Department of Information Technology

Johan Öfverstedt

doctoral/PhD student at Department of Information Technology, Division of Visual Information and Interaction

+4618-471 3371
Visiting address:
Room POL 2144 ITC, hus 1,2,4 Lägerhyddsv. 2
Postal address:
Box 337
751 05 UPPSALA

Short presentation

I am a doctoral student in the Methods in Image Data Analysis (MIDA) group under the supervision of Nataša Sladoje (main supervisor), Joakim Lindblad (co-supervisor) and Ida-Maria Sintorn (co-supervisor).

My main research interests are in efficient fusion of intensity and spatial information, distance/similarity measures between sets/images, image registration, robust and general methods, and machine learning methods.

MIDA Group

MIDA Group Github Page

Keywords: image analysis machine learning deep learning optimization robustness similarity measures image registration distance transforms

Also available at

My courses


Reviewed publications

In process

J. Öfverstedt, J. Lindblad, and N. Sladoje. Stochastic Distance Transform. (Preprint - arXiv:1810.08097 [cs.CV]). In Proceedings of the 21th international conference on Discrete Geometry for Computer Imagery (DGCI), Paris, France, March 2019. Accepted.

J. Öfverstedt, J. Lindblad, and N. Sladoje. Fast and Robust Symmetric Image Registration Based on Distances Combining Intensity and Spatial Information. (Preprint - arXiv:1807.11599 [cs.CV]). Accepted for publication in IEEE Transactions on Image Processing. (Online - Open Access/CC BY)


J. Öfverstedt, N. Sladoje, and J. Lindblad. Distance Between Vector-valued Fuzzy Sets based on Intersection Decomposition with Applications in Object Detection. In Proc. of the 13th International Symposium on Mathematical Morphology, ISMM2017, Fontainebleau, France, Lecture Notes in Computer Science, LNCS-10225, pp. 395-407, Springer 2017.


Please contact the directory administrator for the organization (department or similar) to correct possible errors in the information.