PERFECT ROOT-OF-UNITY CODES WITH PRIME-SIZE ALPHABET

Mojtaba Soltanalian and Petre Stoica
Dept. of Information Technology, Uppsala University, Uppsala, Sweden

Abstract
In this paper, Perfect Root-of-Unity Codes (PRUCs) with entries in \(\alpha_p = \{x \in \mathbb{C} \mid x^p = 1 \} \) where \(p \) is a prime are studied. A lower bound on the number of distinct phases in PRUCs over \(\alpha_p \) is derived. We show that PRUCs of length \(L \geq mp - 1 \) must use all phases in \(\alpha_p \). It is also shown that if there exists a PRUC of length \(L \) over \(\alpha_p \), then \(p \) divides \(L \). We derive equations (which we call principal equations) that give possible lengths of a PRUC over \(\alpha_p \), together with their phase distribution.

Introduction

- Root-of-unity codes and their autocorrelation lags:
 \[x = \{x_t\}_{t=0}^{L-1} = \{e^{j2\pi t/k}\}_{t=0}^{L-1} \quad \text{L-length PRUC over } \alpha_p \]
 The periodic autocorrelation of \(x \) at lag \(u \in \mathbb{Z}_L \), is defined as
 \[R_u = \sum_{t=0}^{L-1} x^* e^{-j\frac{2\pi u t}{L}} \]

- Applications:
 communication systems for Frequency-Hopping Spread-Spectrum Multiple-Access (FH/SSMA), Direct-Sequence Spread-Spectrum Multiple-Access (DS/SSMA), pulse compression for continuous-wave radars, fast startup equalization and channel estimation.

- This paper considers perfect unimodular codes in finite-alphabet case.

Phase Study

Theorem 1. If \(\sum_{i=0}^{m-1} a_i e^{j2\pi i/k} = 0 \) for some \(a_i \in \mathbb{Z} \) and prime \(p \), then all \(a_i \) must be identical.

Corollary 1. If there exists a PRUC of length \(L \) over \(\alpha_p \), then \(pL \).

Corollary 2. Let \(x = \{e^{j2\pi t/k}\}_{t=0}^{L-1} \) be a PRUC of length \(L = mp \) over \(\alpha_p \). Then for every \(s \in \mathbb{Z}_p \) and \(v \in \mathbb{Z}_L \), there exist exactly \(m \) distinct integers \(\{l\} \) such that \(k_l \equiv k_{l+s} \mod p \).

Lower bound on the number of distinct phases in the code:
Let \(\Phi \) be the circulant matrix formed from integer phases \(\{k_l\} \) of the code
\[\Phi = \begin{pmatrix}
 k_0 & k_1 & \cdots & k_{mp-1} \\
 k_{mp-1} & k_0 & \cdots & k_{mp-2} \\
 \vdots & \vdots & \ddots & \vdots \\
 k_1 & k_2 & \cdots & k_0
\end{pmatrix} \]

For the \(l \)-th column of \(\Phi \), consider the location of the entries which are equal to \(k_l \) \(l = 0, \ldots, p-1 \). Considering these locations for all columns, we build an \(mp \times mp \) equivalence matrix \(\Phi' \), whose entries in the mentioned locations are 1; otherwise they are 0.

- If \(\mu \) represents the number of times that \(e^{j2\pi l/k} \) occurs in the sequence then \(\sum_{i=0}^{m-1} \mu_i = mp \).
- Based on Corollary 2, all rows of \(\Phi \) have exactly \(m \) ones except the first row whose all entries are one, and there are \(mp = (m-1)p \) ones in \(\Phi' \).
- On the other hand, since every integer phase \(k \in \mathbb{Z}_p \) gives \(\mu \) columns with \(\mu \) ones in each of them, the number of ones in \(\Phi' \) is equal to \(\sum_{i=0}^{m-1} \mu_i^2 \) and therefore \(\sum_{i=0}^{m-1} \mu_i^2 = mp(m-1) \).
- Now let us assume that \(t \) is the number of \(\mu \) that are nonzero. From the Cauchy-Schwarz inequality we have \(\sum_{i=0}^{m-1} \mu_i^2 \geq \frac{1}{m} \left(\sum_{i=0}^{m-1} \mu_i \right)^2 \) and as a result \(t \geq \frac{mp^2}{(m+1)p-1} \).

Corollary 3. For \(m \geq p - 1 \), all phase values must be used in a PRUC.

The Principal Equations

Now, for every \(s \in \mathbb{Z}_p \), let us build the \(\Phi \) matrix as follows: by finding the locations of the entries \(k_l \) in the \(l \)-th column of \(\Phi \) such that \(k_l \equiv k_{l+s} \mod p \), we represent these locations in \(\Phi \), by 1, and 0 otherwise. Based on Corollary 2, for every \(u \in \mathbb{Z}_L \), there exist exactly \(m \) distinct integers \(\{l\} \) such that \(k_{l+s} = k_{l+s} \mod p \). Therefore, the \(\Phi \) matrix has exactly \(m \) rows except for the first row which is all zero. This implies that \(\Phi \) has \(mp-1 \) ones. On the other hand, the number of ones of \(\Phi \) is equal to \(\sum_{l=0}^{mp-1} \mu_l \), as it equals the number of all pairs with the property \(k_{l+s} = k_{l+s} \mod p \). Therefore, all-out-of-phase correlations \(\sum_{l=0}^{mp-1} e^{j2\pi u(l)} \) of the \(\mu_l \) sequence are equal to \(m(mp-1) \).

- Let \(r_k = \mu_k - \mu_l \), the principal equations:
 \[\sum_{l=0}^{mp-1} e^{j2\pi u(l)} = 0 \quad \sum_{l=0}^{mp-1} r_k e^{j2\pi u(l)} = m(mp-1) \]

Geometrical study of the principal equations:
Let \(r_0 \) be \(r_0, r_1, \ldots, r_{mp-1} \) and also let \(r_0 \) represent the circularly shifted version of \(r_0 \) by \(k \in \mathbb{Z}_p \).

The principal equations can be rephrased as follows over all vectors \(\{x_t\} \):
\[\begin{align*}
 r_0 & = 0 \\
 r_k r_l & = m(mp-1) \\
 r_k r_{k+l} & = m(mp-1) \quad k \neq l
\end{align*} \]

The angle between each pair of vectors \(\{r_0, r_1\} \) is
\[\theta = \arccos \left(\frac{r_0 r_1}{\|r_0\| \|r_1\|} \right) = \arccos \left(\frac{1}{p-1} \right) \]

We note that the structure made by connecting all vertices pointed by \(r_0 \) is a known multi-dimensional object called a Regular Simplex.

Fig. 1. (a–c) Regular Simplexes in one, two, and three dimensional space. In d dimensions they can be characterized with \(d+1 \) vectors with the same \(l \)-norm and also the same angle between them.

The Principal Equations: Solutions

Analytical solutions:
As an example for using the regular simplex to solve the principal equations we study the case of \(p = 3 \): for 3-phase perfect codes, the \(\{\mu_l\} \) make a two dimensional regular simplex orthogonal to \(1,0 \), which has 3 vectors and each two of them have an angle of \(\frac{\pi}{3} \).

Let: \(R_0 \) be the unitary rotation matrix which maps \(1,0,1 \) to \(\sqrt{2/3},1/\sqrt{3} \) and \(v = \sqrt{2/3} \cos (\frac{2\pi}{3} + \phi) \sin (\frac{2\pi}{3} + \phi) \) for \(k \in \mathbb{Z}_p \), \(\phi \in [0, 2\pi] \).

- \(r_0 \) is equal to \(R_0^t v \) for some \(v \)
- For \(k = 0 \), \(k_1 = 2\sqrt{3/2} \sin \phi \) (which is the second entry of \(r_0 \))
- \(k_2 = 2\sqrt{3/2} \cos \phi \) (which is the difference between the first and the third entry of \(r_0 \))

Therefore, the code length must be of the form
\[L = \frac{1}{3} (3h_0 + 3h_1) \]
and the phase distribution is given by
\[\frac{1}{4} \left(3h_0 + h_1 \right) \begin{pmatrix}
 b_0 - b_1 \\
 b_2 - b_1
\end{pmatrix} + \frac{1}{2} \begin{pmatrix}
 b_0 \\
 b_2
\end{pmatrix} \]

Computational solutions:

Table 1. All possible lengths \(L \) of PRUCs over \(\alpha_p \) for \(p = 5 \) and \(7 \) together with phase distributions.