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Abstract
In this paper, Perfect Root-of-Unity Codes (PRUCs) with entries in o, = {z € C | 2P = 1}

where p Is a prime are studied. A lower bound on the number of distinct phases in PRUCs over

«, is derived. We show that PRUCs of length L > p(p — 1) must use all phases in «,. It is also

shown that if there exists a PRUC of length L over o, then p divides L. We derive equations

(which we call principal equations) that give possible lengths of a PRUC over «, together with

their phase distribution.

Introduction

. Root-of-unity codes and their autocorrelation lags:
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. The periodic autocorrelation of x at lag v € Zy, is defined as
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e I = {.’l?g} > L-length PRUC over «a,,
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« Applications:

communication systems for Frequency-Hopping Spread-Spectrum
Multiple-Access (FH/SSMA), Direct-Sequence Spread-Spectrum Multiple-
Access (DS/SSMA), pulse compression for continuous-wave radars, fast
startup equalization and channel estimation.

« This paper considers perfect unimodular codes in finite-alphabet case.

Phase Study

Theorem 1. If S2=1 ae’ =¥ = 0 for some ay, € Z and prime p, then all a;. must be identical.

Corollary 1. If there exists a PRUC of length L over o, then p|L.

L =mp, meN
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Corollary 2. Letx = {ei"?kﬁ}g D

and u € Zy — {0}, there exist exactly m distinct integers {l} such that k; = k;, + s (mod p).

mp—1

be a PRUC of length L = mp over «,. Then for every s € Z,

« Lower bound on the number of distinct phases in the code:
Let &, be the circulant matrix made from integer phases {k;} of the code
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For the [*" column of ®,,, consider the location of the entries which are equalto k; (I = 0,--- ,p—1).

Considering these locations for all columns, we build an mp x mp equivalence matrix ®,. whose
entries in the mentioned locations are 1; otherwise they are 0.

e If u; represents the number of times that ¢/ » * occurs in the sequence then Zﬁ;é [k = mp.

* Based on Corollary 2, all rows of ®, have exactly m ones except the first row whose all
entries are one. _ there are mp + m(mp — 1) ones in ®..

e On the other hand, since every integer phase k e Zp gives u; columns with p; ones in each

of them, the number of ones in ®, is equal to >}~/ 47 and therefore S"P=¢ 7 = mp + m(mp — 1).

e Now let us assume that ¢ of {4} are nonzero. From the Cauchy-Schwarz inequality we have
2
mp

(m+1)p—1

2
- -1
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Corollary 3. For m > p — 1, all phase values must be used in a PRUC.

The Principal Equations

Now, for every s € Z, — {0}, let us build the ®. matrix' as follows: by finding the locations
of the entries k; in the " column of ®, such that k& = k; + s (mod p), we represent these
locations in ®. by 1, and by 0 otherwise. Based on Corollary 2, for every u € Z; — {0}, there
exist exactly m distinct integers {/} such that k;.., = k; + s (mod p). Therefore the ®. matrix has
exactly m ones in each of its rows except for the first row which is all zero. This implies that &,
has m(mp—1) ones. On the other hand, the number of ones in ®. is equal to Zﬁ;é g hkrs @S It
equals the number of all pairs with the property k., = k;+s (mod p). Therefore, all out-of-phase

correlations {Zﬁ;}) Hkii+s tsez, — {0y Of the {ux} sequence are equal to m(mp — 1).

e Let rp = pup —m, r

the principal equations: |1

« Geometrical study of the principal equations:
Let ro = (g, - ,-rp_l)T and also let r;. represent the circularly shifted version of rq by £ € Z,,.

The principal equations can be rephrased as follows over all vectors {r;}:
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The angle between each pair of vectors {(rx.r;) }r IS
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We note that the structure made by connecting all vertices
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(c)

pointed by {r;} is a known multi-dimensional object called Flo. .. i) Begulsr Shplevse’Tn sng, e a0l thise

dimensional space. In n dimensions they can be char-
acterized with n + 1 vectors with the same [,-norm and
also the same angle between them.

a Reqgular Simplex.

'"The dependency of {®.} matrices on s is not explicitly shown for notational simplicity.

The Principal Equations: Solutions
. Analytical solutions:

As an example for using the regular simplex to solve the principal equations we study the case
of p = 3: for 3-phase perfect codes, the {r,} make a two dimensional regular simplex orthogonal
to 13, which has 3 vectors and each two of them have an angle of %’*’T

Let: R;, be the unitary rotation matrix which maps 13 to \/gef) and
2k 2k o
2m (COS (;T - gb) , sin (;T + gb) ) for k € Zs, v € [0, 2m).

ri € Z3 is of the form

ri is equal to Ry'r}

_ ( %COS(%TW—T—%)—%QH(%TW—}—@M \

for some -
¥ V2m V8 sin (262 1 4p)

For k = 0,

hy = 2y/7% sin¢

(which is the second entry of o) . Computational solutions:

th — 2, /1M, COS rlp ' Length (L} Phase distribution {,u;l}k —0
: : : 0 2,1,2,0,0) (2,2,0,1,0)
(which is the difference between o 6167272 (66217

the first and the third entry of rg) 25
45

‘both must be integers.l 20
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(6,6,6,6,1) (9,4,4, 4, 4)
(12,9,12,6.6) (12,12,6.9,6)
(16,12, 10, 10, 7) (16, 10, 12, 7, 10)
(15,6, 10, 13 12)(15 12, 6,12, 10)
(20,16, 20, 12, 12) (20, 20, 12, 16, 12)
(28 18,18, 18 18) (22,22,22, 22, 12)
¢
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Therefore,
the code length must be of the form 2;
1 2 1 2n2 ; 49
L= (9&1 T 3}32) 56 11,10,10,5, 10, 5,5) (11, 11,6, 11,6, 6, 5)
and the phase distribution is given by gg 17, 1?,?.?13 ?ﬁ,?{)],m) (18,18, 11,18, 11,11, 11)
/ (hQ — }11) \
1 312 1 p2) 1 1 Table 1. All possible lengths (less than or equal to 100)
4 (8h1+h3) 15 + 2 2 of PRUCs over o, for p = 5 and 7 together with phase

distributions.
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