
An Efficient, Self-Contained, On-Chip Directory: DIR1-SISD

Mahdad Davari∗, Alberto Ros†, Erik Hagersten∗ and Stefanos Kaxiras∗
∗Dept. of Information Technology

Uppsala University, Sweden
Emails: {mahdad.davari, erik.hagersten, stefanos.kaxiras}@it.uu.se

†Dept. of Computer Engineering
University of Murcia, Spain

Email: aros@ditec.um.es

Abstract—Directory-based cache coherence is the de-facto
standard for scalable shared-memory multi/many-cores and
significant effort is invested in reducing its overhead. However,
directory area and complexity optimizations are often anti-
thetical to each other. Novel directory-less coherence schemes
have been introduced to remove the complexity and cost
associated with directories in their entirety. However, such
schemes introduce new challenges by transferring some of
the directory complexity and functionality to the OS and
using the page table and the TLBs to store data classification
information.

In this work we bridge the gap between directory-based and
directory-less coherence schemes and propose a hybrid scheme
called DIR1-SISD which employs self-invalidation and self-
downgrade as directory policies for the shared entries. DIR1-
SISD allows simultaneous optimizations in area and complexity
without relying on the OS. DIR1-SISD keeps track of a single
—private— owner, or allows multiple-readers-multiple-writers
to exist simultaneously by transferring the responsibility for
their coherence to the corresponding cores. A DIR1-SISD self-
contained directory cache has a unique ability to minimize
eviction-induced complexities by allowing directory entries to
be evicted without maintaining inclusion with the cached data
(thus avoiding the complexities of broadcasts) and without
the need to have a backing store. Using simulation we show
that a small, self-contained, DIR1-SISD cache outperforms a
traditional DIRn-NB MESI protocol with a directory cache
embedded in the LLC (8% in execution time and 15% in
traffic) and, further, outperforms a SISD protocol that relies
on the OS to provide a persistent page-based directory (4% in
execution time and 20% in traffic).

Keywords-multicore; memory hierarchy; cache coherence;

I. INTRODUCTION

Hardware-based cache coherence has long served as

an enabling factor in harnessing the compute power

of multi/many-cores by providing an easy programming

paradigm through sparing programmers from dealing with

explicit cache and consistency management [1]. While

snoop-based coherence schemes allowed implementation

of shared-memory systems using conventional bus-based

networks [2]–[4], the need for scalable architectures, in-

corporating ever-increasing number of cores, necessitated

directory-based coherence schemes [5]–[10]. Directory-

based cache coherence, which has served in many shared-

memory chip multi-processor (CMP) designs, has been

extensively used and studied [11], [12].

At a higher level of abstraction, different directory

schemes are distinguished based on (i) how they keep track

of sharers, and (ii) which policy they employ to maintain

coherence across those sharers. The notation DIRi-X has

been used to describe directory schemes [11], [12], where

index i refers to how the sharers are tracked, and X denotes

the policy to maintain coherence across the sharers, such as

broadcast (B) or no-broadcast (NB). Directory policy, on the

other hand, defines how the directory scheme behaves with

respect to (i) maintaining single-writer-{single or multiple}-

reader invariant [11], [13], (ii) request forwarding [12], and

(iii) directory entry eviction —in case of using a directory

cache, which is often the case [8], [9]. Directory complexity

is mainly attributed to the complexities associated with the

directory policies. As an example, the directory scheme

DIRn-NB is the extreme case which seeks to eliminate

the complexities associated with write-induced invalidation

broadcasts and collecting acknowledgments in their entirety,

however it incurs area overhead by having to save a full-

map vector per directory entry. At the other extreme, a

hypothetical DIR0-B would incur no area overhead, but

every write request received at the directory would trigger an

invalidation broadcast, which translates into complexity [11],

[12]. Other directory techniques to optimize the area, falling

in between the two extremes, result in complex directory

mechanisms which significantly add to the verification cost

and potentially impact scalability [9], [10].

Besides write requests, directory evictions might as well

trigger invalidation broadcasts depending on directory poli-

cies. Today’s CMPs implement directories as on-chip sparse

directory-caches [8], [9], which makes them vulnerable

to loss-of-information problem. Although eviction-induced

invalidations can be eliminated by allocating a backing

store in main memory [8], adding backing store is contrary

to the goal of area-efficiency and low-complexity. As a

result, inclusion is maintained between cached data and

their corresponding directory entries, which consequently

adds to complexity by requiring invalidations —in form of

unicast, multicast, or broadcast— and acknowledgement col-

2015 International Conference on Parallel Architecture and Compilation

1089-795X/15 $31.00 © 2015 IEEE

DOI 10.1109/PACT.2015.23

317

lection [14]. Furthermore, such invalidations can potentially

increase the miss rate and degrade the performance. It is

still possible to eliminate the eviction-induced invalidations

without requiring a backing store, however this introduces a

new type of broadcast upon each directory miss in order to

discover and re-build the sharing status [10].

At the other end of the spectrum, there are coherence

schemes that aim to eliminate the complexities associated

with the directories by removing the directories either in

part or in their entirety [15], [16]. By relying on data-

race-free (DRF) semantics, the need to obtain ownership

upon write accesses is eliminated. In order to maintain

data consistency under such protocols, cores perform self-

invalidation (SI) and self-downgrade (SD) of their level-one

(L1) cache shared data upon synchronization [17] —locks

and barriers. However, such schemes are heavily software-

dependent and partly delegate directory functions to other

system components such as the operating system (OS),

which in turn introduce new complexities and verification

challenges. As an example, VIPS-M coherence protocol [16]

delegates private/shared data classification at page granular-

ity to the OS that uses the page-table in main memory as a

backing store for TLB entries that hold the classification.

In essence the TLBs become directory caches and the

page table is the backing store. No directory information

is ever lost in VIPS-M and this is one of the properties that

contribute to its simplicity. In other words, it is impossible

to use a (classification) directory-cache in VIPS without

having a backing store of the whole directory or severely

compromising its simplicity by introducing broadcasts to

manage information loss from the directory [18]. DeNovo

[15] is another coherence protocol which reduces the direc-

tory to track only the writers of data. However, this scheme

is heavily application-dependent; furthermore, the last-level

cache (LLC) is delegated to keep track of the writer for each

cache line and perform request-forwarding when needed.

As the aforementioned examples show, VIPS-M and De-

Novo coherence protocols partly delegate directory function-

ality to other system components, despite the fact that they

advocate coherence simplicity by removing the directories in

their entirety or in part. Both protocols require a minimum

directory support to track a single owner for each piece of

data. Based on this observation, we propose a new directory-

based coherence scheme, called Dir1-SISD, that bridges

the gap between the conventional directory schemes [5]–

[7] and the novel DRF-based coherence schemes [15], [16].

The resulting directory scheme which adopts SI and SD as

directory policies, reconciles storage reduction techniques

with techniques to minimize coherence complexity.

Our approach essentially performs dynamic hardware-

based private/shared data classification at cache-line level:

a cache line with a single sharer is considered as private,

whereas a cache line with multiple sharers is classified

as shared. However, unlike conventional directory schemes

that enforce invalidations to maintain single-writer-multiple-

readers invariant [1], our approach allows multiple-writers-

multiple-readers to exist without invalidating any copies of

the cache line in L1 caches. This is achieved by giving

the sharers the responsibility to self-invalidate the shared

data when needed. While eliminating the write-induced

invalidations/broadcasts, our approach only requires tracking

of a single sharer per block, which reduces the area overhead

of the directory. In other words, Dir1-SISD either tracks

a single private owner or allows multiple sharers without

tracking them, as long as they self-invalidate and self-

downgrade. Thus, Dir1-SISD does not require broadcasts

and implements a simple coherence scheme.

Our approach also reduces the complexities associated

with eviction-induced invalidations/broadcasts. Under Dir1-

SISD scheme, a directory entry may be evicted without the

need to be backed-up or the need to maintain inclusion,

which eliminates eviction-induced invalidations/broadcasts

present in other protocols. Furthermore, as we later show

in Section V, our approach enables low-complexity dual-

granular directories, which further reduces area overhead by

requiring a single entry per private page in the directory.

Main contributions: We propose a simple Dir1-SISD

directory organization to support self-invalidation/self-

downgrade coherence that i) eliminates the reliance on the

OS, page tables, and TLBs for classification, and ii) intro-

duces no new protocol complexity such as broadcasts. This

is because our proposed directory scheme has a unique char-

acteristic not found in other directories: the on-chip directory

cache is a self-contained directory, meaning that it neither

needs to be backed-up externally nor enforces inclusion

upon directory evictions. We achieve this by exploiting the

self-invalidation and self-downgrade policies, as described

in Section III. Further, our directory is naturally extended

to multi-granular implementations as the information that is

mainly tasked to track (owners of private blocks) is easily

compressible to coarser granularities (e.g., regions, pages).

Why is our approach any different than what came
before: While conventional Dir1 directories either allow a

single sharer or require invalidation broadcasts, our proposed

scheme avoids both. We allow multiple sharers to exist

without being tracked —read or write accesses— and yet

we do not broadcast invalidations. Dir1-SISD achieves this

by giving the sharers the responsibility to invalidate and

downgrade when the degree of sharing exceeds one. Unlike

VIPS-M [16], which also uses self-invalidation and self-

downgrade as its main ingredients, Dir1-SISD does not

depend on page table and TLBs to perform and store the

data classification. Having a shared TLB to perform and

store data classification at page granularity which is backed-

up by page table upon TLB evictions, makes VIPS-M

heavily OS-dependent and architecture specific. Furthermore

unlike DeNovo [15], which also tracks a single private

owner and employs self-invalidation, our approach does

318

not require indirection and request-forwarding. In other

words, DeNovo only implements self-invalidation, whereas

our approach implements both self-invalidation and self-

downgrade. Self-downgrade obviates the need for core-to-

core communication and enables implementation of simple

networks that only require a two-way L1-to-LLC and LLC-

to-L1 communication.

Why would our approach be of any interest to anyone:
Being a SI-based protocol, Dir1-SISD addresses architec-

tures where DRF programming paradigm is considered as

the dominant programming model. This includes all archi-

tectures programmed in modern standardized high levels

languages (HLLs), such as C++11, Java, and OpenCL, where

DRF is the prevailing model. This, however, does not mean

that Dir1-SISD cannot support data races. It certainly can

do this as long as data races are intended and identified, in

which case, proper fencing with self-invalidation and self-

downgrade fences leads to correct code that can handle

any programming construct.1 An important aspect of Dir1-

SISD is that it does not pose any demands for OS support

as previous proposals do. Dir1-SISD is also addressed to

architectures where simplicity —fast verification— and ef-

ficiency —area and energy benefits without compromising

performance— might be tempting enough for designers to

consider such alternatives, instead of more complex and

more expensive coherence that supports sequential consis-

tency for workloads that do not require this support.

II. BACKGROUND

Censier and Feautrier et al. [6] were the first to pro-

pose distributed directory-based schemes in the late 70’s

as a solution to overcome scalability issues associated with

centralized directories proposed by Tang [5]. Subsequently,

Archibald et al. [7] and Lenoski et al. [19] also introduced

directory techniques in which memory and directory were

distributed and tiled instead of being centralized, which

enabled more flexibility and scalability. Directory-based

schemes have been extensively studied ever since [11], [12]

and have become common in the design of CMPs. Further-

more, Gupta et al. [8] introduced the coarse vector scheme

and the sparse directory technique to reduce directory area

overhead. More recently Cuesta et al. [20] proposed dynamic

private/shared data classification to reduce the directory

area. In their approach, private data is taken out of the

directory. In another recent attempt to reduce directory

area overhead, Zebchuk et al. [21] introduced a multi-grain

directory scheme which tracks sharing at region and cache-

line granularities. All the cache lines that belong to a private

region are tracked using a single region-entry, which results

in directory area reduction, but significant complexity. In this

section we briefly give a background on directory schemes

1This is no different than dealing with a relaxed memory model where
fences are required for correctness, and is typically the domain of expert
programmers who write library and system code.

that track a single sharer, which also forms the basis for

our proposed Dir1-SISD scheme. As Weber and Gupta show

[22], the degree of sharing in majority of applications is very

close to one and rarely goes beyond that. As a result, low

complexity and overhead make Dir1-X an appealing trade-

off between resource overhead and performance.

A. Dir1-NB

Dir1-NB is the most basic and simplest implementation of

Diri-X schemes [11]. It only uses one pointer per directory

entry to track a single sharer at any given time. Dir1-NB is

an extreme case where a block, regardless of read or write
access, is not allowed to reside in more than one core at

any given time. Although restrictive, this scheme eliminates

broadcasts in their entirety, which ties in closely with what

directory-based coherence is trying to achieve. However, this

scheme incurs higher miss rate for some workloads due to

higher rate of invalidations.

B. Dir1-B

Unlike previous scheme, Dir1-B allows many sharers to

exists simultaneously, provided that the reason for sharing

is read access, i.e., read-only sharing [11], [12]. This results

in lower miss ratio, since readers are not invalidated under

read-only sharing paradigm. However, this capability comes

at the expense of invalidation broadcasts. Since more than

one sharers are allowed to exist without being tracked, a

broadcast is required when a write request is received at the

directory and more than one reader exist. However, as Weber

and Gupta show [22], large fraction of invalidations come

from migratory data which require a single invalidation.

Although broadcasts caused by migratory sharing pattern

can be eliminated by applying migratory optimization tech-

niques, such as the one proposed by Stenström et al. [23],

such optimizations add to the complexity and overhead of

directory protocols.

C. Dir1-SW

As a solution to complexities associated with directory-

based cache coherence protocols, Hill et al. [24] address

hardware and software issues together and propose cooper-
ative shared memory. On the software side, they propose

the Check-In/Check-Out (CICO) programming performance

model. By inserting CICO annotations in the code, pro-

grammers can analyze the shared-memory communication

cost. This allows the programmers to explore different

design alternatives to lower the communication cost of

shared-memory applications with respect to cache coherence

protocols. On the hardware side, they propose a minimal

directory scheme, Dir1-SW, which delegates the complex

coherence actions to software. Dir1-SW uses a dual-purpose

pointer/counter field per directory entry, which either points

to a single writer, or counts the number of sharers if datum

is shared by more than a single core. Upon a conflict, a trap

319

bit is set and a software routine is invoked to resolve the

coherency issue by forwarding the data to the requesting

core. Programs that conform to CICO model or provide

explicit CICO directives to the coherence engine run at full

hardware speed, since they do not cause traps.

The essential feature of Dir1-SW in reducing hardware-

based coherence complexity is that no protocol transition im-

plemented in hardware requires more than a single request-

response message-pair and instead, software handles all the

complex cases where multiple messages are required. This

results in the elimination of transient states, or in other

words, the elimination of hardware protocol-races, which

account for the main source of complexity in hardware-based

coherence protocols.

D. SCI

Scalable Coherent Interface (SCI) [25] was a comprehen-

sive effort to address the limitations in the scalability of bus-

based systems. The standard covers both physical aspects —

including electrical and mechanical specifications— as well

as the logical aspects —such as the coherence scheme.

To solve the coherence scalability problem, SCI proposes

a directory scheme in which sharing information is dis-

tributed across the caches, implemented as a doubly-linked

list. The main memory directory holds a single pointer to the

last cache that shares a memory block. This cache becomes

the head of the sharing list (for that block) maintained by the

other caches participating in the sharing. As a Dir1 protocol

SCI deals only with the head of a sharing list, delegating the

responsibility of other coherence functionality to the caches

comprising the sharing list.

E. DeNovo

Similar to Dir1-SW scheme, DeNovo architecture [15]

also leverages concurrency-safety, language-level annota-

tions. However, unlike CICO annotations which are con-

sidered as an optional performance optimization for Dir1-

SW, DeNovo architecture critically depends on a disciplined

programming paradigm, such as Deterministic Parallel Java

(DPJ). Choi et al. show that replacing ad-hoc shared-
memory with disciplined shared-memory provides oppor-

tunities to design performance-, power-, and complexity-

scalable hardware-based coherence schemes.

Relying on deterministic parallelism which provides data-

race-freedom and explicit synchronization, an application’s

run-time is divided into parallel phases, with the guarantee

from software that only a single thread can modify a datum

in each parallel phase with no other thread accessing the

datum in that phase. This obviates the need for acquir-

ing ownership on a write, provided that each core self-

invalidates, before the beginning of the next parallel phase,

its L1 data that are likely to be modified by other cores.

On the other hand, writers should register themselves

at the LLC, so that the successor readers know where to

get the up-to-date data via request-forwarding/indirection.

Therefore, each LLC entry is augmented by a pointer field

(this field is smartly hidden in the space of the stale data

but that is besides the point—directory functionality still

exists). It is also possible that the writer performs a write-

back before a succeeding read request from a new core,

in which case the up-to-date data (non-stale) are present in

LLC, the pointer field is not needed, and the succeeding

read-requests are directly responded to by LLC.2

F. VIPS-M

VIPS-M [16] proposes self-invalidation and self-

downgrade as the basic mechanisms for a very simple

directory-less coherence protocol. Although advocating a

directory-less coherence scheme (Dir0-SISD), VIPS-M uses

the page table as directory (and the TLBs as directory

caches) to perform private-shared classification at page

granularity. Cores invalidate their L1 data that belong to

shared pages when the cores perform synchronization.

VIPS-M eliminates request indirection and forwarding —

present in DeNovo— by performing self-downgrade for the

shared data. VIPS-M uses write-through as a simple self-

downgrade mechanism. The majority of the write-through

traffic comes from the private data, and the write-through

traffic caused by shared data does not significantly add

to the network traffic. As a result, a write-back policy is

employed for private data and a write-through policy for

shared data. VIPS-M introduces an efficient implementation

of write-through by coalescing the writes in a write-through

buffer. A core passing a synchronization point —release—

forces the completion of all its pending write-throughs that

may linger in the write-through buffer.

Using page table as a directory and TLBs as directory

caches eliminates the loss-of-information problem when

entries are evicted from the TLBs, since TLB entries are

always backed-up in the page tables in memory. However,

this is also one of the weak points of VIPS-M: reliance

on OS support for coherence. Any attempt to break this

dependency brings up problems which introduces loss-of-

information problem, necessitating limitations such as en-

forcing inclusion via broadcasts, which may annul VIPS-M

main claim of simplicity.

G. VIPS-H

VIPS-H [26] is the hierarchical implementation of VIPS-

M. The similar OS-/TLB-based private/shared data classi-

fication is used to classify data across multiple clusters.

VIPS-H simplifies the self-invalidation and self-downgrade

in hierarchies of clustered designs by allowing a piece of

data to be classified as shared among the cores within a

cluster, while the same piece of data is seen as private

from outside the cluster, i.e., the data is private to a cluster,

2DeNovo can be thought of as a Dir1-SI protocol.

320

although shared within that cluster. Such classification limits

the self-invalidation and self-downgrade to a single cluster

and eliminates unnecessary inter-cluster communication and

data movement.

While VIPS-H is optimized for and targets hierarchical

clustered designs, our proposed Dir1-SISD scheme is a

base scheme which can either be used in flat organizations

or can recursively be applied to hierarchical clusters. In

this work we evaluate Dir1-SISD in its base form as a

flat coherence scheme, and we leave the hierarchical and

clustered evaluations for future work. Another area which

Dir1-SISD differs from VIPS-H is how the data classification

is handled. VIPS-H heavily relies on the OS, the page

table and the TLBs for the private/shared data classification.

However, Dir1-SISD performs the classification entirely in

hardware, makes it an ideal choice where interaction with

OS is not feasible. Furthermore, VIPS-H performs the data

classification strictly at page granularity, whereas Dir1-

SISD provides multi-granular data classification, spanning

from fine cache-line granularity to coarse-grain page-based

classification.

III. DIR1-SISD

In this section we introduce our directory scheme, Dir1-

SISD, which provides a hybrid solution by coupling together

the benefits of directory schemes and directory-less, DRF-

based coherence protocols.

Unlike DRF-based schemes, which advocate elimination

of directory in its entirety, we do recognize the value of

having a minimal directory. We find this necessary, as this

prevents the delegation of inevitable directory operations to

other system components —page table, TLBs, and OS—

which introduces hard-to-address complexities.

To keep both area overhead and complexity at minimum,

we choose our directory to be of Dir1 type. The key insight

is that our directory essentially performs data classification

to private and shared. It has no other functionality. When

the directory tracks a private block we need to know the

owner so we can force classification changes when needed.

Otherwise, if the block becomes shared, we do not care to

track the sharers. Our choice of Dir1 is also justified by the

fact that the degree of sharing is typically close to one [22].

On the other hand, in order to balance the opposing goals of

area and complexity reduction, Dir1-SISD takes advantage

of DRF semantics to eliminate the complexities attributed to

obtaining ownership or request forwarding (indirection).

A. Basic Protocol

Dir1-SISD performs dynamic private/shared classification

at cache-line granularity. By observing all the requests from

all the cores in the system, our directory knows if a cache

line is accessed by a single core or more cores. Each

directory entry contains a single pointer which tracks the

owner for private cache lines. The directory sends to the

cores, along with the data responses, the classification of the

data. Each core’s L1 cache has a bit per cache line which

stores the classification received from the directory.

Dir1-SISD allows multiple-readers and multiple-writers
to co-exist without incurring invalidations/broadcasts. Based

on DRF semantics, a cache line can be shared and written

by different cores simultaneously. DRF semantics guarantee

that during each parallel phase of the application, write
accesses by different cores affect different words/bytes in

a cache line. Based on this paradigm, Dir1-SISD imple-

ments deferred invalidation by giving the responsibility of

maintaining coherence to the sharers. Instead of having

the directory to invalidate the sharers, invalidation of the

shared data is deferred until the end of each parallel phase

marked by a synchronization, at which point each core

self-invalidates its shared data [15]–[17]. Furthermore, each

core self-downgrades its modified data on synchronization,

making the modified data available in a shared LLC to

other cores to access during the next parallel phase. Self-

downgrade is performed via an efficient implementation of

write-through policy for shared data proposed by our pre-

vious work [16]. In that implementation, writes are delayed

in a write-through buffer to allow coalescing. Because there

may exist multiple simultaneous writers for a cache line (as

allowed by DRF semantics), each modifying a different part

of the cache line, a write-through must communicate only

the modified data to the shared cache, i.e., send a diff of the

cache line since its last write-through. For this reason per-

byte dirty-bits are used but these bits are only needed while

a cache line is in the write-through buffer and is actively

modified. Each cache line also carries a single line-dirty bit

that is used to perform write-back for private data.

B. Private-to-Shared Transition

Dir1-SISD is tasked to track the owners of private blocks,

and in the case of shared blocks to distribute the responsi-

bility for self-invalidation and self-downgrade to the cores

that share the block. Thus, measures need to be taken when

Dir1-SISD receives a request for a private cache line, with

the requestor being different from the registered owner. At

this point, directory notifies the private owner to change its

local classification for the cache line from private to shared.

This notification, which we refer to as recovery [20], is in the

form of a unicast, which simplifies the network design. In

addition, the Dir1-SISD entry for the cache line transitions

shared and further accesses by other cores are responded as

such.

Upon receiving a recovery notification, a core may re-

spond in one of the following ways:

1) The core responds with a NACK message if it has

already evicted the cache line. This enables the direc-

tory to maintain the private classification for the block,

however with a new owner.

321

2) The core changes its classification for an unmodified

cache line from private to shared. This causes the

cache line to be self-invalidated at the next syn-

chronization performed by the core. The core then

responds with a clean ACK message, resulting in

the cache line being globally classified as shared by

the directory. The directory then responds to the new

requestor with shared data.

3) For a modified private cache line, the core goes

through the same steps as for a clean cache-line,

however the core responds to the directory with a dirty
ACK which includes the modified (whole) cache line.

This is necessary so that the new requestor receives

the up-to-date data.

We address the cost of recovery in section VII-B2.

IV. DIRECTORY EVICTION, SELF-CORRECTION, AND

ADAPTATION

Besides write-induced coherence actions, actions trig-

gered upon directory evictions also impact the complexities

associated with directories. Today’s large memory sizes

make it impractical to provide full directory coverage and

implement in-memory backing stores. As a result, measures

need to be taken to address the loss-of-information problem

when directory entries are evicted. Maintaining inclusion

between directory and L1 caches is a common practice in the

design of Dir1 protocols. In fact, L1–Directory inclusion has

also been used in directory caches for full-map directories,

as in the case of the SUN Microsystems Sunfire system

(Enterprise 6000). This certainly obviates the need for a

backing store, however invalidations for inclusion poten-

tially degrade the performance and require broadcast support

from the network. While silent eviction of directory entries

without a backing store is possible, this policy introduces a

new type of broadcast upon each directory miss, needed to

discover and re-build the sharing status [10], [18].

Reliance on DRF semantics provides a feature unique

to Dir1-SISD which, without a need for backing store,

allows the directory entries to be evicted without maintaining

inclusion. This is achieved by having the cores to maintain

the coherence, allowing the directory information to be

discarded without invalidating the corresponding cache lines.

As discussed in section III-A, no directory-side coherence

actions are invoked after data is classified as shared. Cores

perform self-invalidation and self-downgrade based on DRF

semantics, which guarantees data consistency for the shared

data. In other words, the role of Dir1-SISD directory in

maintaining coherence is only limited to private data and

handling the private-to-shared transition via the recovery
action. Coherence for the shared data is maintained via core-

side coherence actions, which include self-invalidation and

self-downgrade. Based on these properties, shared directory

entries can be evicted silently. For the private directory

entries, the responsibility of maintaining coherence is trans-

ferred to the cores before the directory entry can be evicted.

The process of forcing the classification of a cache line from

private to shared upon directory eviction does not add to the

complexity of the directory by introducing new coherence

mechanisms and actions. The force-sharing process is the

same as the recovery process described in section III-B,

which is already implemented. We discuss the cost of force-

sharing in section VII-B2.

To reiterate: shared directory entries are silently evicted,

private directory entries are converted to shared and then

silently evicted. In other words, we disguise private cache

lines as shared to avoid their immediate eviction. Of course,

private cache lines turned-to-shared are destined to be self-

invalidated at the next synchronization point of their corre-

sponding core, however the lease-of-life that this mechanism

allows is significant and makes a difference for Dir1-SISD

as we will show in section VII.

A. Self-Correcting Classification

We are now faced with the situation where shared cache

lines and private cache lines (intentionally misclassified as
shared) can exist without a corresponding directory entry.

What happens if such a directory entry is created again

as a result of an L1 miss in some other core? A new

directory entry is always created as Private, since we have

no other knowledge. The current private owner, assumes

that it is alone and refrains from self-invalidating and self-

downgrading, even in the presence of other shared copies —

genuinely shared or private-turned-shared— in the system.

However, this is allowed by DRF semantics and Dir1-SISD

self-corrects the classification as follows.

• Based on DRF semantics, a cache line can simultane-

ously be shared and written by multiple sharers, since

software guarantees that cores do not access same bytes

in a cache line during each parallel phase. Thus, even

when the current private owner modifies the data but

fails to self-downgrade them on synchronization, no

harm is done since the modifications could remain

invisible to any other core until that core passes a

synchronization point and self-invalidates. After the

synchronization, the modified data can be accessed via

the recovery process explained in section III-B, as the

directory holds the pointer to the private block. The

private owner is then corrected to shared.

• On the other hand, it is possible that a shared copy

self-downgrades while another core has received the

cache line as private. Again, based on DRF semantics,

data consistency is not violated. The private owner is

notified, via a recovery notification (see Sec.III-B) to

change the classification to shared, which means that it

will self-invalidate the line on its next synchronization

point after which it will be able to access the updated

data. The critical observation here is that the transition

322

from private to shared happens before the private owner

passes the synchronization point that makes the updated

data visible. This is enforced by DRF semantics: the

writer (shared copy) and the reader (private copy) must

be in a happens-before release-acquire order via their

synchronization. Thus, the private-to-shared transition

must happen before the release, which guarantees that

the private copy now corrected to shared cannot pass
the acquire point without self-invalidating. Again, the

correction of classification does not impose complex-

ities on the directory by requiring new actions, since

the already existing recovery mechanism is reused.

• If none of the above two cases occur, then the co-

existence of a private and one or more shared copies at

the same time is harmless: either there is no commu-

nication among them, or the shared copies eventually

self-invalidate on synchronization leaving the private

copy truly alone.

This self-correcting behavior of the Dir1-SISD, is enabled

by a simple classification invariant: it is impossible for the
same block to be private at different caches, although a
single private copy and several shared (SISD) copies is
allowed. We discuss the cost of self-correction in section

VII-B2 and show that self-correction is a rare event whose

cost is negligible.

B. Adaptive Classification through Directory Replacement

Having fewer data classified as shared mitigates the

penalty incurred by self-invalidation of shared data. Adaptive

data classification, in which a shared piece of data can be

reclassified as private, becomes critical in the performance of

systems based on self-invalidation. Alisafaee [27] proposes

spatiotemporal coherence tracking, in which a shared piece

of data can temporarily be considered as private. However,

such proposals require complex mechanisms that nullify the

benefits.

Directory eviction in Dir1-SISD provides a natural means

for adaptive classification with zero overhead, allowing the

next requestor to classify the data as private, since the

address is not found in the directory. As discussed in the

previous section, if the requestor is misclassified as private

the Dir1-SISD invariant and DRF semantics will soon correct

the classification. If however, a shared block transitions into

a period where it becomes private, then the shared copies

of the block will disappear by self-invalidation, leaving the

requestor as private. We emphasize again that this is without
cost.

One can go a step further and use this Dir1-SISD ca-

pability to manage the adaptivity rate by manipulating the

eviction rate of shared directory entries, for example by

giving preference to evicting shared entries, or by decaying

them after a period of inactivity, or even by appropriately

sizing the directory itself at run-time. While we did not ex-

plore active manipulation of the eviction rate, our evaluation

incorporates the natural adaptivity that results from a limited

directory size. We leave the more advanced techniques for

future work.

C. Thread Migration

A persistent problem in private/shared classification is

thread migration. Upon a thread migration, private data

become shared as they are now accessed from a differ-

ent cache. Thus, we end up self-invalidating and self-

downgrading thread-private data at great cost. Solutions have

been proposed for page-level classification [28] (essentially

flushing the private data and restarting the classification

after the migration), however these solutions add complexity

and become expensive in the case of frequent and intensive

migration. Adaptive classification on the other hand manages

thread migration by default as it turns shared data into pri-

vate. In the case of Dir1-SISD, this adaptation is costless and

comes from the eviction of the shared entries that correspond

to the thread private data. Distinguishing between CPU and

GPU domains helps to better address the thread migration

issue:

• CPU domain. Thread migration is not a common case

in CPU domain. Therefore, the shared data misclassi-

fication is not harmful even if left untreated. However,

there are a variety of techniques that can be used to

predict the dead cache-lines, and therefore maintain the

private data classification. As an example, cache decay

techniques [29], [30] can be used to detect the dead

blocks, resulting in a NACK to be sent in response to a

recovery (see III-B), enabling re-classification of data

as private after thread migration. Furthermore, we have

shown and evaluated how cache decay can be used as a

simple dead-block predictor in order to maintain private

classification upon recoveries [31]. Cache decay has

also been employed in TLBs seeking a more accurate

classification at page granularity [32], [33].

• GPU domain. Thread migration is more common in

GPUs. However, experiments reveal that replacement

rate of blocks in GPU caches is so high, which guaran-

tees that recoveries return NACKs with a high proba-

bility and therefore private classification is maintained

even without the need to employ dead-block predictors.

V. DIRECTORY COMPRESSION

In contrast to other directories, the primary functionality

of Dir1-SISD is to track private data and their owners, rather

than shared data. This is evident by the ease of evicting

shared directory entries that carry very little information

(simply that the line is shared) and their subsequent replace-

ment by private entries. However, private data are far more

common than shared data which means that Dir1-SISD may

face increased pressure compared to directories that aim to

track only shared data [20]. The realization that addresses

this issue is that, although private data are far more numerous

323

Page Tag Owner Line Tag Owner P/S

 Line Tag Owner P/S

Figure 1. Logical organization of a dual-grain directory implementation.
A page directory —on the left— keeps track of a page owner. Shared cache
lines within a private page, or private cache lines with an owner different
than the page owner are tracked by a line directory —on the right. Page
directory is chosen to be smaller than line directory, as it compresses all
the page’s tags into a single entry.

than shared, their directory information can be “compressed”

far more easily [21], [27] than the corresponding directory

information of shared data [34]. This leads to region di-

rectories or multi-granular directories where private data are

tracked at coarser granularities (typically the page size works

best).

A. Case-study: dual-grain directory

Although dual-grain directories have been proposed in the

past, such organizations require complex directory mecha-

nisms. As an example, Zebchuk et al. introduce the dual-

grain DGD directory [21] which allows both region and

block entries, each with a different format, to reside in

the same directory cache. However, in order to minimize

directory lookup latency, DGD deserializes region and block

entry lookups by imposing a restriction on how the entries

are mapped in the directory cache: the region entries are

required to be mapped to half of the ways, while the block

entries are mapped to the other half. This allows region

and the corresponding block entries to be found in a single

lookup, however this reduces lookup associativity. They fur-

ther try to mitigate this problem by employing replacement

policies aimed to minimize directory evictions, however such

replacement policies are based on more complex hashing

techniques [35], [36].

Dir1-SISD, however, lends itself very well to low-

complexity dual-grain directory organizations. In this orga-

nization, as shown in Fig.1, the directory is composed of a

line-directory and a page-directory (both operating as Dir1-

SISD with the only difference being the granularity). All the

cache lines belonging to a private page are represented by a

single entry in the page-directory. In a system with 64-line

pages, this translates into compression ratio of 1÷64, which

significantly reduces the directory area. Furthermore, page-

directory and line-directory are looked up simultaneously,

without incurring complexities associated with DGD.

What is important in this case is the interaction between

the two directories. First access to a page causes an entry

in the page-directory to be allocated. Therefore, the first

core accessing a page becomes the private owner of that

page. Further accesses by the page owner do not change the

directory state. Upon receiving an access from a core other

than the page owner, an entry in line-directory is allocated to

resolve the classification for the conflicting cache line. While

the entries in the page-directory always point to private

owners —the first core accessing a page,— entries in line-

directory might be classified as either private or shared. After

a conflict, a recovery (Sec.III-B) is performed to decide if

the cache line should be classified as private or shared in the

line-directory. If the recovery is successful, i.e., the specific

block being accessed by a new core also exists in the private

owner’s cache then both become shared and the entry in the

line-directory starts as shared. If, however, the line is not
found in the cache of the page-private owner, then it starts

as private (with the core that accessed the line as the new

owner) in the line-directory.

This decision could be taken without performing a recov-

ery, if we know which lines belong to the private owner. In

other words, if we enhance the page-directory entries with

a bit-map for the lines in the page, we can discern which

lines belong to the private page and which do not, simply

by accessing the page-directory entry. However, this adds

cost and slightly increases the complexity of handling page-

directory entries and we do not use it.

Line-directory entries that revert to the same owner as

the their page, are folded back to the corresponding page

only via eviction, similarly in philosophy to the adaptation

discussed above. The benefit is that folding back to the page-

directory entry comes for free, albeit after the end of the

lifetime of a line-entry. There is no other mechanism to

support this functionality.

Evictions (due to a replacement) from the page-directory

are correspondingly more expensive than line-directory evic-

tions. A page recovery concerns all the lines belonging

to a page that are resident in the cache of the private

owner. All such lines must be changed from private to

shared. Note that we do not need to install the corresponding

entries in the line-directory, as the Dir1-SISD concept allows

shared lines without a corresponding directory entry. In this

case also, a line bit-map in the page-directory entries can

be used to avoid evicting pages with many private cache

lines and lessen the overhead. Such a bit-map would allow

us to set a threshold of private lines in a page, under
which the entry can be selected for replacement. While this

optimization in the replacement policy can reduce the cost

of evicting page-directory entries (at the cost of increased

storage requirements and increased complexity), in practice

it may not be needed if the page-directory has a wide-enough

coverage. We leave this study for future work.

Fig.2 shows the steps involved in a directory look-up

for our proposed dual-grain directory implementation. In

section VII-B5 we evaluate the opportunities to compress

the directory using a dual-grain organization.

VI. DIRECTORY ORGANIZATION

In this section we describe the directory organizations that

we use in our evaluation.

324

Start

Line-dir.
entry exists?

Use the existing
line-dir. entry.

Present in
page-dir. ?

Allocate a
page-dir. entry.

Request
comes from

owner ?

Use the existing
page-dir. entry.
Use the existing
page-dir. entry.

No Yes

No Yes

Yes No

Owner has
evicted the

line?

Yes No

Allocate a shared
line-dir. entry.

Allocate a private
line-dir. entry.

Figure 2. Dual-grain directory look-up routine.

Tag Data P/S Owner

(a) Coupled LLC-directory implementation: LLC tags are ex-
tended to hold private/shared classification. The owner field is
valid when a cache line is classified as private.

Tag Data
 Tag Owner P/S

(b) Decoupled LLC-directory implementation: directory area is
reduced —on the right— by having a directory cache indepen-
dent of LLC size.

Figure 3. Logical organization of Dir11-SISD directory.

A. In-Cache Directory.

As a simple organization, directory and LLC can be

coupled together [37], [38], referred to as static-bank-
directory. As shown in Fig.3a, each LLC tag is augmented

with a directory field which holds the classification for that

cache line. In this organization, an LLC entry replacement

forces the replacement of the corresponding directory entry

and vice versa. As a result, LLC and directory misses are

equivalent, which requires a simpler controller design.

B. Stand-Alone Directory Cache.

Despite its simplicity, the in-cache directory organization

incurs area overhead: each LLC tag should be augmented

with a directory field, whereas only a subset of all those

entries are required at any moment in time to perform

directory actions for the data cached by the cores in the

system. The area overhead becomes pronounced with the

increasing size of on-chip LLC. To address this problem, a

directory cache —independent of LLC size— can be used

[8]. In this organization, LLC replacements are decoupled

from the directory replacements. Although the resulting

organization requires a more complex controller design, the

area is significantly reduced (Fig.3b). As an example, for

Table I
BASE SYSTEM PARAMETERS

Memory Parameters
Processor frequency 3.0GHz
Block size 64 bytes
MSHR size 16 entries
Split L1 I & D caches 32KB, 4-way
L1 cache hit time 1 (tag) and 2 (tag+data) cycles
Shared unified LLC cache 8MB, 512KB/tile, 16-way
LLC bank cache hit time 6 (tag) and 12 (tag+data) cycles
L1-LLC inclusion policy Inclusive
MESI Directory Full-map in LLC tags
Memory access time 160 cycles
Page size 4KB (64 blocks)

Network Parameters
Topology 2-dimensional mesh (4x4)
Routing technique Deterministic X-Y
Flit size 16 bytes
Data and control message size 72 bytes (5 flits) data, 8 bytes (1 flit) control
Routing, switch, and link time 2, 2, and 2 cycles

a system configuration with 32 KB L1 cache and 512 KB

LLC cache per tile, a stand-alone organization only requires

64K directory entries with overprovisioning factor of two,

whereas an in-cache organization requires 512K directory

entries, eight times more than the stand-alone organization.

VII. EVALUATION

A. Setup

We evaluate Dir1-SISD (DRF semantics) against a Dirn-

NB protocol (MESI states) and also the VIPS-M (DRF

semantics) protocol which operates at page granularity with

the involvement of the OS, page table, and TLBs. We also

compare Dir1-SISD against an inclusive, adaptive, DRF-

based protocol which operates at cache-line granularity —

referred to as Adaptive, explained in section VII-B3— in

order to study the classification adaptation property of Dir1-

SISD. Our target system is a 16-tile chip multiprocessor.

We use the Simics full-system simulator [39], and model

VIPS-M, Adaptive, and Dir1-SISD protocols using the cycle-

accurate GEMS simulator [40]. We also employ the GAR-

NET network simulator [41] to model the interconnection

network. Furthermore, we model the target system using

Pin [42] in order to study the opportunities to compress

the directory using a dual-grain directory implementation

(Sec. VII-B5). Table I gives the main parameters of our base

system.

We employ a wide variety of parallel applications. Barnes
(16K particles), FFT (64K complex doubles), FMM (16K

particles), LU-CB (512×512 matrix), Ocean (514×514

ocean, contiguous partitions), Radiosity (room, -ae 5000.0

-en 0.050 -bf 0.10), Raytrace (teapot, optimized version

that removes unnecessary locks), Volrend (head), Water-Nsq
(512 molecules) and Water-Sp (512 molecules) belong to

the SPLASH-2 benchmark suite [43]. Tomcatv (256points,

5 time steps) is a shared-memory implementation of the

SPEC benchmark [44]. Blackscholes (simsmall), Canneal
(simsmall), Swaptions (simsmall), and x264 (simsmall) are

from the PARSEC benchmark suite [45]. We simulate the

entire applications, but collect statistics only from start to

completion of their parallel part.

325

barnes fft fmm lu
ocean

radiosity

raytra
ceOpt2

volrend

waternsq

watersp

tomcatv

blackscholes

canneal

swaptions
x264

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

MESI
VIPS-M
DIR1-SISD

Figure 4. Dir1-SISD performance comparison. Results are normalized to
MESI protocol. Dir1-SISD is implemented as an in-cache directory.

barnes fft fmm lu
ocean

radiosity

raytra
ceOpt2

volrend

waternsq

watersp

tomcatv

blackscholes

canneal

swaptions
x264

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

N
or

m
al

iz
ed

 N
et

w
or

k
T

ra
ffi

c

MESI
VIPS-M
DIR1-SISD

Figure 5. Dir1-SISD network traffic comparison. Results are normalized
to MESI protocol. Dir1-SISD is implemented as an in-cache directory.

B. Results

1) DIR1-SISD vs. MESI vs. VIPS-M: Fig.4 and Fig.5

show the comparison of MESI (Dirn-NB), VIPS-M, and

Dir1-SISD protocols with respect to performance and net-

work traffic. Dir1-SISD and MESI are implemented as an

in-cache directories, shown in Fig.3a.

As Fig.4 shows, Dir1-SISD achieves a better performance

on average. Canneal is the only benchmark which Dir1-SISD

performs significantly worse than VIPS-M. The performance

loss is due to the fact that canneal is mostly comprised

of private data, with a very low amount of sharing. As a

result, the majority of directory evictions invoke the recovery

mechanism discussed in section IV. However, VIPS-M is not

vulnerable to loss-of-information problem. Since classifica-

tion information is always backed up by the page table in

main memory, VIPS-M silently replaces unmodified TLB

entries —Private TLB entries.

Dir1-SISD reduces the network traffic by about 12% on

average compared to MESI, as depicted by Fig.5. The MESI

protocol provided by GEMS is implemented using a full-

map directory, which eliminates the need for broadcasts

upon directory evictions and write misses at the expense of

directory area overhead. Even in the absence of broadcasts,

Fig.5 shows that Dir1-SISD reduces the traffic compared

to MESI. This is mainly due to the elimination of write-

induced invalidations. We expect to see more reduction in

the network traffic when Dir1-SISD is compared to a non-

full-map implementation of MESI protocol. On the other

barnes fft fmm lu

radiosity

raytra
ceOpt2

volrend

waternsq

watersp

tomcatv

blackscholes

canneal
x264

Average
0

1��

O
n-

ch
ip

 N
et

w
or

k
T

ra
ffi

c

Force-Sharing
Recovery-Ctrl
Recovery-Dat

Self-Correction-Ctrl
Self-Correction-Dat
Other

(a) Number of directory entries equals number of L1-cache
entries.

barnes fft fmm lu

radiosity

raytra
ceOpt2

volrend

waternsq

watersp

tomcatv

blackscholes

canneal
x264

Average
0

1��

O
n-

ch
ip

 N
et

w
or

k
T

ra
ffi

c

(b) Number of directory entries is twice the number of L1-cache
entries.

Figure 6. Network traffic breakdown. The graph shows the traffic per-
taining to recovery (Sec. III-B), force-sharing (Sec. IV) and self-correction
(Sec. IV-A). The Y-axis shows up to 10% of the total network traffic, since
the rest of the network traffic is only composed of the other component
shown in white color.

hand, both VIPS-M and Dir1-SISD incur more network

traffic in raytrace and volrend benchmarks. This is explained

by referring to the larger amount of shared data and fre-

quent synchronizations in those benchmarks, which result

in invalidation of the shared data. The self-invalidated data

is accessed frequently in those benchmarks, which incurs

data movement due to frequent cache misses and also self-

downgrade for the shared data in the form of write-through

traffic.

As depicted in Fig.5, Dir1-SISD is consistent in reducing

the network traffic compared to VIPS-M. This is explained

by referring to the granularity at which the two protocols

operate. VIPS-M inclines to misclassify cache lines as

shared. This happens when a page is shared among threads

for only a few cache lines within the page. This results

in the whole page to be classified as shared, since VIPS-

M performs data classification at page level. On the other

hand, more shared data translates into more self-invalidation,

which incurs extra traffic if the invalidated data is reaccessed

frequently.

2) Recovery, directory replacement, and self-correction
cost: Fig.6a shows the network traffic associated with

326

recovery (Sec. III-B), force-sharing (Sec. IV) and self-

correction (Sec. IV-A) discussed earlier. As the figure shows,

the majority of the on-chip network traffic—all the traffic

from 10% of the total traffic up to the 100%, which is

not shown in the graph—pertains to regular GET and PUT

requests and the data transfers associated with them (referred

to in the figure as other). Traffic due to self-correction

(Sec. IV-A) is negligible. This traffic is so low that it

cannot be distinguished in the figure. This confirms that self-

correction is a rare event. Figure also shows that recovery

(Sec. III-B) corresponds to 1.4% of the total network traffic

on average. Recovery traffic is composed of control
and

data components. The data component is associated with the

modified private blocks in L1 caches that are downgraded in

response to the recovery requests from the LLC. Recovery

requests and non-data responses (clean ACK or NACK) form

the control component of recovery. According to Fig.6a di-

rectory replacement, which we refer to as force-sharing (Sec.

IV), is more costly than the other two types of recoveries,

however it still has a low traffic contribution, equal to 2.3%

of the whole on-chip traffic. Force-sharing is only composed

of a control component, i.e., L1 caches never return data to a

directory replacement request, but only inform the directory

via a control message that the classification of the block is

internally changed to shared. It is still possible to alleviate

the cost of directory replacement by increasing the directory

coverage. As an example, Fig.6b shows that the network

traffic caused by directory replacements is reduced to 1.4%

by increasing the directory coverage from 1x to 2x.

3) Data classification adaptation: As discussed in section

IV-B, Dir1-SISD provides adaptive shared-to-private classifi-

cation as an intrinsic feature at no extra cost. This appealing

side effect is the result of directory evictions, which allows

the subsequent request to classify the data as private.

Coherence schemes have been proposed which provide

shared-to-private classification adaptation by allowing the

shared data to be temporarily classified as private [21],

[27]. Such schemes require mechanisms to explicitly per-

form adaptation. To evaluate the efficiency of Dir1-SISD

with respect to data classification adaptation, we implement

an adaptive DRF-based coherence protocol at cache-line

granularity. The Adaptive coherence protocol performs pri-

vate/shared classification in the LLC based on the observed

requests, similar to Dir1-SISD. However, Adaptive maintains

inclusion between LLC and the L1s, which requires invalida-

tions —unicast or broadcast, depending on the private/shared

classification of the evicted entry— to be sent to the L1s.

On the other hand, cores explicitly notify the LLC when

they replace cache lines. Unlike other adaptive proposals

which require explicit replacement notifications for all the

cache lines [1], [21], [27], we optimize Adaptive so that

replacement notifications are only required for the shared

data. This optimization significantly reduces the network

traffic overhead associated with replacement notifications.

barnes fft fmm lu
ocean

radiosity

raytra
ceOpt2

volrend

waternsq

watersp

tomcatv

blackscholes

canneal

swaptions
x264

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

MESI
ADAPTIVE
DIR1-SISD

Figure 7. Dir1-SISD performance compared to an adaptive DRF-based
protocol. Normalized to MESI protocol.

barnes fft fmm lu
ocean

radiosity

raytra
ceOpt2

volrend

waternsq

watersp

tomcatv

blackscholes

canneal

swaptions
x264

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
or

m
al

iz
ed

 N
et

w
or

k
T

ra
ffi

c

MESI
ADAPTIVE
DIR1-SISD

Figure 8. Dir1-SISD network traffic compared to an adaptive DRF-based
protocol. Normalized to MESI protocol.

By tracking the number of requests for each cache line and

the number of received eviction notifications, LLC can detect

when a cache line transitions from shared to private.

As depicted in Fig.7 and Fig.8, Dir1-SISD performs

slightly better than Adaptive protocol and also reduces the

network traffic. The reduction in the network traffic is

explained by addressing the notification messages sent by

L1s to LLC upon each L1 eviction. Although the Adaptive
protocol results in more data classified as private, the impact

on performance is negligible due to the fact that the private

data is not reused. Dir1-SISD, however, results in more

private data that are in active use, without incurring eviction

notification from the L1s. In other words, the Adaptive
protocol and the similar proposals perform shared-to-private

adaptation based on the information received when the life-

time of data is finished. This requires that cores notify the

classification mechanism of the end of data life-time, which

in some cases results in private data that is not reused. Dir1-

SISD, on the other hand, begins new private classification

at the beginning of the life-time of data, which is already

signaled by data requests received from the cores, and when

the corresponding directory entry is already evicted from the

directory due to its inactivity without requiring any extra

information to signal the eviction. The latter guarantees that

the private data in the system is in active use, therefore skips

the overhead of private reclassification when the lifetime of

data has ended.

Fig.8 also shows that Dir1-SISD results in slightly more

network traffic than Adaptive protocol in FMM benchmark.

327

barnes fft fmm lu
ocean

radiosity

raytra
ceOpt2

volrend

waternsq

watersp

tomcatv

blackscholes

canneal

swaptions
x264

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

MESI
DIR1-InCache
DIR1-DirCache-���x

Figure 9. In-cache vs. directory-cache performance comparison. Normal-
ized to MESI protocol.

barnes fft fmm lu
ocean

radiosity

raytra
ceOpt2

volrend

waternsq

watersp

tomcatv

blackscholes

canneal

swaptions
x264

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
or

m
al

iz
ed

 N
et

w
or

k
T

ra
ffi

c

MESI
DIR1-InCache
DIR1-DirCache-���x

Figure 10. In-cache vs. directory-cache network traffic comparison.
Normalized to MESI protocol.

This is explained by referring to the replacement policy

employed by Dir1-SISD. Based on Least Recently Used
(LRU) replacement policy, the private entries in the directory

are prioritized for replacement. This is due to the fact

that private data follow write-back policy —as opposed

to write-through policy for shared data— which results in

private entries of directory receiving less activity. Dir1-SISD

forces the private data in L1s to shared upon directory

evictions, which increases the amount of shared data in the

system, resulting in increased network traffic in the form

of write-through traffic. To remedy this counter-adaptation

effect, the replacement policy can be modified to prioritize

the shared entries over the private ones for eviction from

directory. Such a replacement policy, besides eliminating

the undesired private-to-shared adaptation, also allows silent

directory replacements by eliminating the recovery operation

associated with private entry evictions.

4) In-cache vs. stand-alone directory-cache: We also

compare the two directory organizations discussed in section

VI with respect to performance and network traffic, as shown

in Fig.9 and Fig.10, respectively.

We configure the directory cache to have eight times fewer

entries than the in-cache directory implementation. Each

LLC tile consists of 512 sets, each set being 16-way set-

associative. Therefore, our directory cache has 128 sets, each

set being 8-way set-associative. Since L1 instruction and

data caches are 128-sets 4-way each, our directory cache has

entries equal to the aggregate number of entries in instruction

and data caches.

As Fig.9 depicts, it is possible to maintain the same

performance by reducing the number of directory entries

eight times. Decoupling the directory from LLC allows

large LLCs to exist without incurring directory overhead.

Furthermore, Fig.10 shows that, on average, the network

traffic is only slightly increased outside the critical path.

The static-power savings due to directory area reduction

by the factor of eight makes the slightly increased network

traffic an acceptable trade-off. Moreover, the slight increase

in the network traffic can be further mitigated by choosing

directory area reduction factor of 4 or 2, instead of 8.

5) Area and Directory-Compression: It is self-evident

that Dir1-SISD has an area advantage over a Dirn-NB for the

same number of directory entries. Specifically, the pointer of

a Dir1 scales with system size N as log2(N), whereas the bit-

map of a Dirn only as N, offering the corresponding area

savings. More interesting however is the case of a stand-

alone directory cache implementation: whereas the number
of entries of the Dirn-NB should be over provisioned by 2x

with respect to the cache entries because of the inclusion

property [8], we do not have such a need because we do not

enforce inclusion. (The alternative for Dirn-NB is to resort to

highly-complex directory cache implementations [9], [21].)

This unique ability allows us to reduce the size of our direc-

tory cache by 8x without perceptible impact on performance.

In terms of total directory storage requirements, a page-

based directory reserves a pointer for all allocated pages,

and caches this information in the TLBs, so its hardware

storage requirements are a function of the total number of

TLB entries. In terms of hardware area overhead this is

comparable to our stand-alone Dir1-SISD implementation

and we do not require any backing storage. In addition to the

inherent area advantages of the Dir1-SISD, a multi-granular

approach can be used to further reduce its area requirements

for a given coverage or expand the coverage for a given

number of directory entries.

To investigate the opportunities to compress the directory,

we model a dual-grain directory discussed in Sec. V using

Pin tools [42]. We model a 16-core system with 128-sets 4-

ways L1 caches. We model 128-sets 16-ways line-directory,

which is the aggregate capacity of the L1 caches. We model

unlimited-size directories, which allows us to get insight into

true compression opportunities inherent in the applications

without the obfuscating effects of directory replacement.

Fig.11 shows the percentage of the line-directory allocations

that can be eliminated in presence of a page-directory.

Overall, on average for this set of benchmarks, total line-

directory allocations can be reduced by a significant factor

of 71.38%.

VIII. CONCLUSION

In this work we introduce a new directory, Dir1-SISD,

that uses self-invalidation and self-downgrade as its directory

policies. It tracks the private owner of a line or distributes

328

 0

 20

 40

 60

 80

 100

barnes

fft fm
m

lu-cb
ocean-cp

radiosity

raytrace

volrend

water-nsq

water-sp

blackscholes

canneal

swaptions

Average

to
ta

l l
in

e-
di

re
ct

or
y

al
lo

ca
tio

ns
 (

%
)

Redundant
Essential

Figure 11. Opportunities to compress the directory. Line-directory area
can be compressed by eliminating the redundant entries. Redundant entries
are compressed in a much smaller page-directory.

the responsibility of coherence to the cores if the line

becomes shared (accessed by more than one). This func-

tionality allows for some remarkable properties. It allows

us to build self-contained directory caches with the unique

ability of neither requiring a backing store nor enforcing

inclusion with cached lines. With correctness guaranteed by

DRF semantics, Dir1-SISD allows the temporary coexistence

of a single “private” line and multiple shared lines and

subsequently self-corrects the classification. It achieves this

without burdening the underline SISD protocol with any

additional complexity, while at the same time breaks the

reliance to the OS, page tables, and TLBs that previous

proposals have. We show that it performs better classification

than the OS at page granularity and than hardware at

line granularity with inclusion. Dir1-SISD naturally adapts

from shared to private via its directory evictions and does

this better than an adaptive classification that tracks cache

line evictions. Finally, Dir1-SISD can be straightforward

extended to multi-granular approaches without incurring any

additional protocol complexity.

ACKNOWLEDGMENT

This work was supported in part by the Swedish VR (grant

no. 621-2012-5332), Vinnova Vinn-Verifiering (award: VIPS

2013-01113), ”Fundación Seneca-Agencia de Ciencia y Tec-

nologı́a de la Región de Murcia” under grant ”Jóvenes

Lı́deres en Investigación” 18956/JLI/13, and by the Spanish

MINECO, as well as European Commission FEDER funds,

under grant TIN2012-38341-C04-03.

REFERENCES

[1] M. M. K. Martin, M. D. Hill, and D. J. Sorin, “Why on-
chip cache coherence is here to stay,” Communications of the
ACM, vol. 55, pp. 78–89, Jul. 2012.

[2] J. R. Goodman, “Using cache memory to reduce processor-
memory traffic,” in 10th Int’l Symp. on Computer Architecture
(ISCA), Jun. 1983, pp. 124–131.

[3] R. H. Katz, S. J. Eggers, D. A. Wood, C. L. Perkins, and
R. G. Sheldon, “Implementing a cache consistency protocol,”
in 12th Int’l Symp. on Computer Architecture (ISCA), Jun.
1985, pp. 276–283.

[4] M. S. Papamarcos and J. H. Patel, “A low-overhead coherence
solution for multiprocessors with private cache memories,” in
11th Int’l Symp. on Computer Architecture (ISCA), Jun. 1984,
pp. 348–354.

[5] C. K. Tang, “Cache system design in the tightly coupled
multiprocessor syste,” in AFIPS 76, 10th national computer
conference and exposition, NY, Jun. 1976, pp. 749–753.

[6] L. M. Censier and P. Feautrier, “A new solution to coherence
problems in multicache systems,” IEEE Transactions on
Computers (TC), vol. 27, no. 12, pp. 1112–1118, Dec. 1978.
[Online]. Available: citeseer.ist.psu.edu/context/1651/0

[7] J. Archibald and J. L. Baer, “An economical solution to the
cache coherence problem,” in 12th Int’l Symp. on Computer
Architecture (ISCA), Jun. 1985, pp. 355–362.

[8] A. Gupta, W.-D. Weber, and T. C. Mowry, “Reducing memory
and traffic requirements for scalable directory-based cache
coherence schemes,” in Int’l Conf. on Parallel Processing
(ICPP), Aug. 1990, pp. 312–321.

[9] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi,
“Cuckoo directory: A scalable directory for many-core sys-
tems,” in 17th Int’l Symp. on High-Performance Computer
Architecture (HPCA), Feb. 2011, pp. 169–180.

[10] S. Demetriades and S. Cho, “Stash directory: A scalable direc-
tory for many-core coherence,” in 20th Int’l Symp. on High-
Performance Computer Architecture (HPCA), Feb. 2014, pp.
177–188.

[11] A. Agarwal, R. Simoni, J. L. Hennessy, and M. A. Horowitz,
“An evaluation of directory schemes for cache coherence,”
in 15th Int’l Symp. on Computer Architecture (ISCA), May
1988, pp. 280–289.

[12] D. A. Wood, S. Chandra, B. Falsafi, M. D. Hill, J. R. Larus,
A. R. Lebeck, J. C. Lewis, S. S. Mukherjee, S. Palacharla, and
S. K. Reinhardt, “Mechanisms for cooperative shared mem-
ory,” in 20st Int’l Symp. on Computer Architecture (ISCA),
May 1993, pp. 156–167.

[13] D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on Memory
Consistency and Cache Coherence, ser. Synthesis Lectures on
Computer Architecture, M. D. Hill, Ed. Morgan & Claypool
Publishers, 2011.

[14] E. Hagersten and M. Koster, “Wildfire: A scalable path for
SMPs,” in 5th Int’l Symp. on High-Performance Computer
Architecture (HPCA), Jan. 1999, pp. 172–181.

[15] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honar-
mand, S. V. Adve, V. S. Adve, N. P. Carter, and C.-T. Chou,
“Denovo: Rethinking the memory hierarchy for disciplined
parallelism,” in 20th Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), Oct. 2011, pp. 155–166.

[16] A. Ros and S. Kaxiras, “Complexity-effective multicore co-
herence,” in 21st Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), Sep. 2012, pp. 241–252.

[17] A. R. Lebeck and D. A. Wood, “Dynamic self-invalidation:
Reducing coherence overhead in shared-memory multiproces-
sors,” in 22nd Int’l Symp. on Computer Architecture (ISCA),
Jun. 1995, pp. 48–59.

329

[18] S. Kaxiras and A. Ros, “Efficient, snoopless, soc coherence,”
in 25th IEEE International System-on-Chip Conference (IEEE
SOCC), Sep. 2012, pp. 230–235.

[19] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber,
A. Gupta, J. L. Hennessy, M. A. Horowitz, and M. S.
Lam, “The stanford DASH multiprocessor,” IEEE Computer,
vol. 25, no. 3, pp. 63–79, Mar. 1992.

[20] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. Duato,
“Increasing the effectiveness of directory caches by deactivat-
ing coherence for private memory blocks,” in 38th Int’l Symp.
on Computer Architecture (ISCA), Jun. 2011, pp. 93–103.

[21] J. Zebchuk, B. Falsafi, and A. Moshovos, “Multi-grain coher-
ence directories,” in 46th IEEE/ACM Int’l Symp. on Microar-
chitecture (MICRO), Dec. 2013, pp. 359–370.

[22] W.-D. Weber and A. Gupta, “Analysis of cache invalidation
patterns in multiprocessors,” in 3th Int’l Conf. on Archi-
tectural Support for Programming Language and Operating
Systems (ASPLOS), Apr. 1989, pp. 243–256.

[23] P. Stenström, M. Brorsson, and L. Sandberg, “An adaptive
cache coherence protocol optimized for migratory sharing,”
in 20st Int’l Symp. on Computer Architecture (ISCA), May
1993, pp. 109–118.

[24] M. D. Hill, J. R. Larus, S. K. Reinhardt, and D. A. Wood,
“Cooperative shared memory: Software and hardware for
scalable multiprocessors,” ACM Transactions on Computer
Systems (TOCS), vol. 11, no. 4, pp. 300–318, Nov. 1993.

[25] D. B. Gustavson, “The scalable coherent interface and related
standards proyects,” IEEE Micro, vol. 12, no. 1, pp. 10–22,
Jan. 1992.

[26] A. Ros, M. Davari, and S. Kaxiras, “Hierarchical pri-
vate/shared classification: The key to simple and efficient
coherence for clustered cache hierarchies,” in 21st Int’l Symp.
on High-Performance Computer Architecture (HPCA), Feb.
2015, pp. 186–197.

[27] M. Alisafaee, “Spatiotemporal coherence tracking,” in 45th
IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), Dec.
2012, pp. 341–350.

[28] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki,
“Reactive nuca: Near-optimal block placement and replication
in distributed caches,” in 36th Int’l Symp. on Computer
Architecture (ISCA), Jun. 2009, pp. 184–195.

[29] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: Exploit-
ing generational behavior to reduce cache leakage power,” in
28th Int’l Symp. on Computer Architecture (ISCA), Jun. 2001,
pp. 240–251.

[30] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-block prediction
& dead-block correlating prefetchers,” in 28th Int’l Symp. on
Computer Architecture (ISCA), Jun. 2001, pp. 144–154.

[31] M. Davari, A. Ros, E. Hagersten, and S. Kaxiras, “The effects
of granularity and adaptivity on private/shared classification
for coherence,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 12, no. 3, Oct. 2015. [Online].
Available: http://dx.doi.org/10.1145/2790301

[32] A. Ros, B. Cuesta, M. E. Gómez, A. Robles, and J. Duato,
“Temporal-aware mechanism to detect private data in chip
multiprocessors,” in 42nd Int’l Conf. on Parallel Processing
(ICPP), Oct. 2013, pp. 562–571.

[33] A. Esteve, A. Ros, M. E. Gómez, A. Robles, and J. Duato,
“Efficient tlb-based detection of private pages in chip multi-
processors,” IEEE Transactions on Parallel and Distributed
Systems (TPDS), Mar. 2015.

[34] D. Kim, J. Ahn, J. Kim, and J. Huh, “Subspace snooping:
Filtering snoops with operating system support,” in 19th Int’l
Conf. on Parallel Architectures and Compilation Techniques
(PACT), Sep. 2010, pp. 111–122.

[35] D. Sanchez and C. Kozyrakis, “The zcache: Decoupling
ways and associativity,” in 43rd IEEE/ACM Int’l Symp. on
Microarchitecture (MICRO), Dec. 2010, pp. 187–198.

[36] ——, “SCD: A scalable coherence directory with flexible
sharer set encoding,” in 18th Int’l Symp. on High-Performance
Computer Architecture (HPCA), Feb. 2012, pp. 129–140.

[37] M. R. Marty and M. D. Hill, “Virtual hierarchies to support
server consolidation,” in 34th Int’l Symp. on Computer Ar-
chitecture (ISCA), Jun. 2007, pp. 46–56.

[38] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-
uniform cache structure for wire-delay dominated on-chip
caches,” in 10th Int’l Conf. on Architectural Support for
Programming Language and Operating Systems (ASPLOS),
Oct. 2002, pp. 211–222.

[39] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner, “Simics: A full system simulation platform,” IEEE
Computer, vol. 35, no. 2, pp. 50–58, Feb. 2002.

[40] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and
D. A. Wood, “Multifacet’s general execution-driven multi-
processor simulator (gems) toolset,” Computer Architecture
News, vol. 33, no. 4, pp. 92–99, Sep. 2005.

[41] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GAR-
NET: A detailed on-chip network model inside a full-system
simulator,” in IEEE Int’l Symp. on Performance Analysis of
Systems and Software (ISPASS), Apr. 2009, pp. 33–42.

[42] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood,
“Pin: Building customized program analysis tools with dy-
namic instrumentation,” in 2005 ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI),
Jun. 2005, pp. 190–200.

[43] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
“The SPLASH-2 programs: Characterization and method-
ological considerations,” in 22nd Int’l Symp. on Computer
Architecture (ISCA), Jun. 1995, pp. 24–36.

[44] SPEC benchmark suite release 1.0, SPEC, Winter 1990.

[45] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec
benchmark suite: Characterization and architectural impli-
cations,” in 17th Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), Oct. 2008, pp. 72–81.

330

