
Combinatorial Abstraction Refinement for Feasibility Analysis

Martin Stigge and Wang Yi
Uppsala University, Sweden

Email: {martin.stigge | yi}@it.uu.se

Abstract—The traditional periodic workload model for hard
real-time systems has been extended by more expressive models in
recent years. These models based on different classes of directed
graphs allow modeling of structures like frames, branching and
loops.

With more expressiveness comes higher complexity of the
associated analysis problems. Feasibility of digraph-based models
with dynamic priority schedulers has been shown to be tractable
via pseudo-polynomial algorithms. However, the problem was
shown to be intractable for static priority scheduling since it
is strongly coNP-hard already for the relatively simple class
of cyclic digraphs. The core of this problem is an inherent
combinatorial explosion caused by combining different behaviors
of the participating tasks, lacking local worst cases.

We introduce a novel iterative approach to efficiently cope with
this combinatorial explosion, called combinatorial abstraction
refinement. In combination with other techniques it significantly
reduces exponential growth of run-time for most inputs. A
prototype implementation for analysing static priority feasibility
outperforms the state-of-the art pseudo-polynomial analysis for
dynamic priority feasibility. It further shows better scaling
behavior for typical problem sizes. We believe that this method
can be applicable to a variety of combinatorial problems in the
theory of real-time systems with certain abstraction structures.

I. INTRODUCTION

One of the core objectives in the theory of hard real-time
systems is to analyse whether a given system workload will
meet all its timing requirements at run-time for all conceivable
situations. The classical periodic task model by Liu and
Layland [1] describes system workload as a collection of
independent tasks. Each task is activated periodically and the
run-time of each activation is bounded by a value derived from
a worst-case execution time analysis.

The model’s assumption that each task is behaving peri-
odically is often too simple. More expressive models have
been proposed in recent years [2], [3], [4] in order to increase
modeling power. One of the most expressive models is the
Digraph Real-Time task model (DRT) [5] which models each
task using a directed graph. Timing constraints are represented
as deadlines until which task activations need to finish their
executions. However, increased expressiveness of the workload
model leads to an increase in complexity of the associated
schedulability analysis, which aims at statically proving the
absence of deadline misses, assuming a given scheduler.

The analysis complexity is further dependent on the type of
scheduler. The two common scheduler classes, dynamic and
static priority schedulers, differ in how they pick which task
to execute in cases where more than one of them is waiting
for execution. For dynamic priority schedulers, the feasibility
problem for the DRT model has been shown to be tractable for

uniprocessor platforms [5]. The method is based on evaluating
demand bound functions and leads to a pseudo-polynomial
test. However, the problem has been shown to be strongly
coNP-hard for static priority schedulers [6], implying that a
pseudo-polynomial test cannot exist (assuming P 6= NP ).
Thus, the worst-case run-time of a schedulability test can be
expected to be exponential in the task parameters.

One of the fundamental reasons for this hardness is that
tasks do not have local worst cases which can be combined
to a global worst case. As a consequence, exponentially
many combinations of scenarios from all tasks need to be
considered. Such combinatorial explosions are major sources
of intractability for many problems in the theory of real-time
systems and beyond. They introduce exponential algorithm
run-times leading to poor scaling behaviour.

In this paper, we show that by carefully considering the
properties of tasks and their interactions, a static priority
schedulability test can be developed which runs efficiently for
typical problem instances. The key insights are abstractions
which allow to potentially prune large parts of the search
space and efficiently guide the search for a deadline miss.
In particular, we provide the following contributions:
• We present methods to significantly reduce the exponen-

tial number of relevant objects to be tested by introducing
dominance relations on two domains relevant for the
analysis (critical vertices and critical request functions).

• We introduce an iterative technique called combinatorial
abstraction refinement in order to deal with a combina-
torial explosion in the feasibility test for static priorities.

Despite its exponential worst-case complexity, a prototype
implementation of our method outperforms the state-of-the-
art algorithm for dynamic priority feasibility which is pseudo-
polynomial. Task sets with 50 tasks and more can be analysed
within a few seconds. This demonstrates competitiveness of
our approach using domain knowledge for sophisticated opti-
mizations.

We believe that our abstraction refinement technique may
be applicable beyond the concrete problem we are solving in
this paper. Many problems in the theory of real-time systems
are combinatorial in nature and our approach can be used as
soon as certain lattice structures for hierarchical abstractions
are defined.

A. Prior Work
The periodic task model [1] represents each task with two

integers for period and worst-case execution time (WCET).
Deadlines are implicit, i.e., equal to periods. Efficient anal-
ysis procedures are known for dynamic priorities via the



utilization bound [1] and for static priorities via response-time
analysis [7]. More expressive models include the Multiframe
(MF) [2] and Generalized Multiframe (GMF) [3] task models.
Each task in these models cycles through a list of different
frames with different execution times (for both MF and GMF)
and different inter-release separation times and deadlines (only
GMF). Feasibility tests for these models are based on demand
bound functions [3]. Static priority schedulability tests gen-
eralize response time analysis [8], [9] or utilization bounds
[2], [10], [11], [12]. These tests however are either imprecise,
i.e., over-approximate, or very slow because of exponential
explosion in complexity.

The most general model to date with a tractable feasibility
problem is the Digraph Real-Time task model (DRT) [5].
Each task is modeled with a directed graph in which vertices
represent job releases and edges represent branches and inter-
release delays. Feasibility for dynamic priority schedulers has
been shown to be tractable [5], even for an extension with a
bounded number of global timing constraints [13]. However,
similar results have been shown to be unlikely for static
priorities since the problem becomes strongly coNP-hard in
this case [6].

The introduction of task automata [14] is taking a model
checking approach. This model is based on timed automata,
extended with real-time tasks. Expressiveness is so high that
the associated schedulability problem is even undecidable in
a few variants of the model. The decidable cases, including
models for dynamic and static priority schedulers, suffer from
the same scalability problem that is common to all model
checking approaches.

An approximative solution is the real-time calculus (RTC)
[15] which uses arrival and service curves (not unlike the
request functions we use) in order to describe task activations
and availability of computing resources. There is a large body
of research around RTC but it is inherently over-approximate.

II. PRELIMINARIES

This section presents the task model with its syntax and
semantics, followed by the problem description.

A. Task Model
We use the digraph real-time (DRT) task model [5] to

describe the workload of a system. A DRT task set τ =
{T1, . . . , TN} consists of N independent tasks. A task T is
represented by a directed graph G(T ) with both vertex and
edge labels. The vertices {v1, . . . , vn} of G(T ) represent the
types of all the jobs that T can release. Each vertex v is
labeled with an ordered pair 〈e(v), d(v)〉 denoting worst-case
execution-time demand e(v) and relative deadline d(v) of the
corresponding job. Both values are assumed to be non-negative
integers. The edges of G(T ) represent the order in which jobs
generated by T are released. Each edge (u, v) is labeled with a
non-negative integer p(u, v) denoting the minimum job inter-
release separation time. In this work, we assume deadlines to
be constrained by inter-release separation times, i.e., for each
vertex u, its deadline label d(u) is bounded by the minimal
p(u, v) for all outgoing edges (u, v).

Example II.1. Figure 1 shows an example of a DRT task.

v1

〈6, 10〉

v2

〈5, 25〉

v3

〈1, 10〉

v4

〈2, 12〉

v5〈10, 50〉
13

2910025

12 10

18

50

Fig. 1. An example task containing five different types of jobs

Semantics: An execution of task T corresponds to a
potentially infinite path in G(T ). Each visit to a vertex along
that path triggers the release of a job with parameters specified
by the vertex label. The job releases are constrained by inter-
release separation times specified by the edge labels. Formally,
we use a 3-tuple (r, e, d) to denote a job that is released
at (absolute) time r, with execution time e and deadline at
(absolute) time d. We assume dense time, i.e., r, e, d ∈ R>0.
A job sequence ρ = [(r1, e1, d1), (r2, e2, d2), . . .] is generated
by T , if and only if there is a (potentially infinite) path
π = (π1, π2, . . .) in G(T ) satisfying for all i:

1) ei 6 e(πi),
2) di = ri + d(πi),
3) ri+1 − ri > p(πi, πi+1).

For a task set τ , a job sequence ρ is generated by τ , if it is
a composition of sequences {ρT }T∈τ , which are individually
generated by the tasks T of τ .

Example II.2. For the example task T in Figure 1, consider
the job sequence ρ = [(6, 6, 16), (19, 3.3, 44), (51, 1, 61)]. It
corresponds to path π = (v1, v2, v3) in G(T ) and is thus
generated by T .

Note that this example demonstrates the “sporadic” behav-
ior allowed by the semantics of our model. While the second
job in ρ (associated with v2) is released as early as possible
after the first job (v1), the same is not true for the third
job (v3).

B. Schedulability and Feasibility

We assume preemptive scheduling on uniprocessor systems
and use the standard notion of schedulability:

Definition II.3 (Schedulability). A task set τ is schedulable
with scheduler Sch , if and only if for all job sequences
generated by τ , all jobs meet their deadlines when scheduled
with Sch . Otherwise, τ is unschedulable with Sch .

While the notion of schedulability fixes a particular sched-
uler, feasibility is a related problem about the existence of
such a scheduler:

Definition II.4 (Feasibility). A task set τ is feasible, if and
only if there is a scheduler Sch such that τ is schedulable
with Sch .



We distinguish between dynamic and static priority sched-
ulers, i.e., whether the scheduler has to obey a given order of
relative priorities on the task set. In general, dynamic priority
schedulers have more freedom in their scheduling decisions
than static priority schedulers and can therefore successfully
schedule more task sets.

For dynamic priority schedulers, it is well-known that in our
setting of independent jobs, the earliest deadline first (EDF)
scheduler is optimal. This means that if a task set can be
scheduled with any scheduler, it can also be scheduled by
EDF. It has been shown that for EDF, schedulability of DRT
task sets can be checked in pseudo-polynomial time [5] for
systems with bounded utilization. This is even the case for an
extension of DRT with global timing constraints [13]. Thus,
feasibility is considered to be a tractable problem.

Our focus in this work is on static priority scheduling. A
priority order P : τ → N assigns a priority to each task (with
lower numbers for higher priorities). We assume priorities to
be unique, i.e., P is a bijection onto {1, . . . , ‖τ‖}. We say
that a task set τ is SP schedulable with P if a static priority
scheduler using priority order P can successfully schedule τ .
We further say that τ is SP feasible if there is a P such that
τ is SP schedulable with P . As we will see in Section III,
both problems are equivalent up to a linear factor. Previous
work has proved that SP schedulability is strongly coNP -
hard already for sub-classes of DRT with cyclic graphs [6].
This means that no exact pseudo-polynomial algorithm can
test SP schedulability or SP feasibility for a given task set.
However, since both problems are highly relevant, we present
in Sections III to V an efficient algorithm that solves typical
instances in time comparable to state-of-the-art solutions for
EDF schedulability.

III. METHOD OVERVIEW

In this section, we give an overview of our algorithm for
checking SP schedulability and SP feasibility.

A. Lowest-Priority Feasibility
Our decision procedures are based on checking whether a

task in a task set may be assigned the lowest priority.

Definition III.1. For a task set τ = {T1, . . . , TN}, a task
T ∈ τ is lowest-priority feasible in τ if there is a priority order
P with P(T ) = N such that T does not miss any deadlines
if τ is SP scheduled with P .

Note that this definition does not state anything about
deadline misses of any other tasks in τ . Further, if T ∈ τ is
lowest-priority feasible in τ , then this property is independent
of the relative priorities of all other tasks in τ . We summarize
this insight in the following Lemma.

Lemma III.2. For a task set τ = {T1, . . . , TN}, if a task
T ∈ τ is lowest-priority feasible shown by a priority order P ,
then it will always meet its deadline if SP scheduled with any
permutation of P .

Proof: The amount of interference that a task T ex-
periences from tasks of higher priorities does not change

when their relative priorities change. In fact, even the actual
interference patterns do not change, i.e., the exact timing of
the interference. Thus, all permutations of priorities of tasks
with higher priority than T lead to the same schedulability
behavior of T .

As we will see now, SP schedulability and SP feasibility
can both be reduced to checking lowest-priority feasibility of
individual tasks.

B. SP Schedulability

Given a task set τ = {T1, . . . , TN} with a priority order P ,
SP schedulability of τ with P can be decided as follows. For
each task T ∈ τ , check whether T is lowest-priority feasible
in the set of all tasks with priority up to P(T ). Note that
this condition is both sufficient and necessary, since adding
tasks of lower priority to a task set does neither introduce nor
remove deadline misses of higher priority tasks.

Lemma III.3. A task set τ = {T1, . . . , TN} is SP schedulable
with a priority order P if and only if each T ∈ τ is lowest-
priority feasible in {T ′ | P(T ′) 6 P(T )}.

Proof: By above discussion.

C. SP Feasibility: Audsley’s Algorithm

Checking SP feasibility of a task set τ is possible using a
similar method which is usually called Audsley’s Algorithm.
First, check all T ∈ τ for lowest-priority feasibility in τ . If this
check is successful for any T , recursively apply the algorithm
to τ \ {T}. However, if during this recursive procedure for
some subset τ ′ ⊆ τ no such T is found, τ is not SP feasible.
This method has the additional advantage of synthesizing a
priority order if the task set is found to be SP feasible, by
taking the reverse order in which the tasks were found to be
lowest-priority feasible.

Lemma III.4. A task set τ = {T1, . . . , TN} is SP feasible if
and only if either it is empty or there is a T ∈ τ which is
lowest-priority feasible in τ and τ \ {T} is SP feasible.

Proof: It is clear that if this test succeeds, τ is indeed
SP feasible since the synthesized priority order automatically
satisfies the condition in Lemma III.3 from above.

Conversely, let the test fail for some subset τ ′ ⊆ τ
but assume there is a priority order P for which τ is SP
schedulable. Of all tasks in τ ′, some task T ∈ τ ′ is assigned
lowest priority by P . Since τ is assumed to be SP schedulable
with P , this task T will always meet all deadlines even with
interference of all tasks of higher priority in τ . However, τ ′

is just a subset of τ , therefore the interference experienced by
T from all other tasks in τ ′ can not be larger (Lemma III.2).
Thus, T must be lowest-priority feasible in τ ′, contradicting
the assumption that the test failed for τ ′.

Note that this means that in the process of synthesizing a
priority order starting with the lowest priority, one can never
“pick wrong” among all tasks that are lowest-priority feasible.



D. Critical Vertices
As we will see now, it is sufficient to test all vertices of

a task separately in order to conclude that the task is lowest-
priority feasible. The fundamental assumption for this to hold
is that deadlines are constrained, which implies that jobs of
the same task do not cause interference to each other1.

More specifically, given a vertex v with WCET e(v) and
relative deadline d(v), it is sufficient to check whether the tasks
of higher priority τhigh can execute for an accumulated time
of strictly more than d(v)−e(v) time units in any time interval
of size d(v). In case that is possible, the task containing v can
not be lowest-priority feasible since the corresponding job may
miss its deadline. However, if that is not the case, we say that v
is schedulable with interference set τhigh or just schedulable
if τhigh is clear from the context. Our algorithm for testing
schedulability of a single vertex is described in Section IV.

Lemma III.5. Given a task set τ , a task T ∈ τ is lowest-
priority feasible if and only if all vertices v ∈ G(T ) are
schedulable with interference set τ \ {T}.

Proof: By above discussion.
In fact, not all vertices need to be checked. Consider two

vertices v1 and v2 of a task with

〈e(v1), d(v1)〉 = 〈3, 10〉 and 〈e(v2), d(v2)〉 = 〈2, 20〉 .

Assume that v1 is schedulable with some interference set τ .
This immediately implies that v2 is schedulable as well, since
the execution demand of jobs corresponding to v2 is lower
and only needs to meet a deadline that is larger. We say that
v1 dominates v2 and call a set of vertices in a task which are
not dominated by others critical vertices. Clearly, only critical
vertices need to be checked for schedulability, which also
implies schedulability of all other vertices and thus lowest-
priority feasibility of the whole task.

This observation is important for run-time complexity of our
analysis method. For a set of n vertices with a uniform random
distribution of WCET and deadlines, the expected number of
critical vertices is O(

√
n), dramatically reducing the run-time

of a loop that tests all vertices individually for schedulability.
Further, as we will see in Section IV, testing a vertex v
for schedulability is in the worst case exponential in d(v).
Therefore, an optimization that tends to remove vertices v
with large d(v) has the additional benefit of avoiding the most
expensive individual tests.

The concept of a domination relation between two vertices
can be extended to vertices of different tasks with different
priorities. Take the two vertices v1 and v2 from above and
now assume that v2 is part of a task with higher priority than
the one containing v1. If v1 turns out to be schedulable, then
v2 is as well, since the set of tasks interfering with the jobs
corresponding to v2 is smaller, thus causing less interference.
We summarize this concept as follows.

1Another important condition for this is that all jobs released by the same
task do have the same priority, i.e., this method is not directly applicable to a
scheduler where different vertices could be assigned different static priorities.

Definition III.6. For a task set τ with priority order P and
tasks T, T ′ ∈ τ , we say that v ∈ G(T ) dominates v′ ∈ G(T ′),
written v < v′, if and only if:

1) e(v) > e(v′),
2) d(v) 6 d(v′) and
3) P(T ) > P(T ′).

If T = T ′, then we call this an intra-task dominance,
otherwise an inter-task dominance. A maximal set of vertices
v containing no other v′ with v′ < v is called a set of critical
vertices.

For checking SP schedulability the application of this is
straightforward. Test a set of critical vertices for schedulability,
directly leading to SP schedulability of the whole task set. For
checking SP feasibility, the priority order is not known a priori.
Thus, initially only intra-task dominance can be considered.
However, each time a task T is found to be lowest-priority
feasible, all inter-task dominated vertices in the remaining
tasks are clearly non-critical and do not need to be tested
anymore.

IV. SINGLE-JOB INTERFERENCE TESTING

We now focus on checking whether a single job may
experience sufficient interference from tasks of higher priority
such that it misses its deadline. For the rest of this section,
we assume that we want to check schedulability of a vertex v
with label 〈e, d〉, i.e., with WCET e and deadline d. We want
to check whether a given task set τ of higher priority tasks
may cause more than d − e time units of interference in any
time window of d time units. Note that the relative priorities
of all tasks in the interference set τ do not matter in this case.

A naive approach for this test could be as follows. For
each task T ∈ τ , pick a path π(T ). Given the set of paths{
π(T )

}
T∈τ , the synchronous arrival sequence can be simu-

lated, i.e., a job sequence where all jobs take their maximal
execution time, the first job from each path π(T ) is released at
time 0 and all following jobs as soon as allowed by the edge
labels. See Figure 2 for an example. Vertex v is schedulable
if and only if for an exhaustive enumeration and combination
of all such paths, each simulation turned out to detect at least
e idle time units within the first d time units.

T T ′ T ′ T T ′ T ′ T ′
t

0 5 10 15 20 25 30 35

Fig. 2. Example of simulating a synchronous arrival sequence in a time
interval of size 35. The interference set is τ = {T, T ′} with T from Figure 1
and T ′ a periodic task with (e, d, p) = (2, 8, 8). From task T , we simulate
path (v1, v2, v3). In this concrete scenario, 14 idle time units are detected.

Such an approach is of course prohibitively slow since
there are two sources of exponential explosion: the number
of paths in each task, and the number of path combinations to
be simulated. In the rest of this section, we present ways of
reducing the relevant number of paths. Section V introduces
a method for reducing the number of combination tests.



A. Request Functions
In order to deal with the exponential number of paths in

each task, we introduce a path abstraction that is sufficient
for testing interference but allows to substantially reduce the
number of paths that have to be considered. We abstract a
path π with a request function which for each t returns the
accumulated execution requirement of all jobs that π may
release during the first t time units.

Definition IV.1. For a path π = (v0, . . . , vl) through the
graph G(T ) of a task T , we define its request function as

rf π(t) := max {e(π′) | π′ is prefix of π and p(π′) < t}

where e(π) :=
∑l
i=0 e(vi) and p(π) :=

∑l−1
i=0 p(vi, vi+1).

In particular, rf π(0) = 0 and rf π(1) = e(v0), assuming that
all edge labels are strictly positive. Note further that two paths
sharing a prefix π have request functions that are identical up
to the duration p(π) of that prefix. We give an example in
Figure 3.

rf (t)

t

0 5 10 15 20 25 30 35 40 45 50

0

3

6

9

12

15

rf π′

rf π

rf π′′

Fig. 3. Example of request functions on [0, 50]. Paths are taken from G(T )
in Figure 1 with π = (v1, v2, v3), π′ = (v1, v2, v4) and π′′ = (v3, v4, v2).
Note that π and π′ share a prefix and therefore rf π and rf π′ coincide on
interval [0, 42].

Using this path abstraction, we can give a precise character-
ization of schedulability of a vertex v. The following theorem
considers all combinations of all request functions correspond-
ing to paths in all tasks of higher priority. Intuitively, the jobs
corresponding to a vertex v are schedulable if and only if for
each combination there is some time interval smaller than d(v)
in which the sum of all requests in addition to e(v) does not
exceed the size of the time interval. This means that the job in
question is always able to finish execution at some point before
d(v) time units have passed because the interference up to
this point allows enough time for it to execute to completion.
We write Π(T ) for the set of paths in G(T ) and Π(τ) for
Π(T1)× . . .×Π(TN ), i.e., the set of all combinations of paths
from all tasks. Further, let π̄ = (π(T1), . . . , π(TN )) denote an
element of Π(τ), i.e., a single combination of paths.

Theorem IV.2. A vertex v is schedulable with interference
set τ if and only if

∀π̄ ∈ Π(τ) : ∃t 6 d(v) : e(v) +
∑
T∈τ

rf π(T )(t) 6 t. (1)

A detailed proof of the theorem is given in Appendix A.
Note that in Condition (1) it is sufficient to only test all integers

t 6 d(v) since request functions only change at integer points.
There are two reasons for that: (1) we assume all graph labels
to be integers, and (2) the release sequences represented by
request functions have all job releases as early as possibly
allowed by the edge labels. For the rest of the paper, functions
only need to be evaluated at integer points.

Generally, each Π(T ) may be infinite, since there are
infinitely many paths in directed graphs with (directed) cycles.
However, as we have already seen for paths sharing a prefix,
only finitely many prefixes of paths in Π(T ) are relevant. This
is because only a bounded number of them has request func-
tions that differ somewhere on the interval [0, d(v)]. Formally,
let RF (T ) denote the set of request functions corresponding
to the paths in G(T ), restricted to domain [0, d(v)]. As with
Π before, we write RF (τ) for all combinations of tasks,
i.e., RF (T1) × . . . × RF (TN ) and r̄f = (rf (T1), . . . , rf (TN ))
for elements of RF (τ). With this notation, Condition (1) is
equivalent to

∀r̄f ∈ RF (τ) : ∃t 6 d(v) : e(v) +
∑
T∈τ

rf (T )(t) 6 t. (2)

B. Critical Request Functions
The test in Condition (2) is already finite, since RF (τ) can

be effectively and finitely enumerated. However, the number
of request functions per task is exponential in d. We will see
that only a small fraction of them is in fact relevant. Consider
two request functions rf and rf ′ such that rf (t) > rf ′(t) for
all t in [0, d(v)]. If Condition (2) is satisfied using rf for some
task, then it will also be satisfied with rf ′ instead for the same
task, since the LHS of the inequality is even smaller with rf ′.
Clearly, only rf needs to be considered.

We formalize this by introducing a notion of dominance on
the set of request functions.

Definition IV.3. For two request functions rf and rf ′ on
domain [0, d], we say that rf dominates rf ′, written rf < rf ′,
if and only if

∀t ∈ [0, d] : rf (t) > rf ′(t).

A maximal set of request functions rf containing no other rf ′

with rf ′ < rf is called a set of critical request functions.

Example IV.4. As an example, we take again the request
functions on [0, 50] in Figure 3. Note that rf π has at each
point a value at least as large as rf π′ . Therefore we have
rf π < rf π′ . The same holds with rf π′′ , i.e., rf π < rf π′′ . In
fact, rf π is a critical request function for this task.

Let RF ∗(T ) denote the (unique) set of critical request
functions for T and let RF ∗(τ) be defined analogously.
Then Condition (2) is equivalent to the following which is
quantifying only over all combinations RF ∗(τ) of critical
request functions instead of RF (τ).

∀r̄f ∈ RF ∗(τ) : ∃t 6 d(v) : e(v) +
∑
T∈τ

rf (T )(t) 6 t. (3)

Typically, only a rather small fraction of request functions in a
task is critical (tens versus thousands or millions). This already



reduces the number of combinations dramatically for which
Condition (3) needs to be checked, despite the theoretically
exponential size of all RF ∗(T ) in the worst case.

C. Computation of Request Functions
Critical request functions are our solution to the exponential

explosion of paths in each graph G(T ) by carefully consid-
ering only the relevant ones. Before we present in Section V
our solution to the second source of exponential complexity,
i.e., the number of combinations of request functions from
different tasks, we sketch an efficient method for computing
critical request functions for a given graph G(T ).

The algorithm is based on an iterative graph exploration
technique presented in [5] based on path abstractions, which
in our case are request functions. The idea is to start with all
0-paths in the graph, i.e., paths containing just a single vertex,
and iteratively extending each already generated path with all
successor vertices. During that procedure, request functions
that are found to be dominated by an already generated one
are discarded. The procedure ends when all critical request
functions on domain [0, d(v)] have been generated. For more
details about the general algorithm framework we refer to [5].

D. Full Algorithm
We summarize this section by presenting the first version

of the full algorithm in Figures 4 to 7, based on Lemmas
III.3 to III.5 and Theorem IV.2. Assumed is a function
generate-rfs(T ) returning a set of critical request functions
for a task T on the relevant time interval. Such a function
can be implemented as sketched above in Section IV-C. We
further assume that vertices have been marked as critical and
implicitly update these markings in SP -feasible(τ).

function schedulable(v, τ) :

1: for all T ∈ τ do
2: RF ∗(T )← generate-rfs(T )
3: end for
4: for all r̄f ∈ RF ∗(τ) do
5: if ∀t 6 d(v) : e(v) +

∑
T∈τ rf (T )(t) > t then

6: return false
7: end if
8: end for
9: return true

Fig. 4. Algorithm for schedulability of a vertex v with interference set τ .

function lp-feasible(T, τ) :

1: for all critical v ∈ G(T ) do
2: if not schedulable(v, τ \ {T}) then
3: return false
4: end if
5: end for
6: return true

Fig. 5. Algorithm for lowest-priority feasibility of a task T ∈ τ .

function SP -schedulable(τ,P) :

1: for all T ∈ τ do
2: if not lp-feasible(T, {T ′ ∈ τ | P(T ′) 6 P(T )}) then
3: return false
4: end if
5: end for
6: return true

Fig. 6. Algorithm for SP schedulability of a task set τ with priorities P .

function SP -feasible(τ) :

1: if τ = ∅ then
2: return true
3: end if
4: for all T ∈ τ do
5: if lp-feasible(T, τ) then
6: return SP -feasible(τ \ {T})
7: end if
8: end for
9: return false

Fig. 7. Algorithm for SP feasibility of a task set τ .

Note that SP -schedulable(τ,P) makes O(‖τ‖) calls
to lp-feasible(T, τ), compared to SP -feasible(τ) making
O(‖τ‖2) such calls. Thus, the run-time difference is only about
a factor linear in the number of tasks.

The main bottleneck of both algorithms is the combinatorial
explosion in line 4 of schedulable(v, τ). Even though the
number of critical request functions per task is low, a brute
force style test of all combinations is still prohibitively expen-
sive. We deal with this problem in the following section by
replacing the rather naive combinatorial test with our proposed
iterative approach using combinatorial abstraction refinement.

V. COMBINATORIAL ABSTRACTION REFINEMENT

In the previous section we dealt with exponential problem
sizes by introducing dominance relations on the domains
of vertices and request functions in order to discard large
fractions of the search space. However, the combinatorial
problem of having to try all combinations of (critical) request
functions remains.

In order to deal with this problem, we introduce an ab-
straction on top of request functions, called abstract request
functions. This abstraction is still sound: if a combination of
abstract request functions signals schedulability of a vertex,
this conclusion is indeed true. However, if a combination
signals non-schedulability, it may be that this conclusion is
over-approximate. In such a case, in order to still give precise
results, we refine the abstraction into combinations of “less
abstract” request functions. This is iterated until either a vertex
is finally found to be schedulable, or we arrive at a combina-
tion of concrete request functions, i.e., without any remaining
abstraction, conclusively resulting in unschedulability.



As we will see, the result is a precise analysis method which
avoids combinatorial explosion for typical inputs. The rest of
this section presents the details of our technique.

A. Abstract Request Functions
We introduce an abstraction of a set of request functions by

taking their point-wise maximum.

Definition V.1. We call rf a concrete request function if it is
derived from a path π in a graph G(T ) as in Definition IV.1.

We call rf an abstract request function if there is a set
{rf 1, . . . , rf k} of concrete request functions, such that

∀t : rf (t) = max {rf 1(t), . . . , rf k(t)} .

In that case we write rf = rf 1 t . . . t rf k.

Abstract request functions can be directly used in a schedu-
lability test in order to get over-approximate results. Specif-
ically, for each task T , let mrf (T ) be the abstract request
function derived from the whole set RF ∗(T ) of all critical
(concrete) request functions. We call mrf (T ) the most abstract
request function for T . Using the combination of all mrf (T ),
a vertex v is schedulable if

∃t 6 d(v) : e(v) +
∑
T∈τ

mrf (T )(t) 6 t. (4)

This holds because Condition (4) implies Condition (3) from
Section IV-B. The test is much more efficient since it uses only
one combination of (now abstract) request functions instead of
exponentially many.

However, Condition (4) is over-approximate. If it is sat-
isfied, vertex v is indeed schedulable, but if it fails, v may
still be schedulable. See Figure 8 for an example of this. The
reason is that the abstraction loses information, and therefore
the implication does not hold in the other direction, i.e.,
Conditions (3) and (4) are not equivalent.

v1〈2, 5〉

v2〈6, 30〉

20

5

50

30

(a) G(T ) of task T

rf (t)

t
0 2 4 6 8

0

2

4

6

8

10

rf (v1,v2)

rf (v2,v1)

mrf

(b) Request functions

Fig. 8. Example demonstrating imprecise results if just the most abstract
request function mrf is used. The two critical request functions rf (v1,v2) and
rf (v2,v1) for T are shown. Both scenarios identify idle intervals on [0, 8]:
path (v1, v2) from t = 2 and path (v2, v1) from t = 6. Thus, a vertex with
〈e, d〉 = 〈1, 8〉 would be schedulable with T having higher priority. However,
this information is lost if only mrf is considered.

In order to turn this back into a precise test while still taking
advantage of the abstraction power, we now introduce an
abstraction refinement technique which allows us to iteratively
refine the abstraction until a precise answer can be given.

B. Abstraction Refinement
As we have seen above, testing schedulability using just the

most abstract request function may give an imprecise result
in case the test fails. Instead of falling back to testing all
combinations of concrete request functions, the abstraction can
be refined by trying intermediate steps. For example, the test
can be applied to abstract request functions that do not take the
maximum over all concrete request functions, but for example
just half of them. The result is a test which is more precise
than Condition (4) but still more efficient than Condition (3).
Since this step is more precise, it is more likely that the test
succeeds in case v is schedulable. If the test still fails, the
abstractions can be refined even further.

We now make this idea formal and present the details. For
each task T , we build an abstraction tree bottom-up as follows.
The leaves are represented by all concrete request functions
from RF ∗(T ). In each step of the construction, we take two
nodes rf 1 and rf 2 which do not yet have a parent node
and which are “closest”, for example by using a similarity
metric on request functions (see Section V-C). For these two
nodes, we create their parent node by taking their point-wise
maximum rf 1 t rf 2. This is repeated until we have created
the full tree, in which case the tree root is the most abstract
request function mrf (T ). Figure 9 illustrates the abstraction
tree2.

mrf

rf π1
rf π2

rf π5

rf π3
rf π4

Fig. 9. Request function abstraction tree for request functions of task T
in Figure 1. The leaves are all five concrete (critical) request functions on
[0, 50]. Each inner node is the point-wise maximum of all descendants and
thus an abstract request function. Abstraction refinements happen downwards
along the edges, starting at the root.

Our abstraction refinement algorithm works on these ab-
straction trees as follows. First, test schedulability of a vertex
v by testing the combination of all tree roots, exactly as in
Condition (4). If that test fails, replace one of the abstract
request functions with its child nodes from the tree, creating
several new combinations to be tested. This is iterated until
either all tests conclude that v is schedulable, or until a
combination of leaves, i.e., concrete request functions, turns
out to make v unschedulable.

The resulting method is precise and much more efficient
than testing all possible combinations of request functions.
The reason for the efficiency is that in the schedulable case,
the test is likely to succeed already on rather high abstraction

2The point-wise maximum on request functions and the dominance relation
from Definition IV.3 are a join-semilattice (<,t) on the request functions
for each task. These semilattices are the core structure of our abstraction
refinement technique.



levels. Further, in the unschedulable case, the combination of
concrete request functions that violates schedulability is found
in a rather guided way trough the trees down to the tree leaves
since schedulable subtrees are avoided.

C. Similarity Metric
We use a similarity metric on request functions in two sit-

uations: when building the abstraction tree and when refining
a combination of abstract request functions.

Building the Abstraction Tree: During construction of the
abstraction tree, we want to merge the two “most similar”
request functions. The effect of this is that the abstract re-
quest function representing them is a good representation
of the two abstracted ones.

Abstraction Refinement: When a combination of request
functions signals a potential deadline miss, we want to
replace one of them with its child nodes in the corre-
sponding abstraction tree of its task. It is beneficiary to
choose the one where the child nodes are “least similar”
since this will lead to rather different situations being
tested next, i.e., different regions of the search space.

Formally, we define a metric on the space of request functions.
It captures our intuitive notion of “distance” between two func-
tions as representing the difference in behavior in simulated
sequences.

Definition V.2. For two request functions rf and rf ′ we define
their distance on domain [0, d] as

distd(rf , rf ′) :=

d∑
i=0

αi · |rf (i)− rf ′(i)|.

We choose to introduce a weighting factor α which results in
differences in early values weighing more than in later values.
The rationale is that idle intervals early in the considered
synchronous arrival sequence have an overall larger effect on
schedulability of a vertex. Therefore, request functions that are
very similar early in the interval should be considered more
alike than request functions that are rather different early in
the interval and only become more similar later. In our tests,
we found that a good compromise value is when early values
are weighted with a factor of about 10 compared to late values.
This leads to α = d

√
0.1 with α0 = 1 and αd = 0.1.

D. Full Improved Algorithm
We give now the full algorithm that incorporates the abstrac-

tion refinement technique. The only change to the pseudo-code
given in Section IV is the implementation of schedulable(v, τ)
which we replace with schedulable-car(v, τ) in Figure 10.

The implementation assumes a function generate-mrf (T )
which generates the abstraction tree and returns the tree root,
i.e., the most abstract request function for T . We further
assume a function refine(r̄f ) which takes a combination of
request functions and returns a set of combinations where one
or more of the abstract request functions are replaced by child
nodes from the abstraction tree(s). Further, the implementation
uses a store for combinations of request functions. This

could be a stack or a queue or any other data structure that
implements insertion (add ) and retrieval (pop) operations and
a test for emptiness (isempty). The algorithm returns if either
a combination of concrete request functions is found to make
v unschedulable or if the test of all combinations concludes
schedulability of v.

function schedulable-car(v, τ) :

1: store ← ∅
2: for all T ∈ τ do
3: rf (T ) ← generate-mrf (T, d(v))
4: end for
5: store.add(r̄f )
6: while not store.isempty() do
7: r̄f ← store.pop()
8: if ∀t 6 d(v) : e(v) +

∑
T∈τ rf (T )(t) > t then

9: if isabstract(r̄f ) then
10: store.add(refine(r̄f ))
11: else
12: return false
13: end if
14: end if
15: end while
16: return true

Fig. 10. Improved algorithm based on combinatorial abstraction refinement
for schedulability of a vertex v with interference set τ .

VI. EXPERIMENTAL EVALUATION

We evaluate our method by running it on task sets of dif-
ferent sizes while measuring run-times, acceptance ratios and
a set of other parameters in order to show the effectiveness of
our optimization techniques. We use an implementation in the
Python programming language running on a standard desktop
computer. The implementation is not optimized down to the
last instruction, but is suitable for a qualitative comparison of
scaling properties. Task sets have typical sizes of about 20
to 50 tasks and are analysed within a few seconds (while a
naive enumeration approach would already take days for just
five tasks). As we will see, our algorithm is very effective in
preventing combinatorial explosion and scales very well even
though we are dealing with a coNP -hard problem.

A. Task Set Generation
We define the utilization of a task T as the highest ratio of

the sum of WCET vertex labels over the sum of edge labels
in all cycles in G(T ). Each task set is randomly generated
with a given goal of a task set utilization. Tasks are added to
a task set until it satisfies the set goal. In order to simulate
different types of tasks, we create small tasks, medium tasks
and large tasks. These types differ in the number of vertices
and in the values of their edge and vertex labels. This results
in a wide range of shorter versus longer release-separation
times and deadlines. The actual task parameters are selected
uniformly from the intervals given in the following table. The
type of each task is chosen with probability of one third.



Task Type Small Medium Large

Vertices [3, 5] [5, 9] [7, 13]

Branching degree [1, 3] [1, 4] [1, 5]

p [50, 100] [100, 200] [200, 400]

e [1, 2] [1, 4] [1, 8]

d [25, 100] [50, 200] [100, 400]

B. Run-Time Scaling
The first property we evaluate is the run-time of our method

compared to the state-of-the-art EDF feasibility test from [5].
The pseudo-polynomial algorithm is dbf -based and we use
an implementation in the same Python framework as our SP
feasibility test. In the resulting run-time plot in Figure 11, we
see that our method clearly outperforms the EDF feasibility
test. For low utilizations, our method has comparable run-
time and has much better scaling behavior for increasing
utilizations. This is not surprising, since the run-time of the
EDF feasibility test is inversely proportional to the distance to
100% utilization. Our method is less sensitive to the utilization.
It is exponential in the number of tasks, but the combinatorial
abstraction refinement is effective in hiding the exponential
growth for the analysed tasks.

0.0 0.2 0.4 0.6 0.8 1.0
Task Set Utilization

0

2

4

6

8

10

12

14

A
na

ly
si

s
R

un
-T

im
e

(s
ec

on
ds

)

EDF
SP

Fig. 11. Runtimes of EDF and SP feasibility analyses. Our method clearly
outperforms the EDF test, both in absolute time and in average scaling.

C. Analysis Stages
We evaluate two aspects of our method in more detail. One

is the time distribution between computation of all critical
request functions and checking their combinations for schedu-
lability. The other aspect is the effectiveness of the abstraction
refinement in terms of avoided combination tests.

Time Distribution: Our analysis has two phases. First, all
critical request functions are derived by traversing all graphs.
Second, their combinations are tested using combinatorial ab-
straction refinement. The first phase is linear in the utilization
since it is executed in isolation for each task, and the task

10% 20% 30% 40% 50% 60% 70% 80% 90%
Task Set Utilization

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
un

-T
im

e
(s

ec
on

ds
)

Combination Testing
Computing Request Functions

Fig. 12. Runtime of SP feasibility analysis split into computation of request
functions and combination tests.

100 101 102 103 104 105 106 107 108 109 1010 1011 1012

Total Combinations

100

101

102

103

104

Te
st

ed
C

om
bi

na
ti

on
s

UNSCHED
SCHED

Fig. 13. Tested versus total number of combinations of request functions.
Crosses represent schedulable, dots unschedulable cases. Both scales are
logarithmic.

set size is proportional to the utilization. However, the second
phase is in the worst case exponential in the number of tasks.
Therefore we expect it to grow exponentially with increasing
utilization.

In Figure 12 we show the analysis run-time split into both
phases. We see that the computation of request functions
scales linearly as expected. The combination part grows more
than linearly, but our abstraction refinement technique is very
effective in dramatically reducing the combinatorial explosion.
Even at a high utilization of 90% the abstraction refinement
phase does not significantly exceed half of the analysis time.

Combination Testing: We captured 105 calls to the itera-
tive abstraction refinement procedure (Figure 10) and recorded
for each call (i) how many tests where executed (Line 8 in
Figure 10), (ii) how many combinations of concrete request
functions there were in total and (iii) its return value. We plot
the result in Figure 13 showing that our method clearly saves
work in the order of several magnitudes. In more than 99.9%
of all cases, less than 100 tests were executed.



D. Acceptance Ratio
As a last comparison, we look at acceptance ratios for

both EDF and static priority feasibility, shown in Figure 14.
Note that this comparison is not evaluating the quality of our
analysis method. It rather compares the relative scheduling
abilities of EDF versus static priority scheduling of DRT tasks.
To the best of our knowledge, this is the first time that such
a comparison can be made, since we present the first method
that is able to efficiently and precisely analyse task sets of this
size for feasibility with static priority schedulers.

0.0 0.2 0.4 0.6 0.8 1.0
Task Set Utilization

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

io

EDF
SP

Fig. 14. Acceptance ratios of EDF and static priority schedulers.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced an efficient method for
analysing static priority feasibility and schedulability for DRT
task sets. The method is based on different techniques for
pruning significant parts of the worst-case exponential search
space. Experiments have shown that our method has better
performance than pseudo-polynomial algorithms for EDF fea-
sibility.

A key part of our method is the combinatorial abstraction
refinement technique. Using an abstraction lattice, it allows
to quickly derive results about models which otherwise suffer
from combinatorial explosion.

We believe that combinatorial abstraction refinement can be
applied as a general technique to many combinatorial problems
that have a certain abstraction structure which is often the
case for real-time scheduling problems. As future work on
this concrete model, we would like to extend the specific
algorithm presented in this paper to variants of DRT with
arbitrary deadlines, static vertex priorities or synchronization.
In a broader context, we are also planning to apply the general
technique to other problems in the theory of real-time systems.

REFERENCES

[1] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment,” J. ACM, vol. 20, no. 1, pp.
46–61, 1973.

[2] A. K. Mok and D. Chen, “A Multiframe Model for Real-Time Tasks,”
IEEE Trans. Softw. Eng., vol. 23, no. 10, pp. 635–645, 1997.

[3] S. Baruah, D. Chen, S. Gorinsky, and A. Mok, “Generalized multiframe
tasks,” Real-Time Syst., vol. 17, no. 1, pp. 5–22, 1999.

[4] S. K. Baruah, “A general model for recurring real-time tasks,” in Proc.
of RTSS, 1998, pp. 114–122.

[5] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The Digraph Real-Time
Task Model,” in Proc. of RTAS 2011, 2011, pp. 71–80.

[6] M. Stigge and W. Yi, “Hardness Results for Static Priority Real-Time
Scheduling,” in Proc. of ECRTS 2012, 2012, pp. 189–198.

[7] M. Joseph and P. K. Pandya, “Finding Response Times in a Real-Time
System,” The Computer Journal, vol. 29, pp. 390–395, 1986.

[8] A. Zuhily and A. Burns, “Exact Scheduling Analysis of Non-
Accumulatively Monotonic Multiframe Tasks,” Real-Time Systems Jour-
nal, vol. 43, pp. 119–146, 2009.

[9] H. Takada and K. Sakamura, “Schedulability of Generalized Multiframe
Task Sets under Static Priority Assignment,” in Proc. of RTCSA 1997,
1997, pp. 80–86.

[10] C.-C. J. Han, “A Better Polynomial-Time Schedulability Test for Real-
Time Multiframe Tasks,” in Proc. of RTSS. Washington, DC, USA:
IEEE Computer Society, 1998, pp. 104–.

[11] T. wei Kuo, L. pin Chang, Y. hua Liu, and K. jay Lin, “Efficient
online schedulability tests for real-time systems,” IEEE Transactions
On Software Engineering, vol. 29, pp. 734–751, 2003.

[12] W.-C. Lu, K.-J. Lin, H.-W. Wei, and W.-K. Shih, “New Schedulability
Conditions for Real-Time Multiframe Tasks,” in Proc. of ECRTS, 2007,
pp. 39–50.

[13] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “On the Tractability of
Digraph-Based Task Models,” in Proc. of ECRTS 2011, 2011, pp. 162–
171.

[14] E. Fersman, P. Krcal, P. Pettersson, and W. Yi, “Task automata: Schedu-
lability, decidability and undecidability,” Inf. Comput., vol. 205, no. 8,
pp. 1149–1172, 2007.

[15] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in ISCAS 2000, vol. 4, 2000.

APPENDIX

A. Proof of Theorem IV.2
Proof: Assume Condition (1) holds but v is unschedula-

ble. Because of the latter, there must be a combination of paths
π̄ = (π(T1), . . . , π(TN )) executing in a synchronous arrival
sequence for strictly more than d(v)− e(v) time units within
time interval [0, d(v)], causing a job corresponding to v to miss
its deadline. In particular, for each t 6 d(v), tasks from τ are
executing for strictly more than t−e(v) time units within [0, t].
Since rf π(T )(t) gives an upper bound for how many time units
task T is executing within [0, t] along path π(T ), we have∑

T∈τ
rf π(T )(t) > t− e(v) (5)

for each t 6 d(v). This contradicts the assumption that
Condition (1) holds.

Assume now that v is schedulable but Condition (1) does
not hold. Because of the latter, there is π̄ ∈ Π(τ) such that
Condition (5) holds for all t 6 d(v). Let t0 6 d(v) minimal
such that τ leaves e(v) time units of idle time in [0, t0]
when π̄ is executing in a synchronous arrival sequence. Such
a t0 must exist since v is schedulable. Thus, up to t0, the
accumulated sum of execution times of jobs released along
the paths π(T ) does not exceed t0 − e(v). Since there is idle
time at t0, this accumulated sum is equal to

∑
T∈τ rf π(T )(t0)

by Definition IV.1, so Condition (5) can not hold for this
particular t0, leading to a contradiction.


