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Abstract—As a widely used tool in tackling general quadratic
optimization problems, semidefinite relaxation (SDR) promises
both a polynomial-time complexity and an a priori known
sub-optimality guarantee for its approximate solutions. While
attempts at improving the guarantees of SDR in a general sense
have proven largely unsuccessful, it has been widely observed that
the quality of solutions obtained by SDR is usually considerably
better than the provided guarantees. In this paper, we propose
a novel methodology that paves the way for obtaining improved
data-dependent guarantees in a computational way. The deriva-
tions are dedicated to a specific quadratic optimization problem
(called m-QP) which lies at the core of many communication and
active sensing schemes; however, the ideas may be generalized to
other quadratic optimization problems. The new guarantees are
particularly useful in accuracy sensitive applications, including
decision-making scenarios.

I. INTRODUCTION
The NP-hard problem [1] of optimizing a quadratic form
over the m-ary alphabet, viz.
(m-QP): max s Rs (1)

seQn,

with ©,,, = {1,&% . ’ej%’,’(M—l)}

)

arises in a wide variety of communication and active sensing
applications from signal design for transmission to signal pro-
cessing at the receive side [1]-[7]. An interesting example of
such applications is the maximum likelihood (ML) estimation
of m-ary codes: consider a discrete-time linear multi-input
multi-output (MIMO) channel modeled as

y=Qs+v 2)
where y € C™ is the received signal, the matrix Q € C"*™
represents the channel effect on the transmitted signal vector s,
and v denotes the additive white Gaussian noise. We assume
that the entries of s belong to the m-ary constellation, i.e.
s(k) € Qp,, for 1 < k < n. The ML approximation of s may
be stated as

Sy = arg Smirle ly — Qs )

m

It can be easily verified that the optimization problem in (3)
is equivalent to the following m-QP [7]:

max 57 (Amax(R)I — R)3 “)
seqQut!
where
_( Q'@ -Q"y\ __ (%
= ( -y"Q 0 ST ke )

with the integer c¢ being a free auxiliary variable.

As the solution to (1) is invariant to diagonal loadings of
R, without loss of generality, we assume in the sequel that R
belongs to the set of positive semidefinite matrices " *". The
authors in [8] show that if the matrix R is rank-deficient (more
precisely, when rank d behaves like O(1) with respect to n),
m-QP can be solved in polynomial-time and they propose a
O((mn/2)??)-complexity algorithm to solve the problem. On
the other hand, in general cases with no specific assumption on
R, one usually settles for approximation or local optimization
algorithms. A well-known approximation approach to m-QP is
semidefinite relaxation (SDR) which considers the following
relaxed version of (1) (see [4] for details):

tr(RS) 6)
st. Sk =1, 1<k<n,

S': positive semidefinite.

max
S

If the solution S to the above is rank-one, with s € 27 such
that S = ss’, then the relaxation has been tight and s is the
solution to the original problem (1). Otherwise, a randomized
procedure maps S to the space of m-ary signals in order to
approximate s [1], [4]. In particular, it has been shown in
[1], [12] that the expected value v.(SDR) of the quadratic
objective in (1) associated with SDR randomized solutions
satisfies

ve(SDR) S A 2/, m=2,
A — = i 2
matscon ST Rs ~ TSDR w7 m > 3.
(7

The latter analytically derived sub-optimality guarantee has
its own pros and cons: at the positive side, yspr is a
priori known and valid for all positive semidefinite J. The
drawback is, however, that the solutions obtained from SDR
have been widely observed to possess considerably better
quality compared to what is guaranteed by (7)—in fact, for
some practical applications, rank-one SDR solutions are easily
achievable (see e.g. [4], [14], [15] and the references therein).
This is while it is evidenced that the a priori guarantees such
as (7) may not be improvable due to worst-case scenarios. For
example, for the continuous version of (1) (corresponding to
m — 00) it is shown that the the quality of the SDR solution
can be arbitrarily close to yspr = 7/4 [1].

In light of the above, in this paper, we propose a new
approach by which for a given problem instance and corre-



sponding solution to m-QP, one can calculate a posteriori
case-dependent guarantees that might outperform (7).

II. PRELIMINARIES: THE CONIC STRUCTURE

We begin with the following result originally shown in [5]:

Theorem 1. Let K(s) represent the set of matrices R for

which a given s € Q. is the global optimizer of m-QP. Then
1) K(s) is a convex cone.

2) For any two vectors sy, Sp € (27, the one-to-one mapping

(where sy = 87 © s2)
Rc K(s)) <= RO (sosd!) € K(s2)

holds among the matrices in K(s1) and K(sz2).

®)

Thanks to its conic structure, K(s) can be built based on
its prime elements:

Definition 1. We call a matrix R (with |R||r = 1) a prime
element of KC(s) if it cannot be written as a convex combina-
tion (i.e. a linear combination with non-negative weights) of
the other elements of K(s). Moreover, we let P(s) denote the
set of all prime elements of KC(s).

The prime elements of C(s) represent a specific subset of
the boundary of the cone K(s):

Lemma 1. Let R € P(s), and suppose W € C"*™ is such
that R — W € K(s). Then R+ W ¢ K(s).

Proof: If both R — W and R+ W occur in K(s), then
R can be written as

R:%(R—W)+%(R+W) )

which contradicts the primeness of R. ]

Note that as |[Q7 | is finite, the n?-dimensional volume
of K(s) is non-zero', and hence |P(s)| > n? The prime
elements of K(s) have the following interesting properties
(theorems 2 and 3):

Theorem 2. For any s € Q, P(s) can be obtained from any
other P(s') using the mapping in (8). In particular,
P(s)={Ro (ss): ReP(1)}. (10)

Theorem 3. Other than K(s), any R € P(s) is included in
at least n—1 sets KC(s') (i.e. with s and all other n—1 vectors
s’ € QM being distinct)’.

Most importantly, any element R in the convex cone K(s)
can be written as a unique convex combination of the elements
of P(s); more precisely, for any R € K(s) there exist unique
and non-negative {\x} such that

R= Z e Ry
RyeP(s)

(11

'Unlike C™*™ whose elements can be characterized by 2n? real-valued
parameters, the linear space of Hermitian matrices in C™*"™ can be described
by only n? independent real-valued parameters, and thus is n2-dimensional.

’Due to invariance of the m-QP objective to the phase shifts of s, we
consider two vectors s1 and so from Q7 distinct, if and only if s1 #

32 _
el m'sg, foral 0 <l <m—1.

III. COMPUTATIONAL SUB-OPTIMALITY GUARANTEES

Based on the above results, one may consider the following
alternative of m-QP:

R— (Z /\kRk> ®© (SSH)
k F

where all { Ry} belong to K(1). Note that if {Ry} include
all elements of P(1), then the expression

<Z >\kRk> © (SSH)
k

characterizes all the elements of /C(s)—otherwise, it can
approximate (s).

Definition 2. We call a set { Ry}, where all Ry, € K(s) and
|Rk|lF = 1, a basis bank for K(s), if and only if { Ry} are
relatively prime, i.e. they cannot be described as a convex
combination of each other.

min
S, )\k:ZO

12)

13)

Although constructing XC(s) based on its prime elements
would be optimal, yet determining whether an element of
K (8) is prime appears to be difficult. Nevertheless, it is useful
to observe that, to approximate K(s), the elements of {Ry}
do not necessarily need to be prime. Indeed, the cone K(s)
can be approximated well by a convex combination of several
relatively prime elements (constituting a basis bank) on the
boundary of K(s). This aspect is further studied in Section
IV. We note again that m-QP is generally hard to solve. But if
the m-QP solutions for several matrices are known, we might
be able to use such information (that is indeed a valuable
computational heritage) to tackle other m-QPs rather easily.
Such a methodology requires considering (12) as is, with
variable s, which is an interesting problem that will be studied
in a future publication. In this paper, we are particularly
interested in using (12) when s is fixed. This is useful if the
solution s is already approximated by another method such as
SDR, and we are interested in bounding how close its cost is
to the optimal cost. We note that m-QP basis banks can be
designed/used in communication and active sensing systems
in various ways, e.g.

¢ The device manufacturer can design an efficient m-QP

basis bank as a part of the device startup package.

« The device can use its “spare” time or resources to design

or upgrade such basis banks.

o The m-QP basis banks can be created or updated by the

manufacturer as an after-sale service.

If s is given, then the objective of (12) becomes

R — <Z )\kRk> ® (SSH)
3 F
HR@ (s*s*H) — <Z )\kRk>

k

AR}

(14)

F

Specifically, (14) is a non-negative least squares (NNLS)
problem and is convex with respect to {\; }. Hence, the global



minimizer {\;} of (14) can be obtained very efficiently (in
polynomial-time).

We show that considering (12) in lieu of (1) lays the ground
for a novel type of sub-optimality guarantees. Assume that
{Ar} are already obtained, and let

E2R- (Z AkRk> ® (ss').
k

Rs

15)

By construction, the global optimum of the m-QP associated
with R, is s. We have that

max s?"Rs’ < max s’"R,s' + max s’ Es’ (16)
s'eQn, s'eqQn, s'eQn,
< max TR, + nnax(E)
s'eqQn,
H
= s Rss+ninax(E).
Furthermore,
max s’"Rs’ > max s’"Rss'+ min s’"Es’ (17)
s'eqQn, s'eQn, s'eQn,
> max s R, + n\uin(E)
s'eQn,
H
= S$"Rss+nimin(E).

As a result, an upper bound and a lower bound on the objective

function for the global optimum of (1) can be obtained for any

given s. As to the sub-optimality guarantee, we obtain
s"Rs

>
maxgcon ST Rgs’ —

5= (18)

where

a sfRs _ sfR,s+ s"Es 19

SHRss +nAmax(E)  sHRss+ nApax(E)

Note that the quality of (19) depends on both problem instance
and the basis bank. In fact, it is numerically observed that (i)
in some cases, v is actually smaller that ysppr, and (ii) we can
usually achieve better sub-optimality guarantees than yspr—
more on this later.

v

IV. CONE APPROXIMATION METHODOLOGY

As indicated earlier, the cone K(s) can be approximated
via a convex combination of several relatively prime elements
lying at the boundary of K(s). It is worth mentioning that
the sub-optimality guarantee and bounds derived above are
applicable even if { Ry} are not prime. Moreover, according
to Theorem 2 and the discussions afterward, we can focus on
designing the basis bank of K(s) for solely one element s of
Q7 ; a trivial choice would be s = 1.

A. Basis Bank Design

A basis bank B for m-QP can be designed in a blind way.
Suppose the communication or active sensing system solves
m-QP for any R € ’Hixn, leading to a solution s = s,. Then
according to the one-to-one mapping in (8), the matrix

RO (sisit) (20

can be added to the matrix bank with an associated m-QP
solution s = 1. On the contrary, one can employ a constructive
approach to build B. To describe our constructive approach
in the following, we first observe that the function gs(R) =
s Rs is symmetric around the symmetry axis ss € K(s):

Lemma 2. Let R be the image of R with respect to ss (for

some s € Q). Then gs(R) = gs(R).

Moreover, for any given Rand sufficiently small )\, we have
that

R=ss" + AR € K(s). 1)

Therefore, a natural way to approximate the cone K(s) is via
a convex combination of matrices R formulated as in (21).
However, an efficient approximation of K(s) is possible only
if A of (21) is maximized; in which case (21) represents a
matrix R on the boundary of K(s) (assuming R ¢ K(s)).

In order to efficiently construct B, we consider the matrices
obtained from the formula

R=ss" + \R, (22)

where 7| = vec(R,) is orthogonal to s,.. = vec(ss™)
(which is equivalent to sfR s = 0), and A > 0. Note
that s R; s = 0 if and only if s € ker(R,). Therefore,
the matrices R, with the property s R;s = 0 can be
characterized (via an eigenvalue decomposition structure) as in
(23) where U is a semi-unitary matrix spanning the (n — 1)-
dimensional space orthogonal to s (obtained efficiently via
the Gram-Schmidt process), and D is a diagonal real-valued
matrix that may be considered as the design variable. The
diagonal matrix D can be chosen in different ways:

o Computationally:

We choose D randomly, with the condition that its
diagonal entries should not be all negative (as then R
occurs in K(s)).

o Analytically:

To ensure maximum efficiency in designing B, we may
employ a diverse set of angles for spinning off from ss.
Examples of such geometrical structures are studied in the
literature (see e.g. regular simplex in [16]). Herein, we
propose the following simple and symmetric matrix sets

to build B. Let

D; = {D: D =Diag(ex)} (24)
Dy, = {D: D =Diag(ey, te,)}
Dy = {D: D =Diag(ex, ey, - teg)}

where ¢ < n — 1. Note that [D;| = 2!=1("}") for 1 <
I < t, which implies that for t = O(1),

t
U
=1

(25)




Dn— n—
R, :( Unxn-1) 8/vn ) ( (n=1)x(n—1)

01« (n—1)

(V) H
( 01)X1 )( Un><(n—1) S/\/ﬁ ) . (23)

behaves as O(n?).

Next, we calculate the maximal A of (22), denoted by ). In
particular, we seek to maximize A subject to the constraint:

sfRs = n’+2s"Rys (26)
Z |S/HS‘2 + )\S/HRJ_S/H _ s/HRs/H
for all s’ € O\ {e/2™/™s}. Let
t={secqr: "R, s > s"R, s} 27
Then, it follows from (26) that
n? _ |S/Hs‘2
A, = mi . 28
" e <3/HRJ_S/H—SHRJ_S> (28)
The candidate basis to be added to B thus becomes
1\, R
88 + A It (29

R, = .
) |sst + >‘*RJ-||F

Ultimately, the addition of R, to B will be done if it passes
a final step, i.e. if it cannot be represented as a convex
combination of the current elements of 5.

B. How Good is a Basis Bank Design?

In the following, we address the latter question by dis-
cussing three different (although related) type of measures.

1) Induced Sub-optimality Guarantees ()

A practical approach to assess the quality of a given basis
bank (B) would be to compute the m-QP sub-optimality
guarantees associated with B for various real-world or random
matrices R.

We provide an example of such a quality investigation for
the analytical/computational basis bank designs proposed in
IV-A with (n,m) = (10, 3). In the analytical case, we have
considered basis banks designed by employing D € U!_,D;.
For all ¢, the same number of basis matrices were generated
via the alternative computational approach. Random matrices
R € H"" were generated using the formula R = QQ"
where @ € C" is a random matrix whose real-part and
imaginary-part elements are i.i.d. with a standard Gaussian
distribution N (0,1). The solutions s to the related m-QPs
were approximated by SDR (with 30 randomizations [4]).
Moreover, the obtained values of y were averaged over 30
realizations of R. The results are shown in Fig. 1. Note
that v can be smaller than yspr as one can observe in the
computational case for ¢ = 2. Nevertheless, it appears that,
for larger cardinalities of the basis bank, v can surpass Yspr.-
In addition, a generally growing ~ with the cardinality of the
basis bank is interesting, and somewhat expected.
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Fig. 1. Comparison of sub-optimality guarantees obtained by constructing
the basis banks using the computational and analytical approaches proposed
in Section IV, and that of SDR (n = 10, m = 3). The obtained values of
are averaged over 30 realizations of R.

2) How Much of K(s) is Spanned by B?

An interesting way to measure the goodness of B would
be to investigate which ratio of K(s) is spanned (or covered)
by the cone associated with 5. This in fact represents the
probability of achieving v = 1, provided that the global
solution of m-QP is given. Moreover, from an intuitive point of
view, a larger coverage of K(s) by B would lead to a smaller
(14) and generally larger  values.

As the volume, a key tool in our analysis, is well-defined
in the real field, we resort to a transformation of the complex
variables to their real-valued counterparts. More concretely,
we define the operator MHW” L, Rn2x1 (X %) whose n2—length
vector output comprises the independent parameters of the
Hermitian matrix argument X 7;, namely

{R{Xadka < U AS{ X wdka} o<t

characterizing the linear space of complex Hermitian matrices
H"™ ™. We consider the unit-radius n-ball defined as

(30)

Op = {z eR™ : ||ag|2 <1} 31)

We also let Br be a matrix whose columns comprise the
vectorized versions of My . pn2 1 (B4) where { By } are
the basis matrices in B, and define

’6(3) = MH7L><'!L_)R7L2X1 (’C(S) N OR) (32)

As a result, the probability or coverage factor suggested earlier



can be formulated as

p A vol(cone(Bg) N Og)

I vol (K(s))

where wvol(.) is the volume or the Lebesgue measure of
R™, and cone(.) denotes the cone generated by non-negative
combinations of the columns of the matrix argument. We
note that finding the volumes associated with convex cones
is typically deemed to be very difficult unless for some sim-
plicial cones [17], [18]. Several analytical and computational
approaches are studied in [17]. In general scenarios, a random
vector generation scheme may be used to estimate the cone
volumes, for which the random sample must be huge (see
[17] for details). In what follows, we show that at least the
denominator of (33) can be computed analytically, according
to the following result:

(33)

Theorem 4. For any integer t > 1, and distinct s;,, Si,," - ,
s, €07,

vol (E(sll) NK(sy,)N--- 0 ﬁ(slt)> —0. (34)
Note that, based on Theorem 4, the n2-dimensional volume
of K(s) is directly given by dividing the volume of Og by

the number of distinct elements of 27, viz.
~ 7T 2

vol(K(8)) = Jm" L, (35)

3) How Does a New Basis Contributes to the Basis Bank?

Answering this question is beneficial, in particular to see
when we can stop adding new candidates to B without
considerably degrading the obtained guarantees. A possible
approach to determine the contribution of a new basis to
the basis bank would be to calculate the value at the global
minimum of the criterion:

Rocw — | > MRy (36)

k F

for {\; > 0}, where R, denotes the new basis candidate
to be added to B. Clearly, the larger the criterion in (36), the
more beneficial adding R,,.,, to B become. On the contrary,
if (36) is zero, then R,., can already be described by the
current elements of 3 and adding it to 3 does not lead to any
improvement in terms of guarantees.

An alternative approach to the above, is to consider the
volume of the simplex built by the basis matrices in B and
the origin:

h

S=<cibi+-+aby: Yy o<l >0,V

1=1

(37)

where b; denotes the M column of Bpgr, with maximum
column index h = |B|. We have that

vol(S) = ﬁ \/det(BrBY).

(38)

Consequently, the contribution of a new basis can be measured
by the resulting difference in vol(S).

V. CONCLUSION

A novel methodology was proposed to derive data-
dependent sub-optimality guarantees for approximate solutions
to quadratic optimization (over the m-ary constellation). It was
shown that the new guarantees might outperform the a priori
known SDR guarantees, and various aspects related to deriving
the new guarantees were discussed.
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