
772 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 4, FEBRUARY 15, 2014

A Doppler Robust Design of Transmit Sequence and
Receive Filter in the Presence of
Signal-Dependent Interference

Mohammad Mahdi Naghsh, Student Member, IEEE, Mojtaba Soltanalian, Student Member, IEEE,
Petre Stoica, Fellow, IEEE, Mahmoud Modarres-Hashemi, Antonio De Maio, Fellow, IEEE, and

Augusto Aubry, Member, IEEE

Abstract—In this paper, we study the joint design of Doppler
robust transmit sequence and receive filter to improve the perfor-
mance of an active sensing system dealing with signal-dependent
interference. The signal-to-noise-plus-interference (SINR) of the
filter output is considered as the performance measure of the
system. The design problem is cast as a max-min optimization
problem to robustify the system SINRwith respect to the unknown
Doppler shifts of the targets. To tackle the design problem, which
belongs to a class of NP-hard problems, we devise a novel method
(which we call DESIDE) to obtain optimized pairs of transmit se-
quence and receive filter sharing the desired robustness property.
The proposed method is based on a cyclic maximization of SINR
expressions with relaxed rank-one constraints, and is followed by
a novel synthesis stage. We devise synthesis algorithms to obtain
high quality pairs of transmit sequence and receive filter that well
approximate the behavior of the optimal SINR (of the relaxed
problem) with respect to target Doppler shift. Several numerical
examples are provided to analyze the performance obtained by
DESIDE.

Index Terms—Code design, Doppler shift, interference, receive
filter, robust design, synthesis, transmit sequence.

I. INTRODUCTION

T HE performance of an active sensing system can be signif-
icantly improved by judiciously designing its transmit se-

quence and receive filter. Such a design usually deals with sev-
eral challenges including the fact that Doppler shifts of moving
targets are often unknown at the transmit side, the existence of
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signal-dependent interference as well as signal-independent in-
terference at the receive side, and practical constraints such as
similarity to a given code.
Joint design of the transmit sequence and the receive filter

has been considered in a large number of studies during the
last decades. Most of the works have been concerned with ei-
ther stationary targets or targets with known Doppler shifts (see
e.g. [1]–[8]). In [9], considering a stationary target, a frequency
domain approach has been employed to obtain an optimal re-
ceive filter and corresponding optimal energy spectral density
of the transmit signal; then a synthesis procedure has been used
to approximately provide the time domain signal. The works of
[10] and [11] consider a related problem to that of [9] under a
peak-to-average power ratio (PAR) constraint. The [12] deals
with joint design of transmit sequence and receive filter under
a similarity constraint in cases where the Doppler shift of the
target is known. In [13], constant-modulus transmit sequences
are considered in a framework similar to that of [12]. Several re-
searches consider signal-independent clutter scenarios (see e.g.
[14]–[18]). The unknown Doppler shift of the target has been
taken into account in [16] and [18]. The [16] considers Doppler
robust code design problem for signal-independent clutter cases
under a similarity constraint. The ideas of [16] are generalized
in [18] where the PAR constraint is also imposed.
In this paper, we devise a novel method for Doppler robust

joint design of transmit sequence and receive filter (which we
call DESIDE) in the presence of clutter. We focus on radar sys-
tems but the design methodology can be useful for other active
sensing systems such as sonar, seismic exploration, etc. We con-
sider the SINR at the output of the receive filter as the perfor-
mance measure. Besides an energy constraint, a similarity con-
straint is imposed on the transmit sequence to control certain
characteristics of the transmit waveform. The design problem is
cast as a max-min optimization and shown to belong to a class
of NP-hard problems.We devise a cyclic maximization to tackle
a relaxed version of the design problem. Furthermore, we pro-
pose a synthesis stage to obtain optimized pairs of transmit se-
quences and receive filters which possess the desired Doppler
robustness.
The rest of this paper is organized as follows. The data

modeling and problem formulation are presented in Section II.
Section III contains the steps for the derivation of the cyclic
approach to tackle the relaxed problem. The required synthesis
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stage is discussed in Section IV. Numerical results are provided
in Section V. Finally, conclusions are drawn in Section VI.
Notation: We use bold lowercase letters for vectors and bold

uppercase letters for matrices. , and denote the
vector/matrix transpose, the complex conjugate, and the Her-
mitian transpose, respectively. represents the identity matrix
in . and are the all-one and the all-zero vectors/ma-
trices. is the th standard basis vector in . The -norm
of a vector is denoted by . The symbol stands for the
Hadamard (element-wise) product of matrices. is the trace
of a squarematrix argument. The notations and
indicate the principal and the minor eigenvalues of a Hermi-
tian matrix, respectively. denotes the diagonal matrix
formed by the entries of the vector argument, whereas
denotes the vector formed by collecting the diagonal entries of
the matrix argument. We write iff is positive
semi-definite, and iff is positive-definite.
and denote the real-part and the phase angle (in radians)
of the complex-valued argument. Finally, , and represent
the set of natural, real and complex numbers, respectively.

II. PROBLEM FORMULATION

We consider a radar system with (slow-time) transmit se-
quence and receive filter . The discrete-
time received signal backscattered from a moving target cor-
responding to the range-azimuth cell under the test can be mod-
eled as (see, e.g. [12], [13], and [15]):

(1)

where is a complex parameter associated with backscat-
tering effects of the target as well as propagation effects,

with being the normalized
target Doppler shift (expressed in radians), is the -di-
mensional column vector containing clutter (signal-dependent
interference) samples, and is the -dimensional column
vector of (signal-independent) interference samples. The vector
is the superposition of the returns from different uncorrelated
scatterers located at various range-azimuth bins and can be
expressed as [12]

where is the number of range rings1 that interfere
with the range-azimuth bin of interest (0,0), is the number of
discrete azimuth sectors, and denote the echo and
the normalized Doppler shift, respectively, of the scatterer in the
range-azimuth bin , and denotes the aperiodic shifting
matrix for , viz.

if
if

with .

1Note that the model considers the general case of range ambiguous clutter
and reduces to unambiguous range scenario for . See [12] and [15] for
justifications of the employed model and several examples of scenes that can be
modeled in this way.

The SINR at the output of the receive filter can be formulated
as

(2)

where and is the covariance matrix of
given by [12]

(3)

with being the mean interfering power as-
sociated with the clutter patch located at the th range-az-
imuth bin whose Doppler shift is supposed to be uniformly dis-
tributed in the interval

[15]. Herein where

is the covariance matrix of [12], viz.

if

if

(4)

Note that the expression for can be modified to
consider cases with an arbitrary statistical distribution of the
Doppler shifts of the clutter scatterers.
In this study we assume that the parameters of clutter and

signal-independent interference are known at the transmit side
by using cognitive (knowledge-aided) methods [12], [19]. We
consider the SINR in (2) as the performance measure of the
system [12], [15] and aim to find a robust design of the transmit
sequence and the receive filter with respect to the unknown
Doppler shift of the target.2 In addition to an energy constraint,
a similarity constraint is imposed on the transmit sequence [12],
[21], [22]:

(5)

where the parameter rules the size of the similarity re-
gion and is a given sequence. There are several reasons that
justify the use of a similarity constraint in the design of a radar
sequence. The unconstrained optimization of SINR can lead to
signals with significant modulus variations, poor range resolu-
tion, high peak sidelobe levels, and more generally with an un-
desired ambiguity function behavior. These drawbacks can be
partially circumvented imposing the similarity constraint (5) on
the sought radar code [12], [21], [22]. Comprehensive simula-
tions have been performed in [12], [16], [21] and [23] to illus-
trate how the properties of the ambiguity function (e.g. range
resolution, sidelobe levels, etc.) and modulus variations asso-
ciated with the optimized code can be controlled via the value
of in the similarity constraint. By doing so, it is required that
the solution be similar to a known sequence which has some

2The target Doppler shift can be estimated at the receiver, e.g. via a bank of fil-
ters matched to different Doppler frequencies [20]; however, the Doppler shifts
of the targets are usually unknown at the transmit side and hence we consider
a robust design with respect to the target Doppler shift. The design approach
can also be useful for a robust confirmation process, so as to account for target
Doppler estimation errors.
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good properties such as constant modulus, reasonable range res-
olution, and peak sidelobe level.
The problem of Doppler robust joint design of transmit se-

quence and receive filter under the similarity constraint can
be cast as the following max-min optimization problem

(6)

where denotes a given interval of the
target Doppler shift and denotes the maximum available
transmit energy. Note that for a priori known target Doppler
shift (i.e. ), the problem boils down to the con-
sidered problem in [12].
Remark 1: Note that a similar discrete-time data modeling

and problem formulation applies to fast-time coding systems.
In that case, the entries of denote (complex) weights of the
sub-pulses within a transmit pulse. Moreover, the normalized
target Doppler shift is proportional to the system bandwidth
(as opposed to the slow-time scheme for which is proportional
to the pulse repetition frequency of the system); hence in such a
case, the Doppler robust design would be concerned with high
speed moving targets. As to the expressions, the formulation of
the covariance matrix in (3) should be modified. More
precisely, for fast-time coding scenarios, the summation over
in (3) should be performed for . We refer
interested readers to the [10] and [20] for more details on this
aspect.
To realize the hardness of the above problem, let and

denote a slack variable and an optimal solution to the problem
, respectively. The optimal is obtained via solving the fol-

lowing optimization problem:

(7)

The above quadratic fractional program can be recast equiva-
lently as (see Lemma 2 below and [24]):

(8)

The optimization problem is a quadratically constrained
quadratic program (QCQP) with infinitely many non-convex
constraints. This class of QCQPs is known to be NP-hard in
general [16], [25, Chapter 4], [26]. Note that solving the opti-
mization problem with respect to is at least as hard
as solving the problem .

The following lemma helps tackling the optimization
problem via providing two alternative expressions for the
objective function in problem .
Lemma 1: Let and . The

can be alternatively expressed with respect to and as
follows:

(9)

(10)

where , and

(11)

(12)

Proof: See Appendix A.
To deal with the design problem , consider the following

optimization problem:

(13)

where and . Let de-
note an optimal solution to the above problem. Using Lemma 1
and the results of [21], it can be easily verified that an optimal
solution to is given by with
and .
Now observe that both the objective function and the rank

constraints in are non-convex. In addition, belongs to a
non-convex set for . In the sequel, we relax the rank-one
constraints on and in to obtain the relaxed problem :

(14)

The expression for rank-one
and (i.e., and ) is equal to

(see Lemma 1). When the rank constraints are
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omitted (i.e., for arbitrary and ), the expression
may be used in lieu of

and it will be denoted by in the following.
is the restriction of over the space

of the rank-one positive semi-definite matrices and (due
to the relaxation of the rank-one constraints on and ).
The optimization problem is still non-convex and will be
discussed in the next section.

III. THE PROPOSED METHOD TO TACKLE
THE RELAXED PROBLEM

In this section, we devise a novel cyclic algorithm (which we
call DESIDE-R as it deals with the relaxed version of the orig-
inal problem) to tackle the non-convex optimization problem
. In a cyclic algorithm, the optimization variables are parti-

tioned into two parts; then, by starting from an initial point, opti-
mization is cyclically performed with respect to each part (while
the another part is fixed) [27]. In the following, we consider the
maximization problem with respect to where and
are the two partitions. The obtained pair which

maximizes will be used later to synthesize the
optimized transmit sequence/receive filter pair . The
synthesis stage is addressed in Section IV.

Optimal for Fixed : Let denote a slack
variable. For fixed , the optimization in (14) is equivalent to
the following maximization problem:

(15)
Note that the above problem is feasible and has a finite-valued
objective function over the constraint set (see (29)). Moreover,
problem is a linear-fractional maximization problem with
infinitely many constraints (see the first constraint in (15)). In-
spired by Charnes-Cooper transform for tackling linear frac-
tional programs [28], we let , for an auxil-
iary variable , and consider the following optimization
problem:

(16)
Lemma 2: The optimization problems and are equiv-

alent. More precisely, they share the same optimal values and

their corresponding solutions can be uniquely obtained from
each other.

Proof: Let and denote an optimal solution
and the optimal value of the problem , respectively. Note
that because . It is
straightforward to verify that

(17)

is feasible for the problem . Also observe that the value of
the objective function of for in (17) is given by

(18)

and note that (18) is equal to . Therefore, for the optimal
value of the problem , i.e. , we have

(19)

Next let denote an optimal solution to the
problem . Note that because leads to

(a contradiction, see the first constraint in ). One
can check that is feasible for the problem
with corresponding objective value equal to . Owing to the
fact that , the following inequality holds between

and :

(20)

Finally, (19) and (20) yield and the proof is
concluded.
Now observe that is a convex problem with infinitely

many constraints. To deal with the constraint set, we note that
the constraint implies
the non-negativity of a trigonometric polynomial of over the
interval . More specifically, let

(21)

and with . It is straight-
forward to verify that for any , the aforementioned con-
straint is equivalent to

(22)

Interestingly, a semidefinite representation of the constraint (22)
can be obtained via Theorem 3.4 in [29] which we quote below.
Theorem 1: The trigonometric polynomial

is non-negative for any
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TABLE I
DESIDE-R METHOD FOR SOLVING THE RELAXED PROBLEM

(with ) iff there exist an Hermitian ma-
trix and an Hermitian matrix
such that

(23)

where ,
with ,

and in which

with , and
.

Note that an SDP representation of (22) is immediate by em-
ploying the above results with , ,

, and . Consequently, is equivalent
to the following SDP:

(24)
Remark 2: The derivation of can be extended to

deal with cases where is a union of several (non-overlap-
ping) sub-intervals of . More precisely, for each of such
sub-intervals, the SDP representation associated with the corre-
sponding constraint (obtained via Theorem 1) can be added to
the constraint set of .
Let denote an optimal solution to .

The corresponding optimal (i.e., an optimal solution to )
for fixed is given by (see Lemma 2).

Optimal for Fixed : Using Lemma 1, can be recast
into the following equivalent form for fixed :

(25)
where denotes a slack variable. The above problem can be
tackled in a way similar to the case of obtaining for fixed .

In particular, using Lemma 2 as well as Theorem 1, we obtain
the following SDP:

(26)

where is given by

(27)

with .
Remark 3: It might be interesting in practice to control the

shape of the cross-ambiguity function of the transmit sequence
and the receive filter . An approach would then be to require

that the variables and are sufficiently similar to given
and , respectively, which possess desirable cross-ambiguity
properties. The Doppler robust design for controlling the shape
of the cross-ambiguity function could therefore be cast as the
following optimization problem:

(28)

where rules the size of the similarity region for the receive
filter. The problem can be tackled in a way similar to
(6).
The steps of DESIDE-R are summarized in Table I. Each iter-

ation of the proposed method is handled via solving two SDPs,
i.e., and . The complexity of solving the SDPs
with accuracy of is given by [30]. A syn-
thesis stage is proposed in the next section to compute high
quality transmit sequence/receive filter pairs from the
solutions obtained herein.

Convergence and the Metric: By cycli-
cally solving and in DESIDE-R, it can be

easily verified that the resulting
is a monotonically increasing sequence [27]. Furthermore,

is bounded from above; indeed we
have that

(29)
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The third inequality above holds true because
; and for the last inequality we have used the fact

that [31]. Eq. (29) along with

the increasing property of en-
sure the convergence of the sequence of the objective function
values.

IV. THE SYNTHESIS STAGE

As discussed earlier, a judicious synthesis of the optimized
transmit sequence and receive filter from the obtained

is required to maintain the Doppler robustness. If
is rank-one, is available via considering ;

whereas if , for we have .
The rank behavior of SDP solutions, tightness of the semidef-
inite relaxation, and synthesis methods have been investigated
in the literature (see e.g. [33]–[35], and references therein). For
example, it is known that for a solvable3 SDP with con-
straints, there exists an optimal solution of rank at most equal
to [33]. However, the result does not ensure the existence
of rank-one solutions for the case considered in this paper due
to the fact that and have and
constraints, respectively. Herein we remark on the fact that the
ranks of and depend on the employed starting point in
addition to the parameters of the design problem.
In cases where the rank of either or is larger than one,

the synthesis of or is more complicated. To tackle this
problem, this section initially considers the rank-one decompo-
sition method [36]. Then we devise novel synthesis algorithms
to design pairs of possessing the desired robustness.

A. The Rank-One Decomposition Method

The main result of the rank-one decomposition method can
be summarized as follows [36]:
Theorem 2: Let be a non-zero complex Her-

mitian positive semidefinite matrix (with ) and
be Hermitian matrices. Suppose that

for
any non-zero complex Hermitian positive semidefinite matrix
of size . Then,
• if , one can find, in polynomial time, a
rank-one matrix such that (synthetically denoted
as ) is in the , and

• if , for any not in the range space of , one
can find a rank-one matrix such that (synthetically
denoted as ) is in the linear
subspace spanned by , and

Proof: See [36, Theorem 2.3].
Let denote an optimal solution to , and let

(30)

3Meaning that the SDP is feasible, bounded, and its optimal value is attained
(see [30] for more details).

Considering Theorem 2 and the problem , a suitable
rank-one matrix can be found such that

(31)

and that

(32)

where and are two arbitrary Doppler shifts in .
The equations in (32) have been written using the identity

.
Note that Theorem 2 lays the ground for considering two more
Doppler frequencies (i.e. and ) other than . This leads
to a receive filter with a behavior more similar to that of

with respect to target Doppler shift . Consequently,
is obtained via or

for cases where
or , respectively. Note that the condition

, on
the matrices , , , and in Theorem 2 is satisfied;
more precisely, there exists such that

(see [37]).
The can be obtained in a similar way; particularly,

( 1 or 2 depending on the rank of
) where

(33)

(34)

B. New Algorithms for Synthesis Stage

As explained earlier, the rank-one decomposition method can
deal with at most four trace equalities for the synthesis of the
receive filter and the transmit sequence. This ability allows for
considering the values of the at three Doppler
shifts for the receive filter synthesis (and one Doppler shift for
synthesis of the transmit sequence). However, the pair
obtained by applying Theorem 2 can lead to whose
behavior with respect to target Doppler shift is not “sufficiently”
close to the behavior of the . It means that the

can have significantly lower minimum value with
respect to . In this subsection, we devise novel algorithms to
synthesize high quality and from the solutions to the
problem , i.e. and . The idea is to consider the values
of as the optimal energy spectral density
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(ESD) associated with the transmit sequence and the receive
filter. The sought receive filter and transmit sequence
are obtained to approximate well the behavior of the optimal
ESD with respect to . Due to the fact that (of

) is a scaled version of the optimal ESD (see (9)), we
deal with the denominator of the by imposing
constraints in the synthesis problems.
Let denote a discrete set of target Doppler

shifts “uniformly distributed” over , and consider the fol-
lowing quantities:

(35)

where . We define the vector
as the optimal ESD.
Receive Filter Synthesis: Herein the aim is to synthesize the

optimized receive filter for given . Observe that

(36)

Note also that for all and so that there must exist
(of rank ) such that . Moreover, considering

, we can write

(37)

where all are unit-norm. Therefore, the receive filter
can be found as the minimizer of the following metric:

(38)

where , , and
. Note that the optimal

(corresponding to ) is a scaled ver-
sion of the optimal ESD for given (see (9)). As a
result, to obtain the receive filter that yields values
close to , we should also take into account the
denominator of the , viz.

(39)

Consequently, we consider the following optimization problem
to obtain :

(40)

with . In the sequel, we propose a cyclic
minimization to tackle the non-convex problem .
For fixed , the problem boils down to the non-convex

problem:

(41)

where contains the entries of corresponding to for
. The above minimization can be decoupled into

minimization problems of the following form:

(42)

The solution to the above nearest-vector problem is simply
given by

(43)

For fixed , the problem is equivalent to the following
QCQP:

(44)

Note that the positive definiteness of the matrices and
ensures the convexity of the above QCQP. As a result, this

QCQP can be solved efficiently via interior point methods or
Lagrange multipliers [38].
Transmit Sequence Synthesis: A technique similar to the

above one can be used for transmit sequence synthesis. More
precisely, we have

(45)

Therefore, minimization of the following metric can be em-
ployed for transmit sequence synthesis:

(46)

where , and
are defined similarly to the case of receive filter design (

with being the rank of ). Note that for transmit se-
quence synthesis, the similarity and energy constraints should
be taken into account in addition to the denominator of the

. Consequently, we consider the following op-
timization problem to synthesize the sought transmit sequence:

(47)

where and . Let denote the
optimal solution to the above problem. Note that
is such that , and . Therefore, one can
consider as the optimized transmit sequence which lies in
the desired similarity region and is feasible for the problem .
The non-convex optimization problem can be dealt

with via a cyclic minimization similar to that used for . For
fixed , the solution to the th resulting nearest-vector problem
is given by

(48)
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TABLE II
THE DESIDE METHOD FOR OBTAINING DOPPLER ROBUST PAIR OF

TRANSMIT SEQUENCE AND RECEIVE FILTER

where includes the entries of corresponding to for
. On the other hand, the case of fixed is handled

by solving the following convex QCQP:

(49)

Remark 4: Note that the synthesized via the rank-one de-
composition is a feasible point for the above convex QCQP.
Indeed, the output of the rank-one decomposition procedure in
Section IV-A can be used as a feasible starting point for the pro-
posed cyclic minimization to obtain the transmit sequence. This
can also be done for the receive filter synthesis.
The steps of DESIDE can be summarized as in Table II. The

first step consists of applying DESIDE-R to the relaxed problem
(see Table I). Steps 2 and 3 aim to synthesize high quality

receive filters and transmit sequences, respectively. The cyclic
minimizations in step 2 is terminated when a pre-defined stop
criterion is satisfied; e.g. for a given
where denotes the iteration number. A similar criterion can be
used to terminate the algorithm in the step 3. Note that the ob-
tained after satisfying the stop criterion in the step 3 is scaled
to obtain with energy . The complexity of DESIDE can be
addressed considering DESIDE-R and the synthesis stage. The
complexity of each iteration of DESIDE-R is (see the
discussion above Table I). The complexity of each iteration of
the proposed synthesis stage is determined by the complexity
of solving the QCQPs in (44) and (49). These QCQPs can be
solved via described methods in [30] with complexity.

V. NUMERICAL EXAMPLES

In this section we provide several numerical examples to ex-
amine the effectiveness of DESIDE method. Throughout the
simulations, unless otherwise explicitly stated, we consider a

code length4 , number of interfering range rings
, and number azimuth sectors . The interfering sig-
nals backscattered from various azimuth sectors are weighted
according to the azimuth beam-pattern characteristic of a typical
linear array (see [12] for details). A uniformly distributed clutter
is assumed with for all . In addition, we
let the Doppler shifts of the clutter scatterers be uniformly dis-
tributed over the interval
[40]. As to the target, we set . Concerning the covari-
ance matrix of the signal-independent interference, it is as-
sumed that with parameter . Regarding the
similarity constraint, the generalized Barker code is used for se-
quence [41]. This is a constant modulus sequence which has
good correlation properties [12]. The size of the similarity re-
gion is controlled by . The total transmit energy is
supposed to be equal to the sequence length . The convex op-
timization problems are solved via the CVX toolbox [42].

A. The Effect of the Design Parameters

The Width of and the Correlations Between the Inter-
ference Samples: The performance of the system generally de-
pends on the width of target Doppler shift interval and the
correlations between the interference samples (controlled by the
parameter ). Herein the non-robust design (i.e., with a priori
known target Doppler shift ) of the transmit sequence and re-
ceive filter (with a similarity constraint) [12], i.e. the solution to
the following problem:

(50)

is considered as a benchmark for comparisons. The effects of
the width of interval and the value of are investigated in
Fig. 1, where the values of obtained by DESIDE
(with and ) are compared with those of the
non-robust design for two intervals ,
and for . For the non-robust design, we reason-
ably set equal to with . In all examples, it
is observed that DESIDE provides a robust over the
considered interval of target Doppler shifts. The minimum
value of obtained by DESIDE outperforms that of
the non-robust design significantly. The superiority of DESIDE
is highlighted by observing that for a considerable range of the
target Doppler shift , the obtained by DESIDE is
around 10 dB larger than that of the non-robust design. Further-
more, for any fixed , the minimum value of in the
interval is less than that for . As ex-
pected, the wider range of target Doppler shift leads to a more
restricted design. Another observation is that for a fixed interval
, the minimum values of increase as increases.
The observation is compatible with the behavior of the upper
bound on the in (29)-by increasing the

4It is expected that the output SINR of the receive filter increases by in-
creasing due to the increase in the number of degrees of freedom for the
design problem (see e.g. [39]) and the longer coherent processing interval [40].
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Fig. 1. Design examples for various target Doppler shift intervals and various : (a) and , (b) and , (c)
and , (d) and , (e) and , (f) and .

value of , the value of decreases and the upper bound
on the becomes larger. Note that in these exam-
ples, the ranks of the optimal and were equal to one
and hence the obtained pairs of the transmit sequence and the
receive filter are optimal for the problem .

Size of the Similarity Region: Examples for the robust de-
sign of transmit sequences and receive filters with various sizes

of similarity region are now provided. The values of
obtained by DESIDE for different in {0.01,0.2,0.4,0.8} are
depicted in Fig. 3. The robustness property with respect to the
target Doppler shift is observed in all examples. As expected,
the larger the , the larger the worst value of the .
This is due to a larger feasibility set for the optimization problem

and the fact that the optimal and are rank-one.
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Fig. 2. The values of obtained at different iterations
of DESIDE-R for , as well as two intervals and

.

Fig. 3. Design examples for various sizes of the similarity region:
obtained by DESIDE versus target Doppler shift for , 0.2, 0.4, and
0.8.

B. Convergence of DESIDE-R

Examples of the convergence of DESIDE-R are depicted in
Fig. 2. This figure shows the values of the objective function (in
the maximization problem ) obtained through the iterations

(with denoting the iteration number) for ,
, as well as two intervals and . As

expected, the cyclic maximization approach which is devised to
tackle leads to a monotonically increasing objective function

. The values of the objective function
for are larger than those for (see
the discussions associated with Fig. 1). Note that both and

are rank-one here, and as a result, the obtained pairs of the
transmit sequence and receive filter are optimal for the original
design problem .

C. A Fast-Time Coding Example

As mentioned earlier (see Remark 1), the problem formu-
lation and the design method can also be applied to fast-time
coding systems. We present an example of such an application

Fig. 4. Design example for a fast-time coding system.

by considering and . The target Doppler shift
is assumed to be in the interval . The consid-

ered maximum target Doppler shift corresponds to a target with
an approximate velocity of Mach 4 illuminating by an L-band
radar of sampling frequency 1 MHz. Owing to the fact that nor-
malized Doppler shift in this case is proportional to the system
bandwidth, we neglect the effect of the Doppler shifts of clutter
scatterers. Fig. 4 shows the obtained by DESIDE
as well as the results for the non-robust design, for ,

, and . It is observed that employing DESIDE leads
to performance robustness of the system. In this example, the
result obtained by DESIDE outperforms that of the non-robust
design for . Moreover, the obtained and
were rank-one too, similar to the examples presented earlier.

D. The Synthesis Algorithms

The performance analysis of the synthesis algorithms is per-
formed by considering cases where the ranks of the solutions
to the relaxed problem are larger than one. We consider
20 random starting points for the synthesis algorithms (with

) and report the best result. In the first example, we as-
sume , , , . For
a random initialization, DESIDE-R provides with

and (it was numerically ob-
served that as long as , the rank of is equal
to one for most of the employed random initial points). The
optimal ESD corresponding to the pair is shown in
Fig. 5(a). The values of for the synthesized and
are shown in Fig. 5(b). This figure also includes the op-

timal (corresponding to ) and the re-
sult of applying the rank-one decomposition method. For the
latter method, the best result is obtained with ,
, and . It is observed that using the proposed syn-

thesis algorithm leads to values of that are close to
the optimal ones. Fig. 5(c) shows the optimal ,

for synthesized via the proposed algorithm
and the result of rank-one decomposition method for another
case in which . The performance of the rank-one
decomposition method is degraded considerably whereas the
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Fig. 5. Results obtained with the proposed synthesis algorithms: (a) an optimal ESD, (b) results of the filter synthesis corresponding to part (a), (c) another filter
synthesis example, (d) absolute value of the loss metric of the transmit sequence synthesis versus the number of ESD samples for the considered transmit
sequence synthesis example. The zoomed areas in (b) and (c) show the values of the optimal and of the proposed synthesis method
in the neighborhoods of their minimum values.

difference between the results of the proposed algorithm and
is minor. This can be explained by noting that

the rank-one decomposition method can consider the values of
the optimal at up to three points, i.e., and
. On the other hand, the proposed method considers a con-

strained synthesis problem to approximate the values of optimal
for an arbitrary set of discrete . To measure the

goodness of the synthesis algorithms, we define the following
loss metric:

(51)

In this example, the loss metric for the proposed method and
the rank-one decomposition method are equal to 0.25 dB and
4.1 dB, respectively. Next we study the effect of the number

of optimal ESD samples, i.e. , on the performance of the pro-
posed synthesis stage. The results for a transmit sequence syn-
thesis example are illustrated in Fig. 5(d). For this example, we
have , , and . Note
that it was numerically observed that the rank of is equal

to one as long as . The figure shows the absolute
values of loss metric versus . It is seen that the performance
improvement for is negligible. Another observation is
that there is about 2 dB loss even for sufficiently large values
of . This might be due to imposing more constraints in the
sequence synthesis as compared to the case of filter synthesis.
In the example of Fig. 5(d), the loss of the rank-decomposition
method is around 13 dB; here the latter method can take into
account just one point of the optimal , i.e., .

VI. CONCLUDING REMARKS

A joint robust design of the transmit sequence and receive
filter was considered for cases where the Doppler shift of the
target is unknown. A novel method (called DESIDE) was pro-
posed to tackle the design problem under the similarity con-
straint. The main results can be summarized as follows:
• The robust design problem was cast as a max-min problem
by using the model which considers the effects of the inter-
fering clutter scatterers at various range-azimuth bins and
internal Doppler shifts of these scatterers. It was shown
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that for a given optimal transmit sequence, the problem can
equivalently be written as a QCQP with infinitely many
non-convex constraints and hence the design problem in
general belongs to a class of NP-hard problems.

• DESIDE was devised to tackle the design problem. The
method consists of solving a relaxed version of the design
problem (via DESIDE-R) as well as a synthesis stage:
— DESIDE-R was based on a reformulation of
by considering and , relaxation
of the rank-one constraints on the aforementioned ma-
trices, and cyclic maximization of the relaxed problem.
For fixed receivefilter, the relaxed optimization problem
was equivalently expressed as an SDP by using a trans-
formation (inspired by Charnes-Cooper transform) and
an SDP representation of the infinitely many affine con-
straints. Using a similar technique, an SDPwas obtained
in the fixed transmit sequence case.

— New algorithms were devised to synthesize the receive
filters and transmit sequences from the solutions to the
relaxed problem. The synthesis algorithms aim to fit
the values associated with the solutions
provided by DESIDE-R. The synthesis stage is cast
as constrained non-convex problems which were dealt
with via cyclic minimization.

• The effectiveness of the devisedmethods was illustrated by
providing several numerical examples. It was shown that
the DESIDE system performance possesses a considerable
robustness with respect to the target Doppler shift. The nu-
merical analysis of the proposed synthesis algorithms con-
firms that high quality pairs of receive filter and transmit
sequence can be synthesized from the solutions to the re-
laxed problem.

The design problem considered in this paper is based on
known parameters of clutter and signal-independent interfer-
ence. Robust design of transmit sequences and receive filters
with respect to uncertainties in clutter and interference param-
eters in addition to the target Doppler shift is a possible topic
for future research.

APPENDIX A

PROOF OF LEMMA 1

Note that the numerator of in (2) can be rewritten
as

(52)

where in the last equality we have used standard properties of
the Hadamard product [31]. As to the denominator of
in (2), it is straightforward to verify that, for all ,

(53)

Using the matrix variable and substituting the above
identity in (3) we obtain that

(54)
As a result, (52) and (54) yield the expression of in
(9).
To derive the alternative expression of in (10), we

begin by considering the result of the Lemma 3.1 in [12] which
implies

(55)

Note also that for all

(56)

Therefore, using (56) as well as the fact that the covariance ma-
trix , we can write

(57)

where and

(58)
Now let , and observe that

(59)
The above identity and (52) prove the validity of the alternative
expression of in (10).
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