the semantics: firstly that

channel equivalence is used in all three rules In, Out and Com, and secondly that assertions
rather than frames represent the environment. Both issues are related to the law of scope
extension, i.e., if a#Q then the agents (νa)(P | Q) and ((νa)P ) | Q should have the same
transitions. Elaborating the example above and noting that {a} ∪ {b} ` a .↔ b, we get that

(νa, b)((|{a}|) | (|{b}|) | a .0 | b .0)

has an internal communication. By scope extension this agent should have the same tran-
sitions as P | Q where

P = (νa)((|{a}|) | a .0) Q = (νb)((|{b}|) | b .0)

Here P and Q are alpha equivalent, and F(P ) = (νa){a} and F(Q) = (νb){b} represent
the same frame. Since they will be composed below we choose different representatives for
the bound names. A communication from P | Q is inferred by Com and the premises

1. {a} � P
b−→ (νa)((|{b}|) | 0)

(derived using {a} ⊗ {b} = {a, b} ` a .↔ b in Out)

2. {b} � Q
a−→ (νa)((|{a}|) | 0)

(derived using {b} ⊗ {a} = {a, b} ` a .↔ b in In)
3. {a} ⊗ {b} = {a, b} ` a .↔ b
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Note how the action subjects are derived by the assertions in both cases to not clash with
the binders, and that channel equivalence is necessary in all three rules.

The same example demonstrates why transitions in Table 1 are defined with assertions
and not frames, for whereas {a, b} ` a .↔ b the corresponding result cannot be obtained from
the frames of the agents. We have that F(Q) ⊗ {a} = (νb){a, b} 0 a

.↔ b, so that frame is
not useful for deriving a transition from P . Our earlier attempt [JPVB08] erroneously used
frames rather than assertions, and this means that scope extension does not hold unless a
further condition is imposed on the entailment relation to eliminate this kind of example.

Finally, a more complicated variant of the example motivates the requisite that .↔ must
be transitive. Consider any psi-calculus where Ψ1 and Ψ2 such that Ψ1⊗Ψ2 ` a

.↔ b and
Ψ1⊗Ψ2 ` b

.↔ c. Then the agent

(νa, b, c)((|Ψ1|) | (|Ψ2|) | a .0 | c .0)

has an internal communication using b. If c#Ψ1 and a, b#Ψ2, by scope extension the agent
should behave similarly as

(νa, b)((|Ψ1|) | a .0) | (νc)((|Ψ2|) | c .0)

Clearly the left hand component cannot act with a subject a or b, so the only possibility to
derive an internal communication is that it can act with subject c given assertion Ψ2, i.e.
that

Ψ2 � (νa, b)((|Ψ1|) | a .0) c−→ · · ·
This requires that Ψ1⊗Ψ2 ` a

.↔ c.

3. Expressiveness and related calculi

In this section we explore the expressiveness of psi-calculi, mainly in comparison to
other process calculi. In Section 2 we have already seen how to represent the pi-calculus as
a psi-calculus.

3.1. Calculi for cryptography. Psi-calculi can express a variety of cryptographic oper-
ations on data. The main idea was illustrated in Section 2.3, using assertions to define
relations between ciphertext and plaintext. Here we make the description more precise.
Let the assertion “C = enc(M,k)” mean that encrypting the message M with the key
k results in the ciphertext C, and let “M = dec(C, k)” mean that decrypting C with
key k yields M . Entailment contains equations relating encryption and decryption such as
∀M,k. dec(enc(M,k), k) = M . The point is that a secure key can be represented by a bound
name: it is unguessable outside its scope. An example agent aC . (νk)((|C = enc(M,k)|) | P )
outputs a term C and asserts that it is the encryption of M using the bound k as key, with-
out opening the scope of k. Therefore an agent receiving C can resolve the condition
dec(C, k) = M only after receiving this k in a communication. Technically this is because
of the freshness conditions in the Par rule in Table 1 where b̃Q is assumed fresh for P : this
means that to apply the rule, P cannot use any name bound in the frame of Q.

This closely resembles the situation in the applied pi-calculus [AF01]. By contrast,
in the spi-calculus [AG99] encrypted messages such as enc(M,k) are transmitted directly.
Consider an example spi-calculus process

P = (νk,m)a〈enc(m, k)〉 . P ′ (3.1)
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where P ′ = b(x) . if x = m then c. Here P sends a fresh name m encrypted with a fresh
key k to the environment, and then receives a value x. Assuming perfect encryption, the
environment cannot know m or k, so P ′ cannot receive m along b, and the output on c will
never be possible. However, in the spi-calculus the transition P

(νk,m)a〈enc(m,k)〉−−−−−−−−−−−→ P ′ opens
the scopes of k and m, so here scoping does not correspond to restriction of knowledge.
A reasonable equivalence must explicitly keep track of which names are known, leading to
several complex bisimulation definitions (see [BN05] for an overview).

The applied pi-calculus is parametrised by a signature Σ for data terms and an equa-
tional theory `Σ over Σ, and more importantly introduces active substitutions {M/x} of data
terms for variables. These can be introduced by the inferred structural rule (νx)({M/x} | A) ≡
A[x := M ]. There are names a, b, c distinct from variables x, y, z where only variables can
be substituted, and a simple type system to distinguish names and variables of channel type
from other terms of base type. Only names of channel type can be used as communication
channels. Structured data terms cannot be sent directly, instead an alias variable such as
x must be used, and the term itself does not occur on the transition label. We have P ≡ Q
for P above in (3.1), where

Q = (νx, k,m)({enc(m,k)/x} | ax . P ′) (3.2)

Here Q a (νx)x−−−−→ (νk,m)({enc(m,k)/x} | P ′) and only the alias of the encryption (its “value”)
appears on the label; the scope of k and m is not opened and in this sense they are still
confidential to the environment. However, the labelled semantics does not allow sending
structured data terms where the scope should be opened, such as a tuple of names in the
polyadic pi-calculus.

The labelled semantics for applied pi turns out to be non-compositional. Consider the
closed (extended) applied pi-calculus agents

A = (νa)({a/x} | x.b.0) B = (νa)({a/x} | 0) (3.3)

where we omit the objects of the prefixes. They have the same frame and no transitions,
and are thus semantically equivalent. But a context can contain x and can therefore use the
active substitution to communicate with A. Formally, let R = x.0 and ⇓ b the usual weak
observation or barb. We have by scope extension that A|R ≡ (νa)({a/x} | x.b.0 | x.0) ⇓ b,
but it is not the case that B|R ⇓ b. Therefore, no observational equivalence that is preserved
by all contexts and satisfies scope extension can be captured by the labelled semantics. In
this, Theorem 1 of [AF01] is incorrect; the labelled and observational equivalences do in
fact not coincide, nor is labelled equivalence a congruence. This is relevant for other papers
that use or develop the labelled semantics, e.g. [GLPT07, KR05, DKR07, CRZ07].

Possible fixes are to disallow aliases for channel names, to be satisfied with composi-
tionality for closed contexts, or to allow variables in action subjects. The consequences are
difficult to assess, and our proposed solution is to instead define a psi-calculus representing
the corresponding applied pi-calculus as follows. Assertions are finite sets of active substitu-
tions, ⊗ is union, and entailment deduces equality under `Σ and application of all relevant
active substitutions.

Requirements on the assertions in applied pi are that they can only contain one active
substitution per variable, that the active substitutions are non-circular, that they do not
occur under a replication etc. To stay as close to the applied pi-calculus as possible we
inherit these restrictions and only consider agents that satisfy them. This allows us to write
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M(Ψ∗) for the term resulting from the fixpoint of the substitutions in Ψ. We write v(M)
for the free variables of M , and Chan for the set of names of channel type.

T = the set of terms defined by Σ
A = Pfin({{M/x} : M ∈ T, x variable})
C = {M = N,¬(M = N),M .↔ N : M,N ∈ T}
1 = ∅
⊗ = ∪
Ψ `M = N if `Σ M(Ψ∗) = N(Ψ∗)
Ψ ` ¬(M = N) if v(M(Ψ∗)) ∪ v(N(Ψ∗)) = ∅

∧¬(Ψ `M = N)
Ψ `M .↔ N if Ψ `M = N ∧ ∃c ∈ Chan : Ψ `M = c

Terms, assertions and conditions are as for the applied pi-calculus except for the con-
dition ¬(M = N) which is needed to represent the if M = N then P else Q construct of
applied pi as case M = N : P [] ¬(M = N) : Q in psi. As in applied pi, the terms com-
pared for inequality need to be ground. Channel equivalence M .↔ N requires that there is
a channel name equal to both M and N .

The resulting psi-calculus differs from the applied pi-calculus in some ways, the most
important being that in psi, aM .P

aM−−→ P where M is a structured term, corresponds to
sending the cleartext of M directly. This is not possible in the applied pi-calculus. In order
to transmit M in the applied pi-calculus the structural rule (νx)({M/x} | A) ≡ A[x := M ]
must be used and an alias x for M be sent. To send an alias in this way in psi it must be
introduced explicitly, as in (|{M/x}|) | ax . P , and this agent is not the same as aM.P .

Therefore, although the agents P and Q above (in (3.1) and (3.2)) are the same in
the applied pi-calculus, the psi counterparts of the agents are different. In psi, P in (3.1)
represents an agent that emits the clear text “enc(m, k)”. Any agent that receives this
will immediately learn both m and k, and any scope of k will be opened in the process.
This kind of agent can only indirectly be represented in the applied pi-calculus, by sending
the restricted names separately one at a time. In contrast, the psi counterpart of (3.2) is
Q = (νx, k,m)((|{enc(m,k)/x}|) | ax . P ′) and defines Q to emit an alias for enc(m, k). As in
the applied pi-calculus since k is scoped a recipient will not learn m. If the same recipient
later receives k, an alias u for the message m can be constructed as (|{dec(x,k)/u}|).

Similarly, the agents R1 and R2 below are different in the psi-calculus semantics, but
the corresponding agents in applied pi are equivalent.

R1 = (νx, k,m)((|{enc(m,k)/x}|) | ax . ax . P ′)
R2 = (νx, k,m)((|{enc(m,k)/x}|) | ax . (νy)((|{x/y}|) | ay . P ′))

In the applied pi-calculus, a new alias for a term can always be introduced “on-the-fly”,
and it is impossible to tell R1 and R2 apart – they are structurally equivalent. The psi-
calculus approach gives the possibility to discern the two agents, similarly to how the same
ciphertext bitstring sent twice can be identified even if the plaintext cannot be recovered.
To avoid this, a new alias needs to be explicitly introduced for each transmission, mimicking
a probabilistic crypto where different ciphertext bitstrings correspond to the same plaintext
and key.

Thus in psi, communication objects can range from literal data terms to indirect refer-
ences, giving the user of the calculus the possibility to choose the appropriate form.
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Another difference between the calculi is illustrated by the agent A of the compo-
sitionality counterexample (3.3): Its counterpart PA in psi is (νa)((|{a/x}|) | x.b.0) x−→
(νa)((|{a/x}|) | b.0) and is not equivalent to (νa)((|{a/x}|) | 0); indeed also PA | x.0

τ−→ b−→ in
our labelled semantics.

3.2. Fusion and concurrent constraints. In the explicit fusion calculus by Wischik and
Gardner, pi-F [WG05], the names in object position are fused by a communication, as in
ab̃ . P | ad̃ .Q τ−→ {b̃ = d̃} | P | Q where {b̃ = d̃} (for b̃ and d̃ of equal length) is a fusion
which allows us to treat each bi ∈ b̃ as equivalent to di ∈ d̃. The explicit fusion calculus has
a simple formulation as a psi-calculus:

T = N
C = {a = b : a, b ∈ T} ∪ {a .↔ b : a, b ∈ T}
A = { {a1 = b1, . . . , an = bn} : ai ∈ N , bi ∈ N}
⊗ = ∪
1 = ∅

Ψ ` a = b if a = b ∈ eq(Ψ)
Ψ ` a .↔ b if Ψ ` a = b

where eq(Ψ) is the equivalence closure of Ψ (i.e. transitive, symmetric and reflexive closure).
Thus terms are names, assertions are name fusions, and the entailment relation deduces
equality between names based on fusion assertions treated as equivalence relations. We can
represent the pi-F input ab̃ . P as a(c̃) . ((|{b̃ = c̃}|) | P ) where c̃#ab̃ . P . This is reminiscent
of Merro’s encoding of fusion into asynchronous pi-calculus, using equators [Mer98]. For
example, the fusion calculus communications

ab . cc . P | ac . bd .Q τ−→ {b = c} | cc . P | bd .Q τ−→ {b = c} | {c = d} | P | Q
is expressed as:

a(e) .
(
(|{b = e}|) | cc . P

)
| ac . b(x) .

(
(|{x = d}|) | Q

)
τ−→

(
(|{b = e}|) | cc . P

)
[e := c] | b(x) .

(
(|{x = d}|) | Q

)
= (|{b = c}|) | cc . P | b(x) .

(
(|{x = d}|) | Q

)
τ−→ (|{b = c}|) | P |

(
(|{x = d}|) | Q

)
[x := c]

= (|{b = c}|) | P | (|{c = d}|) | Q
The concurrent constraint pi-calculus (CC-Pi) [BM08] can be seen as a (monadic) pi-F

calculus with ask and tell statements, parametrised by a constraint system in the form
of a named c-semiring. Such a constraint system contains names, name fusion constraints
and a name hiding operator ν, and supports general constraint semirings, e.g. Herbrand
constraints. The semantics is given by a structural congruence and a reduction relation.
There is also a labelled operational semantics, but it is in fact not compositional. Consider
the CC-Pi agents

P = (νb, x)(x = b | a x . b . c) Q = (νb, x)(x = b | a x)

(where insignificant objects are omitted). They have the same constraint store and the
same transitions in all constraint contexts. However, they do not have the same transitions
in all process contexts: a parallel context R = a(y).y tells the difference:

P | R τ−→ τ−→ (νb)(x = b | x = y | c) c−→
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while Q | R of course has no such c transition. Thus Theorem 1 of [BM08] is incorrect:
open bisimilarity is not a congruence.

The labelled semantics of CC-Pi has a curious asymmetry between the rule for prefixes
and the rule for communication: in the first case, the constraint store cannot affect the label
induced by the prefix, while in the communication case, the constraint store judges whether
the subjects should be considered the same, enabling the communication. The psi-calculi
have no such asymmetry: the assertions (corresponding to the store) allow the subject to
be rewritten in the prefix rules and the subjects in Com are compared using the assertions
(see Section 2.6 for a discussion). A possible fix for CC-Pi would involve allowing the store
to rewrite terms, thus also subjects in prefixes [Bus09].

A psi-calculus corresponding to CC-Pi with semiring C extends the psi-calculus for pi-F
as follows:

T = A = C
C = C ∪ {a .↔ b : a, b ∈ N}
⊗ = The similarly notated operator ⊗ in CC-Pi
1 = 1

Ψ ` ϕ if
{

Ψ � ϕ if Ψ, ϕ ∈ C
Ψ ` a = b ∧ a, b ∈ N if ϕ = a

.↔ b

Thus terms, conditions and assertions are defined by the carrier of the named c-semiring
(which by definition includes names and name fusions); 1 is the unit element, ⊗ = ⊗,
entailment is the CC-Pi partial order � and in addition Ψ ` a

.↔ b if Ψ ` a = b and
both a and b are names. We extend a monadic version of the pi-F formulation above by
representing ask ϕ .P as if ϕ then P and tell Ψ . P as (|Ψ|) | P . We avoid recursion (it
can be encoded using replication).

There are a couple of ways in which this psi-calculus differs from CC-Pi, apart from the
source of the non-compositionality mentioned above. Most prominently, in the semantics
of CC-Pi the fusions resulting from communication are required to be consistent with the
store (as defined by the constraint system). In contrast our semantics will allow transitions
that lead to an inconsistent store. In general both of these approaches have been used in
concurrent constraint systems. It appears not possible to integrate a consistency check in
a psi-calculus communication without changing our Com-rule.

An example of how a CC-Pi communication is represented in psi:

In CC-Pi:

P = Ψ | ab .Q | cd .R τ−→ Ψ⊗(b = d) | Q | R
if Ψ ` a = c and Ψ⊗(b = d) consistent

In psi:
P = (|Ψ|) | a b .Q | c(x) . ((|x = d|) | R)

τ−→ (|Ψ|) | (|b = d|) | Q | R if Ψ ` a = c

Psi-calculi go beyond most concurrent constraint systems in two ways. Firstly, we allow
arbitrary logics, even higher-order ones. Secondly, we allow constraints and conditions to
be data terms, which means an agent can transmit and receive these. For example, assume
that c is a constraint and that f is a function from assertions to assertions. Then in
the agent a c . P | a(z) . ((|f(z)|) | Q) τ−→ P | (|f(c)|) | Q the left hand agent sends a the
constraint c to the right, and f is applied to it. Similarly, if p is a unary predicate, in the
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agent a p . P | a(z) . if z(x) then Q
τ−→ P | if p(x) then Q the left hand agent sends the

predicate to the right, which applies it to x.

4. Applications

In this section we will look at a few applications of psi-calculi, some of which have been
described before in other formalisms, and some which are novel.

4.1. Structured terms as channels. Calculi with channels that can carry complex data
are common, but in most cases the terms that represent channels are very simple, usually
only a single name. We here give some examples where they have structure, and thus may
contain more than one name.

4.1.1. Frequency hopping spread spectrum. Wireless communication over a constant radio
frequency has a number of drawbacks. In a hostile environment a radio can be tuned
in to the correct frequency and monitor the communication which is also vulnerable to
jamming. A solution to these problems is to jump quickly between different frequencies in
a scheme called frequency hopping spread spectrum (FHSS), first patented in 1942 [MA42].
To eavesdrop it would then be necessary to match both the order of the frequencies and
the pace of switching. Jamming is also made more difficult since the available power would
have to be distributed over many frequencies.

We will here show how this is modelled in a psi-calculus. It is assumed that the
initiator of the communication and the receiver share an algorithm used to calculate the
next frequency. The procedure starts by the initiator sending a communication request
over some predetermined frequency. The receiver then sends a seed back to the initiator
and both use it to calculate the sequence of frequencies to be used. Then the initiator
synchronises over the first calculated frequency to verify that it got the right sequence. The
communication then proceeds and both parties change frequencies accordingly.

We will now look at the psi-calculus used to model this frequency hopping algorithm.
We let terms represent radio frequencies and use the unary function nextFreq(M) to rep-
resent the algorithm for calculating the next frequency, given the previous frequency M .
This psi-calculus has no assertions other than unit.

T = N ∪ {nextFreq(M) : M ∈ T}
C = {M .↔ N : M,N ∈ T}
A = {1}
⊗ = λΨ1,Ψ2. 1
1 `M .↔M

Let Xin,out be an arbitrary agent that communicates with the environment via the
channels in and out . This agent will be wrapped in contexts that will let it do FHSS in
a transparent way: from the agent’s point of view it will only communicate over the local
channels in and out . The agent FHSS that implements frequency hopping looks like:

FHSS = ! fh(freq) .

out(y) . freq〈y〉 . fh〈nextFreq(freq)〉
+
freq(y) . in〈y〉 . fh〈nextFreq(freq)〉
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This agent can be thought of as a function fh that will take a frequency and then either
wait for something to be received from the local channel out to send over this frequency, or
to receive something over this frequency and forward it to the local channel in. It will then
calculate the next frequency and start over.

The behaviour when the agent Xin,out acts as initiator is modeled as a context where
the initiating sequence starts by sending a synchronisation message sync over a predeter-
mined control channel ctl, and then waits for a seed from that channel. It then starts the
frequency hopping algorithm with the seed and sends a synchronisation message over the
first frequency, and behaves as Xin,out . It is assumed that seed#Xin,out .

I[Xin,out ] = ctl〈sync〉 . ctl(seed) . fh〈seed〉 . out〈sync〉 . Xin,out | FHSS

The behaviour when the agent Xin,out acts as a receiver is modeled similarily: the
receiver listens to the control channel ctl and sends back a seed. Then it starts the frequency
hopping algorithm with this seed and waits for a synchronisation message. The receiver
then behaves as Xin,out . It is assumed that x, seed , s#Xin,out .

R[Xin,out ] = ctl(s) . (νseed)ctl〈seed〉 . fh〈seed〉 . in(x) . Xin,out | FHSS

The full system where Xin,out may behave as either a receiver or initiator is then
modeled as

FH [Xin,out ] = (νfh, in, out) (I[Xin,out ] +R[Xin,out ])
where it is assumed that fh#Xin,out .

Let us look at a few transitions of the receiver. First the receiver gets a request to do
frequency hopping over the control channel:

FH [Xin,out ]
ctl sync−−−−→

(νfh, in, out)
(
(νseed)ctl〈seed〉 . fh〈seed〉 . in(x) . Xin,out | FHSS

)
It then sends the seed to the initiator and starts the frequency hopping using this seed:

ctl (νseed)〈seed〉−−−−−−−−−−→ (νfh, in, out)
(
fh〈seed〉 . in(x) . Xin,out | FHSS

)
τ−→ (νfh, in, out)


in(x) . Xin,out

∣∣ out(y) . seed〈y〉 . fh〈nextFreq(seed)〉
+
seed(y) . in〈y〉 . fh〈nextFreq(seed)〉

 | FHSS


At this point the initiator will send the sync message:

seed sync−−−−−→
(νfh, in, out)

(
in(x) . Xin,out | in〈sync〉 . fh〈nextFreq(seed)〉 | FHSS

)
τ−→ (νfh, in, out)

(
Xin,out | fh〈nextFreq(seed)〉 | FHSS

)
After another τ -transition the agent is ready to communicate over the next frequency:

τ−→ (νfh, in, out)


Xin,out

∣∣ out(y) . nextFreq(seed)〈y〉 . fh〈nextFreq(nextFreq(seed))〉
+
nextFreq(seed)(y) . in〈y〉 . fh〈nextFreq(nextFreq(seed))〉

 | FHSS
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This example could easily be made more complex by adding relevant error checking
(e.g. the receiver could check that the synchronisation message is correct), but even in this
form it illustrates the use of structured channels.

4.1.2. Local services. A common scenario is that different servers implement the same kind
of functionality known under some globally known name. HTTP servers are examples of
this where the service provided is normally available on IP port 80. Here the name of the
service (port 80) is shared among the different servers. The general problem is that there
is a service known under a global name, but available from servers with different names.
This problem is treated in depth in [CS01] where the authors invent a new calculus for this
purpose. Here we show how the same problem can be solved using an instance of psi-calculi.

The instance used is basically the same as for polyadic pi-calculus as presented in Sec-
tion 2.4 augmented with terms of form a@b and the entailment 1 ` a@b .↔ a@b, where a and
b are names. This gives the possibility to scope a part of a channel term, e.g (νb)(a@b c.P ),
as in [CM03].

T = {a@b : a, b ∈ N}∪
{t2(M,N) : M,N ∈ T} ∪ N

C = {M .↔ N : M,N ∈ T}
A = {1}
⊗ = λΨ1,Ψ2. 1
1 ` a .↔ a ∀a ∈ N
1 ` a@b .↔ a@b ∀a, b ∈ N

The following example is adapted from [CS01]. Assume there are globally known names
finger and daytime which refer to resources located at some server. Different servers have
different local information, but this information is accessed through the same globally known
names. This can be modelled as

Server = ! server(t2(service, replyc)) . (νa)

 service@a〈replyc〉 .0
| Finger(a)
| Daytime(a)


Finger(a) = finger@a(replyc) . replyc〈UserList〉 .0

Daytime(a) = daytime@a(replyc) . replyc〈Date〉 .0
where UserList and Date are some terms containing the requested information. The exact
nature of these terms is unimportant for this example.

The server listens to incoming requests on channel server and receives two names. The
first name is the requested service, and the second is the reply channel. It will then do an
internal communication with the particular service daemon. There is no risk of interference
since a locally scoped name is part of the service channel. The result of the request is then
forwarded along the reply channel.

Server server t2(finger ,c)−−−−−−−−−−−→ Server | (νa)

 finger@a〈c〉 .0
| Finger(a)
| Daytime(a)


τ−→ Server | (νa)

(
0 | c〈UserList〉 .0 | Daytime(a)

)
c〈UserList〉−−−−−−−→ Server | (νa)

(
0 | 0 | Daytime(a)

)
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Since any transitions from Daytime(a) are prevented by the restriction, the final derivative
will behave like Server .

4.2. Cryptography. In this section we give a sequence of examples from cryptography,
culminating with a model of the Diffie-Hellman key agreement protocol. Our exposition is
quite similar to the applied pi-calculus as presented in [AF01], and we will use a psi-calculus
that mimics this closely. The main point is that psi-calculi can express these cryptographic
examples in an equally concise way, and within a leaner and more symmetric formalism.

The psi-calculus instance we use for the examples below can be seen as a simplification
of the one in Section 3.1. To construct this psi-calculus we assume an inductively defined set
of terms T using a signature Σ, and an equational theory `Σ which let us infer equations
M = N where M and N are terms. Exactly how this theory works is unimportant for
this presentation. We let an assertion in A be a finite set of equations between terms
and names, and often elide the set brackets in agents, e.g. writing (|M = x|) instead of
(|{M = x}|). In such an assertion we call x an alias of M . The conditions are just equations
M = N and channel equivalences M .↔ N . Entailment is defined such that Ψ ` M = N
and Ψ ` M .↔ N both hold if M = N can be inferred from the equations in Ψ using the
equational theory `Σ. The unit 1 is ∅ and composition ⊗ of assertions is union of sets.

We start by looking at how one-way hashing is modelled. The signature contains the
unary symbol hash(x) which has no equations. The only equation on hash that is true is
hash(M) = hash(M), and this means that the hash function is collision free. The following
example shows one agent sending a message M together with a hashing x of the message
and a secret name s to another agent. The second agent will only forward M if it is properly
hashed.

(νs)((|hash(t2(s,M)) = x|) | a〈t2(M,x)〉 | a(y) . if hash(t2(s, π1(y))) = π2(y) then b〈π1(y)〉)
To model symmetric cryptography, the signature is extended as in Section 3.1: we add

the binary symbols enc(x, y) and dec(x, y) together with the equation dec(enc(x, y), y) = x.
The following agent sends a message M encrypted with the secret key k, without revealing
the plaintext or key.

(νk, x)((|enc(M,k) = x|) | a x) a (νx)x−−−−→ . . .

Asymmetric encryption is modelled by adding two new unary symbols pk(s) and sk(s)
which generate the public and secret keys from a common seed value, and the equation
dec(enc(x, pk(k)), sk(k)) = x. The following agent sends the public key on channel a, receives
a message along channel b, decrypts it with the secret key, and sends the decrypted message
along channel c:

(νs, x)((|pk(s) = x|) | a x | b(y).((|dec(y, sk(s)) = z|)) | c z)
Non-deterministic crypto is modelled by using a ternary version of the symbol enc(x, y, z)

where the third argument is some salt, together with the equation dec(enc(x, pk(k), z), sk(k)) =
x. Consider the following agent:

a(x).
(
(νm, y)((|enc(M,x,m) = y|) | b y) | (νn, z)((|enc(M,x, n) = z|)) | c z

)
An observer of this agent cannot tell whether y and z are encryptions of the same message
or not, because of the unique salt.

Digital signatures are modelled by adding the binary symbol sign(x, y), the ternary sym-
bol check(x, y, z), the constant symbol ok, and the equation check(x, sign(x, sk(k)), pk(k)) =
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ok. The following agent sends a signed message along a, then the parallel component receives
it and checks the signature. If it is ok it is then forwarded.

(νs, z)((|pk(s) = y|) | (|sign(M, sk(s)) = z|) | a t2(M, z))
| a(x).if check(π1(x), π2(x), y) = ok then b π1(x)

The Diffie-Hellman protocol [DH76] is used to establish a shared secret between two
principals who do not necessarily share any secrets beforehand. This is done by exchanging
messages over a public channel.

We let Σ include f(x, y) and g(x), and the equation system includes f(x, g(y)) =
f(y, g(x)), but no other equations on f and g. The first principal P creates a secret nP
and sends an alias xP of g(nP ) to the other principal Q, and Q does likewise. Then P can
create the term f(nP , xQ) and Q can create the term f(nQ, xP ). Using the equations above
these two terms are equivalent and the shared secret has been established. Concretely f
and g are functions in a multiplicative group modulo a large prime, but here we ignore the
number theory.

Let PkP
and QkQ

be two agents that will share a secret key and will use the names
kP and kQ, respectively, to refer to it. The Diffie-Hellman key agreement is modelled as
two symmetric contexts DH01 [·] and DH10 [·] in which the agents are placed. The context
DH01 [Xk] is defined as

DH01 [Xk] = (νn, x, a01, a10)((|g(n) = x|) | a01 x | a10(z).(νk)((|f(n, z) = k|) | Xk))

where n, x, a01, a10#Xk and k occurs in Xk as a a name that refers to a key. The context
DH10 [Xk] is defined in the same way but with a10 and a01 swapped.

The agents PkP
and QkQ

agree on the secret by placing them in the contexts: DH01 [PkP
]

and DH10 [QkQ
]. The key agreement will then do two internal transitions:

DH01 [PkP
] | DH10 [QkQ

] τ−→ τ−→ (νxP , xQ)(P ′ | Q′)
where

P ′ = (νnP , a01, a10)((|g(nP ) = xP |) | (νkP )((|f(nP , xQ) = kP |) | PkP
))

Q′ = (νnQ, a01, a10)((|g(nQ) = xQ|) | (νkQ)((|f(nQ, xP ) = kQ|) | QkQ
))

The x and n from the context have been alpha-converted to the variants with subscripts to
avoid clashes.

Since the agents are communicating over a public channel the messages may be inter-
cepted by a passive attacker which then forwards them unmodified. In presence of such an
attacker the agents evolve to P ′ | Q′ where the lack of binders for xP and xQ represent that
the hostile environment now has access to these values. We show that this does not break
the protocol.

As a specification for this protocol we put PkP
| QkQ

in a context where they already
share a secret, here represented by the name k′: S = (νkP , kQ, k′)((|k′ = kP |) | (|k′ =
kQ|) | PkP

| QkQ
). We then show that P ′ | Q′ and S behave the same, denoted P ′ | Q′ ∼ S.

The precise meaning of ∼ is given in Section 5, but for this particular example it is sufficient
to think of ∼ as equivalence of the frames of S and P ′ |Q′ according to Definition 5. This
equivalence is closed under parallel composition (if P and Q behave the same, then so will
P | R and Q | R for any agent R) and restriction (if P and Q behave the same, then so will
(νa)P and (νa)Q, for any a).
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We have that
(νnP , aP )((|g(nP ) = xP |) | (|f(nP , xQ) = kP |)) | (νnQ, aQ)((|g(nQ) = xQ|) | (|f(nQ, xP ) = kQ|))
∼

(νk′)((|k′ = kP |) | (|k′ = kQ|))
The reason is that the only condition entailed on both sides is kP = kQ, no equalities can
be entailed on xP and xQ. Since ∼ is closed under parallel composition we can add the
agents:

(νnP , aP )((|g(nP ) = xP |) | (|f(nP , xQ) = kP |)) | (νnQ, aQ)((|g(nQ) = xQ|) | (|f(nQ, xP ) = kQ|))
| PkP

| QkQ

∼
(νk′)((|k′ = kP |) | (|k′ = kQ|))
| PkP

| QkQ

Since ∼ is closed under the restriction operator:

(νkP , kQ)
((νnP , aP )((|g(nP ) = xP |) | (|f(nP , xQ) = kP |)) | (νnQ, aQ)((|g(nQ) = xQ|) | (|f(nQ, xP ) = kQ|))
| PkP

| QkQ
)

∼
(νkP , kQ)

((νk′)((|k′ = kP |) | (|k′ = kQ|))
| PkP

| QkQ
)

Finally, by the structural laws of Theorem 16 in Section 5.2:

P ′ | Q′ ∼ S.

5. Bisimilarity

In this section we define a notion of strong bisimilarity on agents and prove that it
satisfies the expected algebraic laws and substitutive properties. The results hold for any
psi-calculus and gives us confidence in the semantic definitions.

5.1. Definition. In the standard pi-calculus the notion of strong bisimulation is used to
formalise the intuition that two agents “behave in the same way”; it is defined as a symmetric
binary relation R satisfying the simulation property: R(P,Q) implies that for α such that
bn(α)#Q,

P
α−→ P ′ =⇒ Q

α−→ Q′ ∧R(P ′, Q′)
For a psi-calculus we in addition need to take the assertions into consideration. The be-
haviour of an agent is always taken with respect to an environmental assertion, and therefore
a bisimulation must include the assertion to represent this. In other words, we get a ternary
relation R(Ψ, P,Q), saying that P and Q behave in the same way when the environment
asserts Ψ. Because of this two additional issues arise. The first is that the agents can af-
fect their environment through their frames (and not only by performing actions), and this
must be represented in the definition of bisimulation. The second is that the environment
(represented by Ψ in R(Ψ, P,Q)) can change, and for P and Q to be bisimilar they must
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continue to be related after such changes. This leads to the following definition of strong
bisimulation.

Definition 10 (Bisimulation). A bisimulation R is a ternary relation between assertions
and pairs of agents such that R(Ψ, P,Q) implies all of

(1) Static equivalence: Ψ⊗F(P ) ' Ψ⊗F(Q)
(2) Symmetry: R(Ψ, Q, P )
(3) Extension of arbitrary assertion:
∀Ψ′. R(Ψ⊗Ψ′, P,Q)

(4) Simulation: for all α, P ′ such that bn(α)#Ψ, Q there exists a Q′ such that

Ψ � P
α−→ P ′ =⇒ Ψ � Q

α−→ Q′ ∧R(Ψ, P ′, Q′)

We define P .∼Ψ Q to mean that there exists a bisimulation R such that R(Ψ, P,Q), and
write .∼ for .∼1.

Clauses 2 and 4 are familiar from the pi-calculus. Clause 1 captures the fact that the
related agents have exactly the same influence on the environment through their frames,
namely that when they add to the existing environment (Ψ) then exactly the same conditions
are entailed. Clause 3 means that when the environment changes (by adding a new assertion
Ψ′) the agents are still related. An example may clarify the role of this clause. Let β be a
prefix and let ϕ be any non-trivial condition, and consider

P = β.β.0 + β.0 + β. if ϕ then β.0
Q = β.β.0 + β.0

P can nondeterministically choose between three branches and Q between the two first of
them. Here P and Q are not bisimilar. If P performs an action corresponding to its third
case, reaching the agent P ′ = if ϕ then β.0, there is no way that Q can simulate since
neither Q′ = 0 nor Q′ = β.0 is equivalent to P ′ in all environments. In fact, any reasonable
variant of bisimulation that equates P and Q will not be preserved by parallel. To see
this, let T be γ.(|Ψ|), where γ is any prefix and Ψ an assertion that entails ϕ. Then the
transition P | T β−→ P ′ | T cannot be simulated by Q|T , since P ′|T can only do an action
γ followed by an action β, whereas β.0|T can do β immediately, and 0|T can do no β at
all. This demonstrates why clause 3, extension of arbitrary assertion, is necessary: it says
that after each step all possible extensions of the assertion must be considered. If we would
merely require this at top level, i.e. remove clause 3 and instead require ∀Ψ.R(Ψ, P,Q) in
the definition of P .∼ Q, the extensions would not recur; as a consequence P and Q in the
example would be equivalent, and the equivalence would not be preserved by parallel.

For another example, consider

R = if ϕ then β . if ϕ then β.0 S = if ϕ then β.β.0

In R the condition ϕ is checked twice. In general R and S are not equivalent. To see this, let
Ψ and Ψ′ be such that Ψ ` ϕ and Ψ⊗Ψ′ 6` ϕ. We then have that Ψ � R

β−→ if ϕ then β.0
and it cannot be simulated by Ψ � S

β−→ β.0 because of the recurring clause of extension
of arbitrary assertion: if ϕ then β.0 has no transition in the environment Ψ⊗Ψ′. However,
if the entailment relation satisfies weakening, i.e. Ψ ` ϕ⇒ Ψ⊗Ψ′ ` ϕ, we get the intuitive
result that R and S are bisimilar. Weakening is a quite natural requirement, intuitively it
says that no assertion can “undo” any entailments. This also demonstrates why we rejected
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the smaller and simpler definition of .∼ as the largest relation satisfying

∀Ψ.Ψ � P
β−→ P ′ =⇒ Ψ � Q

β−→ Q′ ∧ P ′
.∼ Q′

The difference is that here bisimulation recurringly requires to hold for all assertions, not
only for those that are extensions of the ones passed so far. This would have the unintuitive
effect of making R and S in the example above non-bisimilar, even if weakening holds.

Interestingly, there is an alternative way to define bisimulation as a binary relation
preserved by parallel contexts.

Definition 11 (Context bisimulation). A context bisimulation R is a binary relation on
agents such that R(P,Q) implies all of

(1) Static equivalence: F(P ) ' F(Q)
(2) Symmetry: R(Q,P )
(3) Extension of contextual assertion:
∀Ψ. R((|Ψ|) | P, (|Ψ|) | Q)

(4) Simulation: for all α, P ′ such that bn(α)#Q there exists a Q′ such that

1 � P
α−→ P ′ =⇒ 1 � Q

α−→ Q′ ∧ R(P ′, Q′)

We define P .∼c Q to mean that there exists a context bisimulation R such that R(P,Q).

Such a definition is more in line with standard contextual bisimulations, and also the
way bisimulation is defined in the applied pi-calculus. The drawback is that it relies on an
operator in the calculus (parallel) for its definition. For conducting proofs our experience is
that Definition 10 is preferable. We have shown that these bisimilarities coincide, i.e., the
definitions result in the same bisimulation equivalence:

Theorem 12 (Bisimulation and context bisimulation coincide). .∼ = .∼c

5.2. Algebraic properties. Our results are that bisimilarity is preserved by the operators
in the expected way, and also satisfies the expected structural algebraic laws.

Theorem 13. For all Ψ:
(1) P .∼Ψ Q =⇒ P |R .∼Ψ Q |R.
(2) P .∼Ψ Q =⇒ (νa)P .∼Ψ (νa)Q.
(3) P .∼Ψ Q =⇒ !P .∼Ψ !Q.
(4) ∀i.Pi

.∼Ψ Qi =⇒ case ϕ̃ : P̃ .∼Ψ case ϕ̃ : Q̃.
(5) P .∼Ψ Q =⇒M N.P

.∼Ψ M N.Q.
(6) (∀L̃. P [ã := L̃] .∼Ψ Q[ã := L̃]) =⇒

M(λã)N.P .∼Ψ M(λã)N.Q

Definition 14. P ∼Ψ Q means that for all x̃, M̃ it holds P [x̃ := M̃ ] .∼Ψ Q[x̃ := M̃ ], and
we write P ∼ Q for P ∼1 Q.

Theorem 15. ∼Ψ is a congruence for all Ψ.
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Theorem 16.
P ∼ P | 0

P | (Q |R) ∼ (P |Q) |R
P |Q ∼ Q | P
(νa)0 ∼ 0

P | (νa)Q ∼ (νa)(P |Q) if a#P
M N.(νa)P ∼ (νa)M N.P if a#M,N

M(λx̃)N.(νa)P ∼ (νa)M(λx̃)(N).P if a#x̃,M,N

case ϕ̃ : (̃νa)P ∼ (νa)case ϕ̃ : P̃ if a#ϕ̃
(νa)(νb)P ∼ (νb)(νa)P

!P ∼ P | !P

The most awkward part of the proofs is for Theorem 13(1), and historically this is
the proof that most often fails in calculi of this complexity; the intricate correspondences
between parallel processes and their assertions are hard to get completely right. We give
an outline of the proof, and in detail cover the simulation case where the parallel processes
communicate with each other.

We pick the candidate relation R = {(Ψ, (νã)(P |R), (νã)(Q |R)) : P .∼Ψ⊗ΨR
Q} where

ã#Ψ, and prove that R is a bisimulation. Moreover we assume that b̃P#b̃Q, Q, b̃R, R,Ψ,
and b̃R#P,Q,Ψ, or, in other words, that bound names are distinct from all free names and
other bound names. Formally the proof is conducted by an induction on the length of ã.
The induction steps are straightforward, so we focus on the base case. The agent P | R can
operate either by P or R doing individual actions, or by P and R communicating, where
we cover the latter case, as it is the most involved.

In this case we have, by the Com rule, that P does an input transition (Ψ⊗ΨR �

P
M N−−−→ P ′), R does an output transition (Ψ⊗ΨP � R

K (νea)N−−−−−→ R′), and that the
subjects of the transitions are channel equivalent (Ψ⊗ΨP⊗ΨR ` M

.↔ K). The resulting
communication between P and R is thus Ψ � P | R τ−→ (νã)(P ′ | R′).

To complete this step of the proof we need to find a Q′ such that Ψ � Q | R τ−→
(νã)(Q′ | R′), and (Ψ, (νã)(P ′ | R′), (νã)(Q′ | R′)) ∈ R.

The presence of assertions in the transitions complicates the proof. We know that
P

.∼Ψ Q, and hence by Definition 10(3) that P .∼Ψ⊗ΨR
Q. Since Ψ⊗ΨR � P

M N−−−→ P ′, we

can obtain a Q′ such that Ψ⊗ΨR � Q
M N−−−→ Q′ and P ′ .∼Ψ⊗ΨR

Q′. However, this transition

cannot communicate with Ψ⊗ΨP � R
K (νea)N−−−−−→ R′, since that transition is derived by the

assertion Ψ⊗ΨP , and not Ψ⊗ΨQ. Moreover, M and K are channel equivalent by the
assertion Ψ⊗ΨP⊗ΨR, and not Ψ⊗ΨQ⊗ΨR, which would be needed to derive the desired
communication. In order to complete the proof, we need a lemma which switches the
occurrences of ΨP to ΨQ in the transition of R, as well as in the channel equality.

Once a communication has been derived, we must prove that the corresponding deriva-
tives (νã)(P ′ | R′), and (νã)(Q′ | R′) are in the candidate relation R. From the definition
of R we get that this holds if P ′ .∼Ψ⊗ΨR′ Q

′, but we only know that P ′ .∼Ψ⊗ΨR
Q′. In order

to complete the proof, P ′ and Q′ must be bisimilar in the assertion Ψ⊗ΨR′ , and not only
in Ψ⊗ΨR.

We provide lemmas which will address both of these obstacles in turn, after which
this proof will be concluded. Lemma 19 simultaneously changes the assertion deriving the



PSI-CALCULI: A FRAMEWORK FOR MOBILE PROCESSES WITH NOMINAL DATA AND LOGIC 27

transition for R, and the channel equality, and Lemmas 20 and 21 ensure that the derivatives
of the communicating agents are in the candidate relation R. Lemmas 17 and 18 are two
generally applicable lemmas used to prove Lemma 19.

First, we define subj(M (νã)N) = M and similarly for input actions, and in all lemmas
we tacitly assume F(P ) = (νb̃P )ΨP , where b̃P#P , for any agent P .

The first lemma shows that given a finite set of names B that are fresh for P we can
find a term M channel equivalent to the subject of an action from P whose names are fresh
for B.

Lemma 17 (Find equivalent term).

B ⊆ N ∧B finite ∧B#P

∧ Ψ � P
α−→ P ′ where α 6= τ

∧ b̃P#Ψ, P, subj(α), B
=⇒ ∃M . B#M

∧ Ψ⊗ΨP `M
.↔ subj(α)

Proof. A straightforward induction on the length of the derivation of the transition. In the
base case we choose M as the prefix in the agent.

The next lemma shows that given a transition we can find another transition whose
subject is channel equivalent to the subject of the original transition and that leads to the
same derivative as the original transition.

Lemma 18 (Rewrite subject).

Ψ � P
M (νea)N−−−−−→ P ′

∧ Ψ⊗ΨP ` K
.↔M

∧ b̃P#Ψ, P,K,M

=⇒ Ψ � P
K (νea)N−−−−−→ P ′

The symmetric lemma where P does an input is omitted.

Proof. A straightforward induction on the length of the derivation of the transition.

We can now prove the lemma which allows us to simultaneously switch the assertions
deriving a transition, as well as channel equality in a communication. This lemma looks a
bit intimidating and the proof details can safely be skipped at a first reading. It says that if
P and Q are bisimilar and P can communicate with R via the channel K, then there exists
a channel K ′ such that Q can communicate with R via K ′.
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Lemma 19 (Switching).

P
.∼Ψ⊗ΨR

Q

∧ Ψ⊗ΨR � P
M N−−−→ P ′

∧ Ψ⊗ΨP � R
K (νea)N−−−−−→ R′

∧ Ψ⊗ΨP⊗ΨR ` K
.↔M

∧ b̃R#b̃P , b̃Q,Ψ, P,Q,R,K
∧ b̃Q#Ψ, R, P,Q,M
∧ b̃P#R,M,Ψ

=⇒ ∃K ′.Ψ⊗ΨQ � R
K′ (νea)N−−−−−−→ R′

∧ Ψ⊗ΨQ⊗ΨR ` K ′
.↔M

∧ b̃R#K ′

There is also a symmetric lemma where R does an input.

Proof. By induction on the length of the derivation of the transition from R. We only look
at one base case and one induction step here. The other cases are similar.

Out: In this case R = Ks N.R
′ for some term Ks, and the transition is derived like

this:

Out
Ψ⊗ΨP ` Ks

.↔ K

Ψ⊗ΨP � Ks N.R
′ K N−−−→ R′

Since b̃P#Ψ, R we get that Ψ⊗F(P ) ` Ks
.↔ Ks. This in turn gives us that

Ψ⊗F(Q) ` Ks
.↔ Ks, which means that Ψ⊗ΨQ ` Ks

.↔ Ks. We then establish the
first conjunct by:

Out
Ψ⊗ΨQ ` Ks

.↔ Ks

Ψ⊗ΨQ � Ks N.R
′ Ks N−−−→ R′

For the second conjunct, we have that Ψ⊗ΨP ` Ks
.↔ K and that Ψ⊗ΨP⊗1 `

K
.↔ M (since in this case ΨR is 1). Identity and transitivity then gives us that

Ψ⊗ΨP ` Ks
.↔ M . Since b̃P#R,M we have that Ψ⊗F(P ) ` Ks

.↔ M and since
P and Q are bisimilar we also have that Ψ⊗F(Q) ` Ks

.↔ M . We finally get
Ψ⊗ΨQ ` Ks

.↔M . The third conjunct is trivial since b̃R is empty.
Scope: In this case R = (νb)R′ for some name b and the transition is derived like this:

Scope
Ψ⊗ΨP � R′

K (νea)N−−−−−→ R′′

Ψ⊗ΨP � (νb)R′ K (νea)N−−−−−→ (νb)R′′
b#K (νã)N,Ψ

Let b#b̃P , b̃Q, P,Q. Note that by definition we have that Ψ(νb)R′ = ΨR′ . We
also have that b̃(νb)R′#b̃P , b̃Q,Ψ, P,Q, (νb)R′,K =⇒ b̃R′#b̃P , b̃Q,Ψ, P,Q,R′,K and
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that b̃(νb)R′#b̃P , b̃Q ∧ b̃P , b̃Q#(νb)R′ ∧ b#b̃P , b̃Q =⇒ b̃P , b̃Q#R′. From the induction

hypothesis we then get that Ψ⊗ΨQ � R′
K′ (νea)N−−−−−−→ R′′, Ψ⊗ΨQ⊗ΨR′ ` M

.↔ K ′,
and that b̃R′#K ′.

From the fact that P and Q are bisimilar we get that Ψ⊗Ψ(νb)R′ � Q
M N−−−→ Q′.

Let B = {b} ∪ b̃R′ . By Lemma 17 we learn that there exists a term K ′′ such that
Ψ⊗Ψ(νb)R′⊗ΨQ ` K ′′

.↔M , fulfilling the second obligation, and that B#K ′′. This
gives us that b̃R′ , b#K ′′. By transitivity we then get that Ψ⊗Ψ(νb)R′⊗ΨQ ` K ′

.↔
K ′′. We now use Lemma 18 to get that Ψ⊗ΨQ � R′

K′′ (νea)N−−−−−−→ R′′. Finally we do
the following derivation:

Scope
Ψ⊗ΨQ � R′

K′′ (νea)N−−−−−−→ R′′

Ψ⊗ΨQ � (νb)R′ K′′ (νea)N−−−−−−→ (νb)R′′
b#K ′′ (νã)N,Ψ

That b̃(νb)R′#K ′′ follows from B#K ′′.

The following lemma proves that any when an agent performs a transition, its frame is
extended with a new assertion (Ψ′ below):

Lemma 20. If Ψ � R
M N−−−→ R′ and b̃R#R,N,C where C is a set of names, then

∃Ψ′, b̃R′ ,ΨR′ such that F(R′) = (νb̃R′)ΨR′ ∧ ΨR⊗Ψ′ ' ΨR′ ∧ b̃R′#C,R′.

Proof. A straightforward induction on the length of the derivation of the transition.

Finally, we need a lemma which allows us to switch the environment for a bisimulation
for an equivalent one.

Lemma 21. If Ψ � P
.∼ Q and Ψ ' Ψ′ then Ψ′ � P

.∼ Q

Proof. The candidate relation for the bisimulation is R = {(Ψ′, P, Q) : Ψ � P
.∼ Q∧Ψ '

Ψ′}. The four cases are proven separately.
Case 1: Follows from the fact that ⊗ is compositional, where the bound names of the

frames of P and Q are alpha-converted not to clash with Ψ′.
Case 2: S is trivially symmetric, since .∼ and ' are symmetric.
Case 3: Follows from the fact that ⊗ is compositional.
Case 4: From the definition of .∼ and the transition Ψ � P

α−→ P ′, we obtain a
Q′. s.t. Ψ � Q

α−→ Q′ and Ψ � P ′
.∼ Q′. By induction on the derivation of this

transition, and the fact that Ψ ' Ψ′, we get that Ψ′ � Q
α−→ Q′. Moreover, since

Ψ � P ′
.∼ Q′ and Ψ ' Ψ′ we have that (Ψ′, P ′, Q′) ∈ S.
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With these lemmas in place we complete the proof of Theorem 13(1) commenced at the
beginning of this section. The case we are proving is when P |R performs a communication.
We must find a corresponding transition from Q | R such that the derivatives remain in the
candidate relation R. The agents P and Q can communicate using the following derivation.

Com

ΨR⊗Ψ � P
M (νea)N−−−−−→ P ′

ΨP⊗Ψ � R
K N−−−→ R′ Ψ⊗ΨP⊗ΨR `M

.↔ K

Ψ � P |R τ−→ (νã)(P ′ |R′)
ã#R

Our goal is to replace P with Q in the premises so that we can derive the simulating
transition. Let F(Q) = (νb̃Q)ΨQ be such that b̃Q#P, b̃R, R,Ψ,M .

We use Lemma 19, to obtain ΨQ⊗Ψ � R
K′ N−−−→ R′ and Ψ⊗ΨQ⊗ΨR ` M

.↔ K ′.

Since P and Q are bisimilar we have that Ψ⊗ΨR � Q
M (νea)N−−−−−→ Q′. We then derive the

following:

Com

ΨR⊗Ψ � Q
M (νea)N−−−−−→ Q′

ΨQ⊗Ψ � R
K′ N−−−→ R′ Ψ⊗ΨQ⊗ΨR `M

.↔ K ′

Ψ � Q |R τ−→ (νã)(Q′ |R′)
ã#R

We know that P ′ .∼Ψ⊗ΨR
Q′ and by clause 3 in the definition of bisimulation (extension

of arbitrary assertion) that P ′ .∼Ψ⊗ΨR⊗Ψ′ Q
′ for any Ψ′. By Lemma 20 we know that

there exists a Ψ′′ such that ΨR⊗Ψ′′ ' ΨR′ , so in particular, using Lemma 21, we have that
P ′

.∼Ψ⊗ΨR′ Q
′ We then conclude that (Ψ, (νã)(P ′ |R′), (νã)(Q′ |R′)) ∈ R.

The proofs of theorems 12–16 follow a similar pattern, using induction over the lengths
of the derivations of the transitions. The part we have just shown is the most challenging.

6. Formalisation in Isabelle

As the complexities of calculi increase, the proofs become complicated and therefore
more error prone. In Section 3 we discussed how both the applied pi-calculus and the
concurrent constraint pi-calculus have turned out to be non-compositional. This hints at the
complexity of the proofs and the difficulty of getting them right. Our proofs for psi-calculi
are also sometimes long and intricate. For example, the proof sketch of Theorem 13(1),
described in the previous section, is substantially more complicated than its corresponding
proof for the pi-calculus. However, we emphasize that the proof is not substantially different
in structure: it is just a set of properties of transitions, all established by induction over the
the definition of the semantics. In this, psi-calculi are simpler then many other calculi that
rely on stratified definitions of the semantics with devices such as a structural congruence.

In order to ensure that proofs are correct, automated and interactive proof assistants or
theorem provers can be used to formally verify the proofs with the aid of a computer. We
have completely formalised all results in Section 5 in the interactive theorem prover Isabelle.
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This is pioneering work. To the best of our knowledge, no calculus of this complexity has ever
been formalised in a theorem prover. In previous work [BP07] we formalised a substantial
part of the pi-calculus meta-theory in Isabelle. This section will cover the main additions to
formalise the framework for psi-calculi. A more in depth exposition can be found in [BP09].

6.1. Alpha-equivalence. The main difficulty with formalising any process algebra in a
theorem prover is to reason about alpha-equivalence in a convenient way. When conducting
manual proofs on paper this notion is often glossed over, and statements such as “we assume
any bound name under consideration to be sufficiently fresh” are commonplace. For machine
checked proofs this poses a problem. Exactly what does it mean for a bound name to be
sufficiently fresh?

We use Nominal Isabelle [Urb08] to formalise datatypes with binders, and to reason
about them up to alpha-equivalence; in other words, all our proofs deal with alpha equiva-
lence classes rather than with particular representatives. In the standard nominal way alpha
variants of agents are identified , so e.g. (νa)P = (νb)((a b) · P ), when b#P , and similarly
for names bound in the input construct. Formally, name swapping on agents distributes
over all constructors, and substitution on agents avoids captures by binders through alpha-
conversion in the usual way. In that way Nominal Isabelle provides an alpha-equivalence
class of agents where the support of P is the union of the supports of the components of P ,
removing the bound names. This corresponds to the names with a free occurrence in P .

Frames contain binders and we reason about their alpha equivalence classes in the same
way. Also, transitions contain binders. Consider the output transition Ψ � P

M (νã)N−−−−−→ P ′.
To be completely formal, as described in [BP07], ã is a binding occurrence with a scope
that contains both N and P ′. We accomplish this by creating a datatype containing both
an action and the derivative process as follows.

Definition 22 (Residuals). A residual with the action α and the derivative P ′, is written
α ≺ P ′.

Thus we have the following three forms of residuals:

M (νx̃)N ≺ P ′ Output
M N ≺ P ′ Input
τ ≺ P ′ Silent

In the Output residual, x̃ binds into both N and P ′. In this way we get a nominal datatype
of residuals where name swapping just distributes to its components and the support is
the free names. A transition is then simply a pair consisting of an agent and a residual.
Again, Nominal Isabelle allows us to reason about alpha equivalence classes of transitions.
Typically a property of transitions is established by induction, with one case for each rule.
This means that we assume the property of the premise of the rule, and must establish it for
the conclusion. Since we work with alpha equivalence classes it is enough to establish the
property for one representative of the alpha equivalence class. This formalises the principle
that we may always pick bound names fresh.

Datatypes for agents, frames and transitions in Nominal Isabelle require sequences of
binders, e.g. in the input prefix and in the output action. Nominal Isabelle only supports
single binders, and we have therefore created infrastructure to reason about arbitrarily long
binding sequences. It is important to reason about them as atomic objects, otherwise there
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would be a constant need for inductive proofs of the length of these sequences. When alpha-
converting a binding sequence, we generate a name permutation p which when applied to
the sequence makes it sufficiently fresh. The same permutation is then applied to everything
under the scope of the binders, for example:

M(λx̃)N.P = M(λp · x̃)(p ·N).(p · P ) if p ⊆ x̃× (p · x̃) and (p · x̃) # (N, P )

The side condition of this alpha-conversion looks a bit intimidating, but intuitively p
swaps members of the original binding sequence to other names such that the resulting
binding sequence meets the desired freshness constraints. This style of alpha-conversion
was first introduced by Urban and Berghofer, although to the best of our knowledge it is
still unpublished. We cover it more extensively in [BP09].

6.2. Formalising parametric calculi. The framework for psi-calculi is a parametric for-
malism. A psi-calculus agent consists of terms, assertions and conditions. This is modelled
in Isabelle by creating a polymorphic datatype with three type variables. A psi-calculus
agent will thus have the type (α, β, γ) psi, where α, β, and γ represents terms, assertions,
and conditions respectively. All members of these types need to have finite support.

Isabelle has excellent facilities for a parametric style of reasoning through the use of
locales [Bal03]. Locales allow us to postulate which functions must exist for the parameters,
and which assumptions must hold on them. The entire proof structure of the meta theory
is then built using the provided locale parameters. When creating a psi-calculus instance,
the functions must be provided and the assumptions must be proven. Once this is done, all
meta-theoretical proofs will be guaranteed to hold for the new instance.

One requirement is a substitution function which substitutes names for terms, in our
terms, assertions and conditions. To this end, a locale is created with a substitution function
of type δ → name list → α list → δ, where the type α will be what we use for terms,
and the type δ can be any of the three nominal sets. The locale contains the following
constraints:

Equivariance: p · (X[x̃ := T̃ ]) = (p ·X)[(p · x̃) := (p · T̃ )]
Freshness: if a#X[x̃ := T̃ ] and a#x̃ then a#X

if a#X and a#T̃ then a#X[x̃ := T̃ ]
if x̃ ⊆ n(X) and a#X[x̃ := T̃ ] then a#T̃
if x̃#X̃ then M [x̃ := T̃ ] = X

if x̃#ỹ and ỹ#T̃ then X[x̃ỹ := T̃ Ũ ] = (X[x̃ := T̃ ])[ỹ := Ũ ]
Alpha-equivalence: if p ⊆ x̃× (p · x̃) and (p · x̃)#X then

X[x̃ := T̃ ] = (p ·M)[(p · x̃) := T̃ ]
The constraints on this locale are straightforward. As all functions in any nominal

formalisation, substitution must be equivariant. The second set of constraints cover which
freshness conditions can be derived from the arguments of a substitution, depending on if
it appears in the assumptions or the conclusion of a goal. Finally, it must be possible to
alpha-convert a substitution. Intuitively this means that the vector being substituted is
switched to one which is sufficiently fresh. Consider the Input rule.

In
Ψ `M .↔ K

Ψ � M(λỹ)N.P K N [ey:=eL]−−−−−−−→ P [ỹ := L̃]
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If a proof requires the input agent to be alpha-converted to M(λp · ỹ)(p ·N).(p ·P ) such
that p · ỹ is sufficiently fresh, it is necessary to convert N [ỹ := L̃] to (p · N)[(p · ỹ) := L̃],
and P [ỹ := L̃] to (p ·P )[(p · ỹ) := L̃], to still be able to derive the input transition. The last
constraint accomplishes this. Additionally we require that the vectors x̃ and T̃ , and ỹ and
Ũ , have equal length. This locale is then instantiated three times: for terms, assertions and
conditions respectively.

The nominal morphisms in Definition 1 are modeled in a locale which specifies their
existence and equivariance properties. Inside this locale we also define equivalence for
assertions and frames and provide an infrastructure for reasoning about equivalence. This
locale is then extended with the requisites in Definition 3.

Finally, the substitution locale is combined with the locale for equivalence to form
an environment in which the rest of the theories can be proven. The locales offer a very
intuitive way of reasoning about parametric systems, and without them this formalisation
would have been very hard.

6.3. Results and experiences. Formalising the proofs for psi-calculi in parallel to its
development has turned out to be invaluable, and we would certainly not have finished
successfully without it. Throughout the development we have uncountable times stumbled
over slightly incorrect definitions and not quite correct lemmas, prompting frequent changes
in the framework. For example, our mistake in [JPVB08] mentioned in Section 2.6 was found
during proof mechanisation and would probably not have been found at all without it; at
that time we had completed a manual “proof” which turned out incorrect. The Isabelle
formalisation gives us a high degree of confidence in the proven theorems, and equally
important, it gives us a repository of proofs and proof strategies that can be re-used when
some detail needs to change. Finding out which ramifications a change has on the proofs is
quick and straight forward. With manual proofs, changing a detail would mean the boring
and dangerously error prone process of going over each proof by hand.

As just one example, in a previous version, the Case rule looked as follows:

Old-Case
Ψ ` ϕi

Ψ � case ϕ̃ : P̃ τ−→ Pi
In this rule, the choice of which branch to take in a case statement yields an internal

action, after which the process P evaluates as usual. An implication is that the requirement
that P is guarded can be omitted. We initially adopted this rule since it admits simpler
induction proofs. At a quite late stage we decided to change it to the present rule, since
this more closely resembles what is used in similar calculi. The change prompted a rework
of the entire proof tree from the semantics and up. The total effort was approximately
eight hours, after which we had complete certainty that the new rule does not cause any
problems.

Currently we have formally proven theorems 12–16 in this paper, including all support-
ing lemmas. The entire implementation in Isabelle is about 18000 lines of Isabelle code.
It includes infrastructure for smooth treatment of binding sequences, and it has developed
gradually over the last two years. The total effort for the present framework is hard to
assess, since it has followed us through many failed attempts and false starts. Once in place
the marginal effort of formalising more results is manageable. As an example, the total
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effort in proving Theorem 12, which was one of the last things we formalised, was less than
one day.

7. Conclusion and Further Work

We have defined a framework for mobile process calculi, parametrised on nominal types
for data terms and for a logic to express assertions and conditions. The expressiveness sur-
passes the most advanced competing calculi. The semantics is a single inductive definition,
which means that proofs are comparatively easy. We have fully formalised the framework
in the interactive theorem prover Isabelle, which gives us full confidence in our results on
bisimulation and provides a readily available infrastructure for conducting proofs of many
instances and variants.

In a companion paper [JVP09] we have developed a symbolic semantics and bisimulation
equivalence, and proved full abstraction wrt. ∼. This kind of semantics is essential for
reducing the state space explosion when exploring transitions and comparing for equivalence,
making it ideal for use in automated tools.

Ongoing work includes an analysis of weak bisimulation equivalence, where τ actions are
considered unobservable. Our preliminary results indicate that the presence of assertions
significantly complicates the definitions, in contrast to the situation with strong bisimu-
lation. Interestingly, for psi-calculi that satisfy weakening (i.e. Ψ ` ϕ =⇒ Ψ⊗Ψ′ ` ϕ)
the definitions can be greatly simplified. We also investigate a barbed equivalence and
determine what kind of observations are needed for full abstraction.

We intend to explore typed psi-calculi. One idea is to find out what properties the type
system must have in order for the usual theorems such as subject reduction to hold.
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