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Abstract

In this paper, we study the problem of pulsed-radar transmit code design for detection of moving

targets in the presence of signal-dependent clutter. For unknown target Doppler shift, the optimal detector

does not lead to a closed-form expression. Therefore, we resort to average and worst-case performance

metrics of the optimal detector for code design. We propose several algorithms under two novel frame-

works to solve highly non-convex design problems. We also consider low-peak-to-average-power ratio

code design.
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I. INTRODUCTION

Radars as well as many other active sensing systems face the simultaneous effects of signal-dependent

and independent interferences. The signal-dependent interference, usually known as clutter, is the echo

of the transmitted signals produced by uninteresting obstacles. On the other hand, the signal-independent

interferences include various types of noise, jamming, and other unwanted emissions. Due to the difference

between the target velocity and motions of the clutter scatteres, Doppler shifts of the moving targets play

an important role in distinguishing the targets from clutter background. However, the target Doppler shift

is usually unknown at the transmitter. Considering such an ambiguity along with the presence of clutter,

and the practical implementation demands for low peak-to-average-power ratio (PAR) make the transmit

code design a challenging task.
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The signal design for radar performance improvement has been an active area of research in the last

decades; however, the majority of previous works have considered either stationary target or clutter-free

scenarios. The effect of clutter has been considered in early studies for stationary targets, or targets with

known Doppler shifts (see e.g. [1]–[5]). In [6] a solution for the case of a stationary target with no clutter

motion was derived; more concretely, [6] proposed a method for obtaining the spectrum of the optimal

transmit signal, which is later used for the code’s approximate synthesis. A related problem to that of

[6] has been considered in [7] with a discrete-time model and PAR constraint (see also [8], [9]). In [10],

two signal design approaches based on mutual information (MI) and signal-to-interference-plus noise

ratio (SINR) metrics have been considered for stationary extended target recognition. Signal design for

detection performance improvement of multiple-input multiple-output (MIMO) radars has been studied

in [11] and [12] for stationary targets in the absence of clutter motion (see also [13]). Moreover, [14]

considers stationary target classification for MIMO radars in white noise background. Some clutter-free

scenarios are discussed in [15]–[17]. The unknown Doppler shift of the target has been taken into account

in [18] and [19]. The reference [18] considers the worst-case code design problem for clutter-free cases

under a similarity constraint to a given code. The ideas of [18] are generalized in [19] where the PAR

constraint is included.

In this paper, we study the problem of radar signal design for detection of a moving target in the

presence of clutter. Two different design methodologies including average and worst-case approaches are

considered to handle the fact that the Doppler shift of the target is often unknown at the transmit side.

The corresponding optimization problems are highly non-convex. To tackle these problems, we propose

several novel algorithms under two frameworks for unconstrained and constrained design. Particularly,

we introduce the Convexification via Reparametrization (CoRe) framework which considers a relaxation

of the original design problem to a core semi-definite program (SDP), that we call CSDP. The CSDP

is then followed by a code synthesis stage. Moreover, another framework based on a Cyclic Algorithm

for Direct COde DEsign (which we call CADCODE) is proposed to carry out a direct code design via

cyclic minimization. The key contributions of this paper are:

• The simultaneous presence of clutter (i.e. the signal-dependent interference) and the unknown

Doppler shift of the moving targets is considered. To the best of our knowledge, designing codes

for improving detection performance in such cases has not been addressed in the literature prior to

this work.

• To deal with the unknown Doppler shift of the target, both average and worst-case performance
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metrics of the optimal detector (with known Doppler shift) are considered for code design. The

connections between the considered metrics and the detection performance are also addressed. As a

result, the proposed code design schemes enable the user with the possibility to choose the desired

performance guarantees (at any occurred scenario) freely.

• The PAR constraint is taken into account in the code design. Several extensions of the proposed

methods are derived to handle such constrained code design problems.

• Using the CSDP solution in the CoRe framework, computational upper bounds on the achievable

values of the average and worst-case performance metrics are provided. The obtained upper bounds

can be used as benchmarks to examine the goodness of codes obtained by different code design

methods. In addition, they provide the system designers with a better insight into the optimal system

performance in various scenarios.

The rest of this paper is organized as follows. In Section II, we present the data modeling and derive

the optimal detectors for both known and unknown target Doppler shift. The average design is studied in

Section III. This section also includes a presentation of the CoRe and CADCODE frameworks. Section

IV is dedicated to the worst-case code design. The PAR constrained code design is considered in Section

V. Several numerical examples are provided in Section VI. Finally, Section VII concludes the paper.

Notation:We use bold lowercase letters for vectors and bold uppercase letters for matrices. (·)T , (·)∗ and
(·)H denote the vector/matrix transpose, the complex conjugate, and the Hermitian transpose, respectively.
IN represents the identity matrix in CN×N . 1 and 0 are the all-one and the all-zero vectors/matrices. ek is

the kth standard basis vector in CN . The Frobenius norm of a matrix X (denoted by ‖X‖F ) with entries
{Xk,l} is equal to

(∑
k,l |Xk,l|2

) 1

2 . The l2-norm of a vector x is denoted by ‖x‖. The symbol � stands

for the Hadamard (element-wise) product of matrices. tr(·) is the trace of a square matrix argument. The
notations λmax(·) and λmin(·) indicate the principal and the minor eigenvalues of a Hermitian matrix,
respectively. Diag(·) denotes the diagonal matrix formed by the entries of the vector argument, whereas
diag(·) denotes the vector formed by collecting the diagonal entries of the matrix argument. E{·} stands
for the statistical expectation operator. We write A � B iff A−B is positive semi-definite, and A � B

iff A−B is positive-definite. Finally, �(·) and arg(·) denote the real-part and the phase angle (in radians)
of the complex-valued argument.
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II. DATA MODELING AND OPTIMAL DETECTOR

A. Data Modeling

We consider a narrow-band pulsed-radar system using a train of pulses. The baseband transmit signal

can be formulated as

s(t) =

N−1∑
n=0

an φ(t− nTPRI) (1)

where φ(.) is the basic unit-energy transmit pulse (with time duration τp), TPRI is the pulse repetition

interval (TPRI � τp), and {an}N−1
n=0 are the weights that are to be optimally designed.

At the transmitter, the baseband signal is modulated by a carrier frequency ωc. The backscattered signal

from a point-like moving target can be expressed as

r(t) = αts(t− τ)ej(ωc+ν)(t−τ) + c(t) + w(t) (2)

where αt is the amplitude of the target echo (accounting for target reflectivity and channel effects), τ

and ν denote the target delay and Doppler shift, respectively, c(t) is the clutter component, and w(t)

represents the signal-independent interferences.

We assume that both c(t) and w(t) are Gaussian random processes. In particular, we assume that the

clutter component is the signal echo produced by many individual point scatterers (distributed across the

delay and Doppler domains) which are statistically independent. Under such an assumption, c(t) can be

formulated as [2]

c(t) =

Nct∑
k=1

Ncd∑
l=1

ρkls(t− τk)e
j(ωc+ωl)(t−τk) (3)

where Nct and Ncd are the number of clutter scatterers in the delay and Doppler domains1, respectively,

and ρkl is the amplitude of a specific clutter scatterer at time delay τk and Doppler shift ωl (due to the

clutter motion).

Note that in radar applications, the pulse φ(t) and its time-shifted versions can be used as an orthonor-

mal basis for signal recovery at the receiver. More precisely, the matched filter φ∗(−t) is usually applied

to the downconverted received signal (i.e. r(t)e−jωct) and the output of the matched filter is then sampled

at the time delays corresponding to the range-cell under test, i.e. t = nTPRI + τ for 0 ≤ n ≤ N − 1.

The discrete-time received signal r for the range-cell corresponding to the time delay τ can be written

1It is assumed that the number of the independent scatterers is sufficiently large such that the central limit theorem holds and
the Gaussian distribution for c(t) can be justified (see e.g., [2] [20] [21]).
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as (see Appendix A for a derivation)

r = αa� p+ a� c+w (4)

where α = αte
−jωcτ , a � [a0 a1 . . . aN−1]

T is the code vector (to be designed), p � [1 ejω . . . ej(N−1)ω]T

with ω being the normalized Doppler shift of the target, c is the vector corresponding to the clutter

component, and the vector w represents the signal-independent interferences2. A detailed construction

of c and w from the continuous variables c(t) and w(t) can also be found in Appendix A. Herein we

remark on the fact that (4) refers to the cases with unambiguous clutter scatterers.

Using (4), the target detection problem can be cast as the following binary hypothesis test:⎧⎪⎨⎪⎩
H0 : r = a� c+w

H1 : r = αa� p+ a� c+w

(5)

Note that the covariance matrices of c and w (denoted by C andM) can be assumed to be priori known

(e.g. they can be obtained by using geographical, meteorological, or pre-scan information) [23] [22]. As

to the target, we assume α is a zero-mean complex Gaussian random variable with variance σ2
T (i.e.

Swerling-I model).

B. Optimal Detector for a priori known Doppler shift

Let x = D−1/2r with D = M+ACAH , and A = Diag(a) (that is referred to as code matrix in the

sequel). The detection problem in (5) can equivalently be expressed in terms of x. More precisely, for a

known target Doppler shift, the problem in (5) is equivalent to:⎧⎪⎨⎪⎩H0 : x ∼ CN (0, I)

H1 : x ∼ CN (0,S+ I)

(6)

where S = σ2
TD

−1/2(a�p)(a�p)HD−1/2. The optimal detector compares the likelihood-ratio associated

with the above problem, i.e. the ratio of the pdf of x under H1 over that of H0, with a detection threshold.

According to (6), the likelihood-ratio for the problem is given by

L(x) = 1

det (S+ I)

(
exp

(−xH(S+ I)−1x
)

exp (−xHx)

)
. (7)

2Note that in the data model (4) we neglect the effects of the antenna pattern; however, the results can be straightforwardly
extended to include these effects (see e.g. [22]).
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By taking logarithm and removing the constants, the following expression is obtained for the optimal

detector:

|rH (
M+ACAH

)−1
(a� p)|2

H0

≶
H1

η (8)

where η is the detection threshold. Note that the above detector is nothing but a whitening process, a

matched filtering, and a square-law detection. The performance of the above detector depends on the

following SNR [24, Chapter 8]

λ = σ2
T (a� p)H

(
M+ACAH

)−1
(a� p). (9)

It is interesting to observe that the above performance metric is invariant to a phase-shift of the code

vector a, i.e. the code vectors a and ejϕa (for any ϕ ∈ [0, 2π]) result in the same value of the SNR.

C. Optimal Detector for an unknown Doppler shift

The target Doppler shift ω is usually unknown at the transmitter. In such cases, the detector of (8)

does not hold true anymore. The optimal detector for the detection problem in (5) in cases where ω is

unknown is obtained by considering the pdf of ω. The distribution of the vector r (and x) are no longer

Gaussian under H1 and the optimal detector does not lead to a closed-form expression. More precisely,

let f(ω) denote the pdf of ω. The optimal detector is obtained by considering the average likelihood-ratio

[24]:

L(x) =
∫
Ω
L(x|ω)f(ω) dω (10)

which results in the following detector [25]∫
Ω

1

1 + λ
exp

(
σ2
T r

HD−1(a� p)(a� p)HD−1r

1 + λ

)
f(ω) dω

H0

≶
H1

η′ (11)

where Ω = [ωl, ωu] denotes the considered interval for the target Doppler shift3 ω and λ is given by (9).

It is worth mentioning that the values of ωl and ωu and the pdf of ω can be obtained in practice using

prior knowledge about the type of target (e.g. knowing if the target is an airplane, a ship, or a missile),

rough estimates of the target Doppler shift obtained by pre-scan procedures, and employing cognitive

methods [23] [26]. Usually, a uniform distribution for ω is considered over Ω to model the uncertainty

of the target Doppler shift [22].

3Note that Ω can also be the union of several intervals.
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III. CODE DESIGN IN AVERAGE SENSE

Code design to improve the detection performance of the system for a known target Doppler shift ω

can be accomplished by the maximization of the following performance metric4 for a given ω:

(a� p)H
(
M+ACAH

)−1
(a� p) (12)

= tr
{
AH(M+ACAH)−1AppH

}
= tr

{(
(AHM−1A)−1 +C

)−1
ppH

}
.

In cases where target Doppler shift is unknown, the expressions for the corresponding optimal detector

and its performance metrics are too complicated to be used for code design (see also [27] [28]). In such

a circumstance, we consider the following design metric (referred to as average metric):

tr
{(

A−1MA−H +C
)−1

W
}

(13)

where W = E{ppH}. The mathematical background for selection of such metric is as follows: It can
be shown (see below) that maximizing the above metric results in maximization of a lower bound on

the J-divergence [29] associated with the detection problem in (5) for unknown ω. Furthermore, for large

SNR regimes, maximization of the above metric approximates well the maximization of the J-divergence.

More precisely, the J-divergence associated with the binary hypothesis test is given by [27]

J = E{log(L(x))|H1} − E{log(L(x))|H0}. (14)

Therefore, for the detection problem in (5) in cases where ω is unknown we can write

J = E{J |ω}. (15)

For a given ω, the detection problems in (5) and (6) are equivalent, and hence J |ω can be derived

considering (6) as:

J |ω =

(
− log (1 + λ) +

λ2 + λ

1 + λ

)
−
(
− log (1 + λ) +

λ

1 + λ

)
=

λ2

1 + λ
(16)

4In what follows, we assume that all the code elements are non-zero.
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where λ is defined in (9). Now observe that g(x) = x2/(1+x) is a convex function. Consequently, using

Jensen inequality we conclude

J = E

{
λ2

1 + λ

}
≥ (E{λ})2

1 + E{λ}︸ ︷︷ ︸
JLB

. (17)

Furthermore, g(x) = x2/(1+x) is a monotonically increasing function. As a result, maximization of the

E{λ} leads to maximization of the JLB in the above inequality. Owing to the fact that the considered

metric in (13) is equal to E{λ}, the maximization of the average metric leads to maximization of the
lower bound JLB on the J-divergence J . An analysis of the tightness of the bound JLB is presented

in Appendix B. The J-divergence has an asymptotic relationship with the detection performance of a

hypothesis test and can also be considered as a bound on the detection performance [30] [29].

Remark 1: Note that J = E
{
λ− 1 + 1

λ+1

}
and hence for large SNR, i.e. large λ, we have J ≈

E{λ} − 1. As a result, in such cases, maximization of the considered average metric approximates well

the maximization of the J-divergence. A similar approximation has also been used in [30] for radar signal

design. With similar calculations, for small λ, it can be shown that maximization of the average metric is

approximately equivalent to maximization of the Mutual Information associated with the problem (5) (that

is given by E {log (1 + λ)}). For known ω, the average metric is identical to the performance metric in

(12) and directly determines the performance of the optimal detector. �

To optimize the detection performance, the average metric (13) can be maximized under an energy

constraint:

max
A

tr
{(

A−1MA−H +C
)−1

W
}

(18)

subject to tr
{
AAH

} ≤ e

where e denotes the maximum energy that can be used for transmission. Note that if A is claimed to be

a solution to (18) with tr{AAH} < e, then γA (for some γ > 1 such that γ tr{AAH} = e) is feasible

but leads to a larger value of the objective function. Therefore, the energy constraint in (18) is active. In

the following, we propose two different frameworks to tackle the code optimization problem in (18).

A. Convexification via Reparametrization (CoRe)

First, we introduce the CoRe framework which is based on a relaxation of the optimization problem in

(18). In particular, we show that a relaxed version of the code design problem in (18) can be formulated
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as an SDP. Let

X � AHM−1A (19)

and observe that X � 0. The energy constraint of (18) can be rewritten noting that

tr{X} = tr{AHM−1A} =

N∑
k=1

mkk|ak|2 (20)

where {mkk}Nk=1 are the diagonal entries of the positive-definite matrix M−1. Using (20), the energy of

the code can be alternatively written as

tr{AHA} = tr{XG} (21)

where G � (M−1 � I)−1 is a diagonal matrix with diagonal entries {1/mkk}Nk=1.

Next, we reformulate (18) as a convex optimization problem w.r.t. X. Note that there exists B ∈ CN×N

such that C = BBH . Using the matrix inversion lemma we have that

(X−1 +C)−1 = X−XB(I +BHXB)−1BHX. (22)

Let δ = rank(W), and let W =
∑δ

k=1wkw
H
k . As a result,

tr
{(

A−1MA−H +C
)−1

W
}
= tr

{
(X−1 +C)−1W

}
(23)

=
∑δ

k=1

{
wH

k Xwk −wH
k XB(I+BHXB)−1BHXwk

}
.

To maximize (23), each term in the latter summation can be dealt with by means of a linear matrix

inequality (LMI) using auxiliary variables {βk}:

βk ≥ −wH
k Xwk +wH

k XB(I+BHXB)−1BHXwk (24)

⇔
⎡⎣ βk +wH

k Xwk wH
k XB

BHXwk I+BHXB

⎤⎦ � 0.

In light of Eqs. (21) and (23), and the LMIs introduced in (24), the optimization problem (18) boils
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down (in a relaxed form) to the following core SDP (CSDP):

CSDP: min
X,{βk}δ

k=1

δ∑
k=1

βk (25)

subject to ⎡⎣ βk +wH
k Xwk wH

k XB

BHXwk I+BHXB

⎤⎦ � 0, ∀ k,

tr{XG} ≤ e,

X � 0.

Note that the above CSDP can be solved in polynomial-time (e.g. see [31] in which an O(N3.5)-

complexity algorithm is introduced to solve such SDPs). The global optimum X of the above CSDP

can be used to synthesize the code matrix A. To obtain A such that AHM−1A ∼= X, we consider the

optimization problem

min
A,Q

‖X1/2Q−AHM−1/2‖2F (26)

subject to QQH = I

where Q is an auxiliary matrix. In the following, we propose an efficient cyclic algorithm for solving

(26). For any fixed code matrix A, (26) leads to the maximization problem:

max
Q

�
(
tr
{
X1/2QM−1/2A

})
(27)

subject to QQH = I.

Interestingly, a similar problem to (27) has been studied in [32] where an explicit solution was derived. Let

V1SV
H
2 represent the singular value decomposition (SVD) of M−1/2AX1/2. Then the explicit solution

of (27) is given by V2V
H
1 (see [32] for details). Furthermore, for fixed Q, the solution of (26) w.r.t. the

code matrix A can be obtained solving the problem:

min
A

tr
{
AHM−1A

}− 2�
(
tr
{
X1/2QM−1/2A

})
(28)

which can be rewritten (in vectorized form) as

min
a

aH(M−1 � I)a− 2�(bHa) (29)
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with b � diag(X1/2Q∗M−1/2). The solution a of (29) is given by

a = (M−1 � I)−1b = Gb. (30)

Remark 2: Note that the aim of the synthesis problem (26) is to provide A such that AHM−1A ∼= X,

and also that an energy constraint has already been imposed when obtaining the X (see (25)). Therefore,

in (26), we do not consider the energy constraint, as it has been implicitly imposed. However, one might

be interested to explicitly consider the energy constraint in (26). In this case, the optimization problem

for fixed Q is convex w.r.t. A and hence can be solved efficiently (but (30) does not hold). Note that it

was numerically observed that the difference between explicitly imposing the energy constraint in (26)

and the considered synthesis problem in the paper is very minor. �

The steps of the CoRe framework are summarized in Table I. It is worth mentioning that as the solution

X to the CSDP does not necessarily possess the desired structure in (19), some degradation of the metric

in (13) can be expected at the synthesis stage. In other words, the CSDP solution in (25) provides an

upper bound on the average metric. This upper bound can be used to assess the quality of code design

methods as well as the system performance in various scenarios.

TABLE I
CORE FOR OPTIMAL CODE DESIGN USING THE AVERAGE METRIC

Step 1: Solve the CSDP of (25) to obtain its global optimum
X.
Step 2 (The synthesis stage): Initialize a with a random vector
in C

N .
Step 2-1: Compute Q = V2V

H
1 where V1SV

H
2

represents the SVD of M−1/2AX1/2.
Step 2-2: Compute a = G diag(X1/2(Q∗)M−1/2).
Step 2-3: Repeat steps 2-1 and 2-2 until a pre-defined
stop criterion is satisfied, e.g. ‖a(k+1) − a(k)‖ ≤ ε for some
ε > 0, where the superscript k denotes the iteration number.

B. Cyclic Algorithm for Direct COde DEsign (CADCODE)

In this sub-section, we propose the CADCODE framework for solving (18) directly w.r.t. the code

matrix A.

We begin by noting that as W � 0 there must exist a full column-rank matrix V ∈ CN×δ such that

W = VVH (particularly observe that V = [w1 w2 ... wδ] yields such decomposition of W). As a
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result,

tr
{(

(AHM−1A)−1 +C
)
W

}
= tr

{
AH(M+ACAH)−1AW

}
(31)

= tr
{
VHAH(M+ACAH)−1AV

}
.

Let Θ � θI − VHAH(M + ACAH)−1AV with a sufficiently large θ such that Θ � 0 (a detailed

calculation of the diagonal loading parameter θ can be found in Appendix C). Note that the optimization

problem (18) is equivalent to the minimization problem

min
A

tr{Θ} (32)

subject to tr{AHA} ≤ e.

Now define

R �

⎡⎣ θI VHAH

AV M+ACAH

⎤⎦ (33)

and observe that for U � [Iδ 0N×δ]
T we have

UHR−1U = Θ−1. (34)

To tackle (32) let g(A,Y) � tr{YHRY} (with Y being an auxiliary variable), and consider the

following minimization problem:

min
A,Y

g(A,Y) (35)

subject to YHU = I

tr{AHA} ≤ e.

For fixed A, the minimizer Y of (35) can be obtained using Result 35 in [33, p. 354] as

Y = R−1U(UHR−1U)−1. (36)

On the other hand, for fixed Y, the minimization of g(Y,A) w.r.t. A yields the following convex

quadratically-constrained quadratic program (QCQP):

min
a

aH
(
(Y2Y

H
2 )�CT

)
a+ 2�(dHa) (37)

subject to aHa ≤ e
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where Y � [Y1 δ×δ Y2 N×δ]
T and d � diag(V∗Y∗

1Y
T
2 ). Note that the positive semi-definiteness of

(Y2Y
H
2 )�CT guarantees the convexity of (37). The QCQP in (37) can be solved efficiently using the

Lagrange multiplier method (see Appendix D).

It is straightforward to verify that at the minimizer Y of (35),

g(Y,A) = tr{Θ}. (38)

From this property, we conclude that each step of the cyclic minimization of (35) leads to a decrease of

tr{Θ}. Indeed, let f(A) = tr{Θ} and note that

f
(
A(k+1)

)
= g

(
Y(k+2),A(k+1)

)
(39)

≤ g
(
Y(k+1),A(k+1)

)
≤ g

(
Y(k+1),A(k)

)
= f

(
A(k)

)
where the superscript k denotes the iteration number. The first and the second inequality in (39) hold

true due to the minimization of g(A,Y) w.r.t. Y and A, respectively. As a result, CADCODE converges

to a stationary point of (18). It is worth noting that the minimization steps of CADCODE (which are

summarized in Table II) are solved either analytically or using standard interior-point methods [34].

TABLE II
CADCODE FOR OPTIMAL CODE DESIGN USING THE AVERAGE METRIC

Step 0: Initialize the code vector a using a random vector in
C

N , and form R as defined in (33).
Step 1: Compute Y = R−1U(UHR−1U)−1.
Step 2: Solve the optimization problem (37) to obtain the code
vector a.
Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion
is satisfied, e.g. ‖a(k+1) − a(k)‖ ≤ ε for some ε > 0, where k
denotes the iteration number.

IV. WORST-CASE DESIGN

Following the optimization schemes proposed for code design in the average-sense, we extend our

derivations in order to handle the unknown Doppler shift of the target in a worst-case scenario. The

worst-case approach has been considered in [18] and [19] for clutter-free scenarios. These works also

address the connection between the worst-case metric and the detection performance (see also [35] for a
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related problem). Considering the performance metric of the detector (8), the worst-case metric (for an

unknown Doppler shift in the interval [ωl, ωu]) is defined as

min
ωl≤ω≤ωu

tr
{(

(AHM−1A)−1 +C
)−1

ppH
}
. (40)

The maximization of the worst-case metric boils down to the max-min problem:

max
A

min
ωl≤ω≤ωu

tr
{(

(AHM−1A)−1 +C
)−1

ppH
}

(41)

subject to tr
{
AHA

} ≤ e

which can be rewritten (using a slack variable t) as

max
A,t

{t} (42)

subject to

tr
{(

(AHM−1A)−1 +C
)−1

ppH
}
− t ≥ 0, ∀ ω ∈ [ωl, ωu],

tr
{
AHA

} ≤ e.

Note that (42) is a non-convex optimization problem with infinitely many nonlinear constraints. In the

following, we make use of an extension of the CoRe framework to tackle (42).

Using a new variable Z =
(
(AHM−1A)−1 +C

)−1, one can recast (42) (in a relaxed form) as

max
Z,t

{t} (43)

subject to

pHZp− t ≥ 0, ∀ ω ∈ [ωl, ωu], (44)

tr
{
(Z−1 −C)−1G

} ≤ e. (45)

Observe that for any ω ∈ [ωl, ωu], the constraint (44) is equivalent to

h(ω) � z0 − t+ 2�
(

N−1∑
k=1

zke
−jkω

)
≥ 0 (46)

where

zk �
N−k∑
i=1

Zi+k,i, 0 ≤ k ≤ N − 1. (47)

We use Theorem 3.2 of [36] (which is stated as Theorem 1 below) to obtain an SDP representation of
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(46).

Theorem 1. The trigonometric polynomial h̃(ω) = z0 + 2�
(∑N−1

k=1 zke
−jkω

)
is non-negative for any

ω ∈ [ω0 − ω1, ω0 + ω1] (with 0 < ω1 < π) iff there exist an N × N Hermitian matrix Z1 � 0 and an

(N − 1)× (N − 1) Hermitian matrix Z2 � 0 such that

z = FH
1

(
diag(F1Z1F

H
1 ) + q� diag(F2Z2F

H
2 )

)
(48)

where z = [z0 z1 ... zN−1]
T , q = [q0 q1 ... qn−1]

T with qk = cos(2πk/n − ω0) − cos(ω1), F1 =

[f0 ... fN−1] and F2 = [f0 ... fN−2] in which fk = [1 e−jkθ ... e−j(n−1)kθ]T with θ = 2π/n, and

n ≥ 2N − 1.

Note that the SDP representation of (46) can be derived by employing the above results with n =

2N − 1, ω0 = (ωl + ωu)/2, and ω1 = ω0 − ωl.

Next we obtain an LMI representation for the constraint (45). Let G = Diag([G1 G2 ... GN ]) =∑N
m=1 gmgH

m (where gm =
√
Gmem), and note that

tr
{
(Z−1 −C)−1G

}
=

N∑
m=1

{
gH
mZgm + gH

mZB(I −BHZB)−1BHZgm
}
. (49)

Similar to the derivation of CoRe in the average-sense code design, we consider the following LMI

characterization:

gH
mZgm + gH

mZB(I−BHZB)−1BHZgm ≤ γm (50)

⇔
⎡⎣ γm − gH

mZgm gH
mZB

BHZgm I−BHZB

⎤⎦ � 0

where {γm} are auxiliary variables. Therefore, the SDP related to the worst-case code design can be
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expressed as5:

CSDP: max
t,Z,Z1,Z2,{γm}N

m=1

{t} (51)

subject to

z = te1 + FH
1

(
diag(F1Z1F

H
1 ) + q� diag(F2Z2F

H
2 )

)
,⎡⎣ γm − gH

mZgm gH
mZB

BHZgm I−BHZB

⎤⎦ � 0, ∀ m,

N∑
m=1

γm ≤ e,

I−BHZB � 0,

Z � 0, Z1 � 0, Z2 � 0.

To synthesize the code matrix A from the CSDP solution Z of (51), we will consider a synthesis stage

similar to that of the average-sense code design in sub-section III-A (observe that (Z−1 −C)−1 = X).

The CoRe framework for obtaining optimized codes using the worst-case metric is summarized in Table

III. Although solving (51) yields a global optimum of the CSDP, the further synthesis step leads to an

approximate solution A of the original problem in (42). Therefore, the CSDP solution of (51) provides an

upper bound on the possible values of the worst-case metric. Note that the results can be straightforwardly

extended to the case in which Ω is a union of several intervals.

TABLE III
CORE FOR OPTIMAL CODE DESIGN USING THE WORST-CASE METRIC

Step 1: Solve CSDP in (51) to obtain its global optimum Z.
Step 2 (The synthesis stage): Initialize the code vector a with
a random vector in C

N .
Step 2-1: Compute Q = V2V

H
1 where V1SV

H
2 represents

the SVD of M−1/2A(Z−1 −C)−1/2.
Step 2-2: Compute the code vector as

a = G diag
(
(Z−1 −C)−1/2

Q
∗

M
−1/2

)
.

Step 2-3: Repeat steps 2-1 and 2-2 until a pre-defined
stop criterion is satisfied, e.g. ‖a(k+1) − a(k)‖ ≤ ε for some
ε > 0, where k denotes the iteration number.

5We have also included the constraint I−BHZB � 0 in the CSDP (51) to ensure a meaningful synthesis stage (see Remark
3 below).
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Remark 3: The reader might observe the fact that the code synthesis stage is meaningful only if

Z ≺ C−1, and hence might be willing to add such constraint to the constraint set of (51). To clarify this

issue, note that using the matrix inversion lemma we have

(Z−1 −C)−1 = Z+ ZB(I−BHZB)−1BHZ. (52)

As Z of (51) is a positive-definite matrix, and the constraint set in (51) implies I − BHZB � 0, we

conclude from (52) that Z−1 −C � 0. Therefore, the constraint Z ≺ C−1 is already taken into account

via the constraints in (51). Moreover, adding the constraint Z ≺ C−1 separately would limit our design

to the case of a non-singular C. �

V. CONSTRAINED CODE DESIGN

In order to use the power resources efficiently and to avoid non-linear effects at the transmitter,

sequences with low PAR values are of practical interest in many applications [19] [37]. In this section,

we consider code design via CoRe and CADCODE frameworks under an arbitrary PAR constraint, viz.

PAR(a) =
max
m

{|am|2}
1
N ‖a‖2 ≤ ζ. (53)

It is possible to synthesize low-PAR codes from the CSDP solution of the CoRe framework. To keep the

paper concise, we only use the CoRe formulation in an average sense (note that for a worst-case scenario

we have (Z−1 −C)−1 = X). In this case, the optimization problem (26) can be reformulated as

min
A,Q

‖X1/2Q−AHM−1/2‖2F (54)

subject to QQH = I

PAR(a) ≤ ζ.

Therefore, for fixed Q we have the code synthesis problem:

max
a

aH(M−1 � I)a− 2� (
bHa

)
(55)

subject to max
m=0,··· ,N−1

{|am|2} ≤ ζ,

‖a‖2 = N.

On the other hand, the low-PAR code design using the CADCODE framework can be handled in a similar

manner. The minimization of g(Y,A) in (35) w.r.t. a low-PAR code vector a can be accomplished using
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the optimization problem

min
a

aH
(
(Y2Y

H
2 )�CT

)
a+ 2�(dHa) (56)

subject to max
m=0,··· ,N−1

{|am|2} ≤ ζ,

‖a‖2 = N.

We note that both (55) and (56) are non-convex QCQPs with PAR constraint and known to be NP-hard

in general [19]. In the following, we consider the formulation of (55) (without loss of generality). The

optimization problem in (55) is equivalent to

min
a

ãHJ ã (57)

subject to max
m=0,··· ,N−1

{|am|2} ≤ ζ,

‖a‖2 = N

where ã = [a 1]T , and

J =

⎡⎣ M−1 � I −b

−bH 0

⎤⎦ .

For any μ > λmax(J) we can reformulate the latter problem as

max
a

ãHK ã (58)

subject to max
m=0,··· ,N−1

{|am|2} ≤ ζ,

‖a‖2 = N

with K = μIN+1 − J. Interestingly, derivation of the power-method like iterations in [38] [39] can

be extended to the case of PAR-constrained a. As a result, the discussed iterations can be applied

(after a small modification) to obtain a local optimum of (58). More precisely, the code vector a of the

(l + 1)th iteration (denoted by a(l+1)) can be obtained from the last estimate of a, i.e. a(l), via solving

the optimization problem

max
a(l+1)

‖a(l+1) − â(l)‖ (59)

subject to max
m=0,··· ,N−1

{|a(l+1)
m |2} ≤ ζ,

‖a(l+1)‖2 = N
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where â(l) represents the vector containing the first N entries of K ã(l). The optimization problem (59)

is a “nearest-vector” problem with PAR constraint. Such PAR constrained problems can be tackled using

a recursive algorithm proposed in [40] that can be described briefly as follows: for cases in which the

magnitudes of the entries of â(l) are below
√
ζ , one can easily observe that a(l+1) =

√
N â(l)/‖â(l)‖ is

the solution. Otherwise, let â0 denote the entry of â(l) with maximum absolute value. Then the entry

of a(l+1) corresponding to â0 is given by
√
ζej arg(â0). Recursively, the other entries of a(l+1) can be

obtained solving the same type of “nearest-vector” problem but with the remaining energy i.e. N − ζ .

Finally, we note that as a scaling does not affect the PAR metric (see (53)), the low-PAR codes obtained

by CoRe or the CADCODE framework can be scaled to fit any desired level of energy. The steps of

CoRe and CADCODE presented in Table I and Table II should be modified for designing low-PAR codes.

More precisely, the optimization problems in (55) in step 2-2 of CoRe (average design) and (56) in step

2 of CADCODE are solved via the power method-like iterations provided above.

Remark 4 (unimodular code design): In case of unimodular code design, i.e. ζ = 1, we have

tr
{
AHM−1A

}
= aH(M−1 � I)a (60)

= N tr
{
M−1 � I

}
= N tr

{
G−1

}
and hence the optimization problem in (55) is equivalent to:

max
a

�(bHa) (61)

subject to |am| = 1, 0 ≤ m ≤ N − 1

where b = diag(X1/2Q∗M−1/2). The maximizer a of (61) is simply given by a = exp (j arg (b)). As

to the CADCODE framework, unimodular codes can alternatively be obtained by defining

R �

⎡⎣ θI VH

V (AHM−1A)−1 +C

⎤⎦ (62)

with sufficiently large θ (see Appendix C). Note that for g(Y,A) = tr{YHRY} with above R, eqs.

(34) and (38) hold true. Therefore, for fixed Y the minimization of g(Y,A) w.r.t. A can be simplified

as the following homogeneous QCQP:

min
A

tr
{
Y2Y

H
2 AHMA

}
(63)

subject to |am| = 1, 0 ≤ m ≤ N − 1
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where Y = [Y1 δ×δ Y2 N×δ]. The unimodular quadratic programm in (63) is NP-hard in general and

can be tackled via a technique similar to that of (58). �

VI. NUMERICAL EXAMPLES

Numerical results will be provided to examine the performance of the proposed methods. Several code

design examples for the average metric and the worst-case metric in both constrained and unconstrained

cases are included. In particular, we provide a comparison between the code designs in the average and

worst-case scenarios using SNR defined in (9).

Throughout the numerical examples, we assume that the signal-independent interference can be mod-

eled as a first-order auto-regressive process with parameters ρint = 0.5 and pint, as well as a white noise

at the receiver with the variance σ2
n:

Mm,n = σ2
nδ[m− n] + pintρ

|m−n|
int , 1 ≤ m,n ≤ N (64)

with δ[m− n] being the discrete-time Kronecker delta function. Furthermore, for clutter we let

Cm,n = σ2
cρ

(m−n)2 , 1 ≤ m,n ≤ N (65)

with ρ = 0.8. Note that the model in (65) can be used for many natural clutter sources [41]. In this

section, we consider σ2
c = 1, σ2

n = 0.01, and pint = 1 unless otherwise explicitly stated. As to the

unknown target Doppler shift, we assume ω is uniformly distributed over Ω. The CVX package has

been used to solve the convex problems in the various approaches of this paper [42]. The extensions of

the CoRe and CADCODE frameworks to the case of unimodular code design (ζ = 1) are referred to

as CoRe-U and CADCODE-U, respectively (for CoRe and CADCODE without suffix “U” we do not

consider the PAR constraint).

A. Average design

Herein we consider an example of code design for a Doppler shift interval of [ωl, ωu] = [−1, 1]. We

use the proposed algorithms (both CoRe and CADCODE frameworks) to design optimal codes of length

N = 16. The results are shown in Fig. 1(a). The goodness of the resultant codes is investigated using

two benchmarks: (i) the upper bound on the average metric obtained by solving the CSDP in (25), and

(ii) the average metric corresponding to the uncoded system (using the transmit code a =
√

e
N 1).

It can be observed from Fig. 1(a) that, as expected, a coded system employing CoRe, CoRe-U,

CADCODE, or CADCODE-U outperforms the uncoded system. It is also practically observed that the
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performance obtained by the randomly generated codes is similar to that of the all-one code used in

the uncoded system. We also note that, compared to CoRe, the CADCODE framework leads to slightly

larger values of the average metric. This behaviour can be explained noting that CADCODE presumably

circumvents the optimality losses arising in the synthesis stage of CoRe. In other words, CADCODE

directly converges to a stationary point of the design problem and there is no synthesis loss associated

with the provided code; whereas, the obtained code via CoRe is associated with some synthesis loss.

Moreover, Fig. 1(a) reveals that the quality of the codes obtained via constrained designs is very similar

to that of unconstrained designs. However, there are minor degradations due to imposing the constraints.

We also observe the saturation phenomenon in Fig. 1(a). More precisely, for sufficiently large values of

the transmit energy (i.e. e), the increase in the average metric is negligible. Note that, the value of the

average metric (for non-singular C) asymptotically converges to:

lim
e→∞

tr
{(

(AHM−1A)−1 +C
)−1

W
}
= tr{C−1W}. (66)

Next we study the performance of the proposed algorithms w.r.t. the detection performance of the

optimal detector (for unknown Doppler shift) stated in (11). To this end, we consider the target with σ2
T =

10, transmit energy e = 10, and use 100000 sets of random generated data to simulate receiver operating

characteristic (ROC). The optimal detector in (11) is implemented by numerically evaluating the associated

integral. ROCs corresponding to CoRe and CADCODE algorithms (constrained and unconstrained case)

as well as to the uncoded system are depicted in Fig. 1(b). As expected, the detection performance

obtained by devised methods outperforms that of the uncoded system. Minor differences can be observed

between ROCs associated with various algorithms. The practical implementation of the optimal detector

in (11) might be hard. Therefore, we also consider a conventional GLR detector that well approximates

the behavior of the optimal detector ( [43] [26]):

max
ω∈Ω

|rH (
M+ACAH

)−1
(a� p)|2

(a� p)H (M+ACAH)−1 (a� p)

H0

≶
H1

η′′ (67)

In practical situations, a discrete set of target Doppler shifts in Ω is considered in lieu of Ω for the

maximization. Fig. 1(c), plots the detection performance of the above detector for the coded and uncoded

systems (employing 50 points in the Ω for the maximization). As expected, there exist minor degradations

in the detection performance of the systems as compared with the performance of the optimal detector

shown in Fig. 1(b). This figure corresponds to CADCODE but similar performances were observed for

the other proposed methods.
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The effect of the code length N on the value of the average metric is illustrated in Fig. 2 for a fixed

transmit energy e = 10. It can be seen that as N grows large, the quality of the proposed coding schemes

improves substantially (compared to the uncoded system). This is due to the fact that for a large N the

code design problem has more degrees of freedom. It can also be observed in Fig. 2 that for any fixed

length, CoRe and CADCODE provide similar results.

The detection performance of the system depends on the energy of the clutter and interference. To

investigate the effects of the aforementioned parameters on the system performance, we define the clutter-

to-noise ratio (CNR) and the interference-to-noise ratio (INR):

CNR =
σ2
c e

σ2
n

INR =
pint
σ2
n

To measure the performance improvement in different scenarios, we consider the improvement of the

average metric (13) (i.e., metricimp) and the relative increment of the detection probability associated

with the optimal detector (11) (i.e., P inc
d ) w.r.t. the uncoded system:

metricimp =
average metriccoded

average metricuncoded

P inc
d = P coded

d − P uncoded
d

The values of metricimp and P inc
d for different CNRs have been shown in Table IV. The reported values

are associated with e = 5, INR = 20 dB, σ2
T = 5 and are obtained via changing σ2

c . Note that these

values correspond to CADCODE but similar behaviors were observed for the other methods. As to the

P inc
d , the ROC of the optimal detector (11) is considered for Pfa = 10−3. It is observed that P inc

d is

an increasing function of metricimp. This can be explained via considering the mathematical reasoning

for using the average metric (see section III). Furthermore, as expected, increasing the energy of clutter

leads to the decreasing of metricimp (and so P inc
d ). Indeed, for sufficiently large values of CNR, the

term A−1MA−H can be neglected as compared with C in (13); therefore, the effect of the code matrix

A on the detection performance is minor (see the similar discussion on the saturation phenomenon).

Next we perform a similar analysis to probe the detection performance of the system for different

values of INR. Herein we consider e = 5, CNR = 20 dB, σ2
T = 5 and report the values of metricimp

and P inc
d associated with CADCODE in Table V (by changing pint). It is observed that in low INRs, the

performance improvement is minor; this can be explained by noting the fact that such situations refer to

clutter-limited cases. By increasing the energy of interference (i.e., going from clutter-limited conditions
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TABLE IV
THE VALUES OF metricimp AND P inc

d FOR DIFFERENT CNRS (CADCODE).

CNR 10 dB 15 dB 20 dB 25 dB 30 dB
metricimp 6.65 dB 6.1 dB 5.3 dB 3.9 dB 2.2 dB

P inc
d 0.32 0.31 0.28 0.23 0.15

to interference-limited conditions), the performance improvement increases. This observation is related to

the fact that the the proposed methods have better ability for reducing the effects of the signal-independent

interference (as compared with the signal-dependent clutter). Also, it is expected that for large enough

values of INR, the detection probabilities of both coded and uncoded systems significantly reduce; hence

P inc
d becomes small.

TABLE V
THE VALUES OF metricimp AND P inc

d FOR DIFFERENT INRS (CADCODE).

INR 10 dB 15 dB 20 dB 25 dB 30 dB
metricimp 2.2 dB 3.9 dB 5.3 dB 6.2 dB 6.6 dB

P inc
d 0.08 0.13 0.28 0.42 0.42

B. Worst-case design

We consider a worst-case design example with code length N = 16, transmit energy e = 10, and the

Doppler shift interval Ω = [−1.5,−0.5]∪ [0.5, 1.5]. The assessment of the codes in the worst-case design

is performed using: (i) the CSDP solution of (51) which leads to an upper bound on the worst-case

metric, and (ii) the worst-case metric values associated with the uncoded system.

The SNR corresponding to i) and ii) above and to the coded system using CoRe as well as CoRe-U are

shown in Fig. 3(a) versus the target Doppler shift ω for σ2
T = 1. The optimized CoRe and CoRe-U codes

outperform the uncoded system significantly. Moreover, a minor difference between the lowest SNR of

the optimized codes can be observed. Note that near ω = 0, all the curves show worse values as compared

to other values of ω. This is due to the overlapping of the target and clutter in the frequency domain. The

detection probability can be used to obtain further insights into the behaviour of the worst-case metric

for code optimization. We consider the worst-case detection probabilities w.r.t. the Doppler shift of the
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target. Let ω̃ denote the Doppler shift corresponding to the smallest achievable performance metric w.r.t

ω, viz.

ω̃ = argmin
ωl≤ω≤ωu

tr
{(

(AHM−1A)−1 +C
)−1

ppH
}
. (68)

The values of ω̃ were computed via the Newton method. The worst-case detection probability is calculated

via results of [19] as

Pd,worst = exp

(
log(Pfa)

1 + λ̃

)
(69)

where Pfa denotes probability of false alarm and λ̃ is the value of λ for ω̃. Using the obtained ω̃ and (69),

Fig. 3(b) shows the worst-case detection probabilities for the CSDP solution and the CoRe code versus

target strength σ2
T for Pfa = 10−6. Using CoRe and CoRe-U, a substantial improvement of Pd,worst is

evident compared to the uncoded system. Due to the unimodularity constraint, CoRe-U yields a slightly

lower worst-case detection probability compared to CoRe.

C. Comparison of the Average and Worst-Case Designs

The average and worst-case metrics are independent of the target Doppler shift; however, one can use

the SNR (for various ω) to compare the average and the worst-case designs. To compare the two designs,

we consider a code length of N = 16, transmit energy e = 10, σ2
T = 1, and two different Doppler shift

intervals [−2,−1]∪ [1, 2] and [−2,−0.5]∪ [0.5, 2]. Fig. 4(a)-(b) plot the SNRs corresponding to the CSDP

solution in (25), the code obtained by CoRe for the average design, the CSDP solution in (51) and the

code obtained by CoRe for the worst-case design. These sub-figures also show the SNR corresponding

to the case in which the target Doppler shift is known. Note that for the aforementioned case, the

optimized code is obtained via the maximization of (12) for each Doppler and hence various target

Doppler shifts lead to various optimal codes. The SNR associated with the known Doppler case always

has the largest values compared with other feasible codes. However, the CSDP solution (51) possesses

larger minimum SNR values when compared to other curves; but the optimized code corresponding to the

CSDP solution (51) is associated with a certain synthesis loss that leads to slightly lower minimum value

as compared to the known Doppler case. The codes obtained via the worst-case design provide better

minimum SNR values whereas the codes obtained via the average design possess larger average SNR

values. Furthermore, there exist nulls near ω = 0 due to the overlapping of the target and clutter spectra.

In addition, the CSDP solution of the worst-case design can be considered to be rather “conservative”

when compared to that of the average design. Herein we remark on the fact that the worst-case design

January 15, 2014 DRAFT



25

does not require the p.d.f of the target Doppler shift on the desired interval Ω; whereas, the average

design depends on the aforementioned p.d.f. Fig. 4(c)-(d) depict the detection probabilities corresponding

to sub-figures Fig. 4(a)-(b). The values of detection probability are obtained via considering (69) with

Pfa = 10−6 and σ2
T = 10. Observations similar to those about sub-figures Fig. 4(a)-(b) can be made

from these sub-figures as well.

VII. CONCLUDING REMARKS

The problem of radar code design for moving target detection in the presence of clutter was considered.

Several algorithms were proposed using two novel frameworks for unconstrained or constrained code

design in such scenarios. The main results can be summarized as follows:

• A new discrete-time formulation was introduced in (4) for moving target detection using pulsed-

radars in the presence of clutter (considering motions of the clutter scatterers). The optimal detectors

for both known Doppler shift and unknown Doppler shifts are presented. To handle the unknown

Doppler shift of the target, the code design problem was considered using both average and worst-

case performance metrics of the optimal detector for known Doppler shifts. The connection between

the considered metrics and the detection performance are addressed.

• The Convexification via Reparametrization (CoRe) framework was proposed to deal with the highly

non-convex design problems. CoRe is based on a relaxation (reparametrization) of the metric op-

timization problems followed by a synthesis stage. The CoRe framework was used to develop two

separate algorithms for obtaining optimal codes in both average and worst-case designs.

• The CoRe framework is based on a core SDP (called CSDP) which can be solved efficiently (in

polynomial-time). The CSDP solution of CoRe was used to synthesize the optimal codes w.r.t. the

original design problem. The code synthesis was accomplished using a cyclic optimization of a

similarity criterion. The CSDP solution provides an upper bound on the average metric in different

design scenarios.

• A Cyclic Algorithm for Direct COde DEsign, namely the CADCODE framework, was suggested to

tackle the average code design problem directly. In CADCODE, the code design objective function

is iteratively minimized via a cyclic minimization of an auxiliary function of the code matrix. The

convergence of CADCODE was studied. It was shown that each step of CADCODE can be performed

either using the available analytical solutions or solving a convex QCQP.

• The design problems when PAR constrained codes are of interest were also considered. The deriva-

tions of CoRe and CADCODE were extended to tackle such constrained problems.
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• Several numerical examples were provided to show the potential of the proposed algorithms. It was

observed that the codes obtained by CADCODE generally have slightly larger metrics in comparison

to those obtained using the synthesis stage of CoRe. The CSDP solution of the worst-case design

appears to be rather “conservative” when compared to that of the average design.

Finally we note that, in this paper, the covariance matrices of the clutter and interference assumed to

be a priori known. However, in practice, the matrices are not exactly known and need to be estimated.

The code design problem considering uncertainty of the prior knowledge about statistics of clutter and

interference can be an interesting topic for future research.

APPENDIX A

DERIVATION OF THE DISCRETE-TIME MODEL

It follows from (1) and (2) that the nth lag of the receiver filter output sampled at t = nTPRI + τ can

be written as

rn = (r(t)e−jωct) � φ∗(−t)
∣∣∣
t=nTPRI+τ

(70)

=

∫ +∞

−∞
r(x)e−jωcxφ∗(x− nTPRI − τ)dx

=

∫ +∞

−∞
αte

−j(ωc+ν)τ
N−1∑
m=0

amφ(x−mTPRI − τ)ejνxφ∗(x− nTPRI − τ)dx

+

∫ +∞

−∞

Nct∑
k=1

Ncd∑
l=1

N−1∑
m=0

e−j(ωc+ωl)τkρklamφ(x−mTPRI − τk)e
jωlxφ∗(x− nTPRI − τ)dx

+

∫ +∞

−∞
w(x)e−jωcxφ∗(x− nTPRI − τ)dx

where � denotes the convolution operator. For the first term at the right-hand side (RHS) of (70) we have

that

αt

N−1∑
m=0

ame−jωcτejνmTPRI (71)

×
∫ +∞

−∞
φ(x−mTPRI − τ)φ∗(x− nTPRI − τ)ejν(x−mTPRI−τ)dx

= αejnω
N−1∑
m=0

amΨm,n(0, ν)
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where α � αte
−jωcτ , ω � νTPRI , and Ψm,n(td, ωd) is the cross-ambiguity function of φ(t − mTPRI)

and φ(t− nTPRI) at td = 0 and Doppler shift ωd, which is generally defined as

Ψm,n(td, ωd) =

∫ +∞

−∞
φ(x−mTPRI)φ

∗(x− nTPRI − td)e
jωd(x−mTPRI)dx. (72)

Note that φ(t − mTPRI) and φ(t − nTPRI) are non-overlapping for any n �= m. As Ψn,n(., .) is not

dependent on n, we exploit the notation brevity Ψ(., .) = Ψn,n(., .) and further assume Ψ(0, ν) ≈ 1

(this assumption implies the Doppler tolerable property [41] for the basic pulse φ(.) and has also been

considered in several other publications, e.g., [19] [22] and references therein). Therefore, (71) becomes

αane
jnωΨ(0, ν) (73)

The second term at the RHS of (70) can be rewritten as

Nct∑
k=1

Ncd∑
l=1

ρkle
−j(ωc+ωl)τk

N−1∑
m=0

am (74)

×
∫ +∞

−∞
φ(x−mTPRI − τk)e

jωlxφ∗(x− nTPRI − τ)dx

=

Nct∑
k=1

Ncd∑
l=1

ρkle
−jωcτk

N−1∑
m=0

amejωlmTPRIΨm,n(τ − τk, ωl)

For unambiguous-range clutter scatterers we have |τ − τk| < TPRI − τp and hence it is observed that

φ(x−mTPRI − τk) and φ∗(x− nTPRI − τ) are non-overlapping for n �= m. Hence for any n �= m we

have that Ψm,n(τ − τk, ωl) = 0 and as a result, (74) can be simplified as

an

(
Nct∑
k=1

Ncd∑
l=1

ρkle
−jωcτkejnωlTPRIΨ(τ − τk, ωl)

)
︸ ︷︷ ︸

cn

(75)

= ancn

Finally, we denote the last term at the RHS of (70) by wn to obtain the discrete-time signal model as

r = αa� p+ a� c+w (76)

where r � [r0 r1 . . . rN−1]
T , p � [1 ejω . . . ej(N−1)ω]T , and w � [w0 w1 . . . wN−1]

T .

The covariance matrices of Gaussian random vectors w and c are required for the proposed code
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design algorithms. Let

E
{
wwH

}
� M, E

{
ccH

}
� C. (77)

To compute the entries of M one can write

Mm,n = E{wmw∗
n} (78)

=

∫ +∞

−∞

∫ +∞

−∞
E{w(x)w∗(y)}e−jωc(x−y)

×φ∗(x−mTPRI − τ)φ(y − nTPRI − τ) dxdy

=

∫ +∞

−∞

∫ +∞

−∞
Rw(x, y)e

−jωc(x−y)

×φ∗(x−mTPRI − τ)φ(y − nTPRI − τ) dxdy

where Rw(x, y) is the statistical auto-correlation function of the random process6 w(t). In particular, it is

interesting to derive the entries of C as it provides useful insights into the importance of the ambiguity

function of φ(.) as well as the other parameters that form C. The entries of C can be computed as

Cm,n = E{cmc∗n} (79)

=
∑
k

∑
l

∑
p

∑
q

E{ρklρ∗pq}E{
(
e−jωcτkejmωlTPRIΨ(|τ − τk|, ωl)

)
× (

ejωcτpe−jnωqTPRIΨ∗(|τ − τp|, ωq)
)}

=
∑
k

∑
l

E{|ρkl|2}E{|Ψ(|τ − τk|, ωl)|2ej(m−n)ωlTPRI}

where E{ρkl} is assumed to be zero (without loss of generality). It is worth noting that Cm,n is dependent

on the variances of {ρkl}, the ambiguity function of φ(.) (i.e. Ψ(., .)), as well as the statistical distributions

of τk and ωl .

APPENDIX B

TIGHTNESS ASSESSMENT OF THE LOWER BOUND JLB ON THE J-DIVERGENCE

We define the following relative error to measure the tightness of the lower bound JLB on the J-

divergence:

E �
J − JLB

JLB
. (80)

6Note that in the case of white noise, Mm,n is zero for m �= n and Mn,n is equal to the variance of the noise.
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Let λ0 = E{λ}. Note that using (17), we have

J = E

{
λ− 1 +

1

λ+ 1

}
(81)

and hence, the numerator of the relative error E can be simplified as:

J − JLB = E

{
λ− 1 +

1

λ+ 1

}
−
{
λ0 − 1 +

1

λ0 + 1

}
(82)

= E

{
1

1 + λ

}
− 1

1 + λ0
.

Note that there exists λ1 ≥ 0 for which λ ≥ λ1, for all ω. Therefore, we have E
{

1
1+λ

}
≤ 1

1+λ1
.

Consequently, E can be upper bounded as:

E ≤ λ0 − λ1

λ0
2(1 + λ1)

≤ 1

λ0
. (83)

The above analysis shows that for sufficiently large values of λ0 the value of relative error E approaches
zero. Hereafter, a numerical study of the tightness of the JLB is provided. We first evaluate the relative

error E for various intervals of ω. We consider e = 16, σ2
T = 1, and other parameters as those of Section

VI. The value of the J-divergence is calculated by numerically evaluating the integral. Fig. 5(a) depicts

two dimensional curve of the average of the E for 1000 random code vectors a versus ω′ and ω′′. Each

point of the curve is associated with the Doppler shift interval [min(ω′, ω′′),max(ω′, ω′′)]. It is observed

that the average E is significantly small. Moreover, as expected, average E is zero when ω′ = ω′′ (which

corresponds to known Doppler shift equal to ω′). Next we investigate the behavior of the relative error

with respect to the transmit energy e and target strength σ2
T . The results are illustrated in Fig. 5(b) by

considering 1000 random code vectors a and Ω = [−.75, 1.95] (corresponds to a peak of E in Fig. 5(a)).
Small values of the average relative error can be seen in the figure. Furthermore, by increasing e or σ2,

the average E decreases. This observation is also compatible with the behavior of the E upper bound in
(83).

APPENDIX C

DERIVATION OF THE VARIABLE θ

We note that θ should be sufficiently large such that Θ in (32) becomes positive definite. Particularly,

θ should satisfy the matrix inequality

θI−VH(A−1MA−H +C)−1V � 0 (84)
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or equivalently θ > λmax

(
VH(A−1MA−H +C)−1V

)
. Note that

λmax

(
VH(A−1MA−H +C)−1V

) ≤ λmax

(
(A−1MA−H +C)−1

)
λmax(W). (85)

Furthermore, one can verify that

λmin(A
−1MA−H) = min

‖x‖=1

(
(A−Hx)HM(A−Hx)

)
(86)

≥
(
min
m

{|am|−1
})2

(
min
‖x‖=1

xHMx

)
≥ 1

e
λmin(M)

which implies

λmin(A
−1MA−H +C) ≥ λmin(A

−1MA−H) + λmin(C) (87)

≥ 1

e
λmin(M) + λmin(C).

As a result, setting

θ =
λmax(W)

1
eλmin(M) + λmin(C)

(88)

ensures Θ � 0.

In the case of unimodular code design, we have that |am| = 1 (for all m). Therefore, in order to

guarantee the positive definiteness of R in (62), it is sufficient to set

θ =
λmax(W)

λmin(M) + λmin(C)
. (89)

APPENDIX D

SOLUTION TO THE QCQP IN (37)

The convex QCQP in (37) can be solved using the Lagrange multiplier method . Let

h(a, μ) = aH
(
Y2Y

H
2 �CT

)
a+ 2� (

dHa
)
+ μ(aHa− e) (90)

represent the Lagrangian function with μ being the non-negative Lagrange multiplier associated with the

energy constraint (such that (Y2Y
H
2 ) �CT + μI � 0). For fixed μ, the unconstrained minimizer a of

h(a, μ) is given by

aμ = −(Y2Y
H
2 �CT + μI)−1d. (91)

January 15, 2014 DRAFT



31

It is straightforward to derive that

h(aμ, μ) = −dH(Y2Y
H
2 �CT + μI)−1d− μe (92)

The h(aμ, μ) is a concave function w.r.t. μ ≥ 0 and hence the maximizer μ of (92) is immediate by

imposing the criterion ∂
∂μh(aμ, μ) = 0 which implies

dH(Y2Y
H
2 �CT + μI)−2d = e. (93)

Moreover, note that

∂

∂μ

(
dH(Y2Y

H
2 �CT + μI)−2d

)
= −2dH(Y2Y

H
2 �CT + μI)−3d < 0. (94)

Therefore, the left hand side of (93) is a monotonically decreasing function of μ and hence the solution

μ of (93) can be obtained efficiently via, for example, the Newton method. Once (93) is solved, the

optimum a is calculated using (91).
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Fig. 1. The design of optimized codes of length N = 16 using the average metric. (a) depicts the average metric for different
methods as well as the uncoded system vs. the transmit energy. (b) plots the ROC of the optimal detector associated with the
same codes (as in sub-figure (a)) with σ2

T = 10 and e = 10. (c) depicts the ROC of the GLR detector (67) for the coded system
(CADCODE) and uncoded one.
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Fig. 3. (a) The SNR for the CSDP solution, CoRe, CoRe-U, and the uncoded system vs. the normalized target Doppler shift for
N = 16 and e = 10. (b) The worst-case detection probability of the CSDP solution, CoRe, CoRe-U, and the uncoded system
vs. the target strength σ2

T for the same designs as in sub-figure (a).
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Fig. 4. Comparison of the average and worst-case code design approaches for N = 16, e = 10, and two different normalized
target Doppler shift intervals Ω: (a) the SNR for [−2,−1]∪ [1, 2] (σ2

T = 1), (b) the SNR for [−2,−0.5]∪ [0.5, 2] (σ2
T = 1), (c)

the detection probability for [−2,−1]∪ [1, 2] (σ2
T = 10), and (d) the detection probability for [−2,−0.5] ∪ [0.5, 2] (σ2

T = 10).
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Fig. 5. A numerical analysis of the tightness of the lower bound JLB on the J-divergence. (a) plots the average relative error E
for various intervals of ω = [min(ω′, ω′′),max(ω′, ω′′)]. (b) depicts the behavior of the average relative error E versus transmit
energy e and target strength σ2

T .
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