Single-Stage Transmit Beamforming Design for MIMO Radar

Mojtaba Soltanalian*a, Heng Hu ${ }^{b}$, and Petre Stoica ${ }^{a}$
${ }^{a}$ Dept. of Information Technology, Uppsala University, Uppsala, Sweden
${ }^{b}$ School of Electronic Engineering and Optoelectronics Techniques, Nanjing University of Science and Technology, Jiangsu 210094, China
* Please address all the correspondence to Mojtaba Soltanalian, Phone: (+46) 18-471-3168; Fax: (+46) 18-511925; Email: mojtaba.soltanalian@it.uu.se

Abstract

MIMO radar beamforming algorithms usually consist of a signal covariance matrix synthesis stage, followed by signal synthesis to fit the obtained covariance matrix. In this paper, we propose a radar beamforming algorithm (called BeamShape) that performs a single-stage radar transmit signal design; i.e. no prior covariance matrix synthesis is required. Beam-Shape's theoretical as well as computational characteristics, include: (i) the possibility of considering signal structures such as low-rank, discrete-phase or low-PAR, and (ii) the significantly reduced computational burden for beampattern matching scenarios with large grid size. The effectiveness of the proposed algorithm is illustrated through numerical examples.

Keywords: Beamforming, multi-input multi-output (MIMO) radar, peak-to-average-power ratio (PAR), signal design

1. Introduction

A key problem in the radar literature is the transmit signal design for matching a desired beampattern. In contrast to conventional phased-array radar, multiple-input multiple-output (MIMO) radar uses its antennas to transmit independent waveforms, and thus provides extra degrees of freedom (DOF) [1][2]. As a result, MIMO radars can achieve beampatterns which might be impossible for phased-arrays [3][4]. The MIMO radar transmit beampattern design
approaches in the literature require two stages in general (see, e.g. [3]-[12]). The first stage consists of the design of the transmit covariance matrix \boldsymbol{R}. The design of \boldsymbol{R} can be typically performed using convex optimization tools. Next, the transmit signals (under practical constraints) are designed in order to fit the obtained covariance matrix.

In this paper, we present a novel approach (which we call Beam-Shape) for "shaping" the transmit beam of MIMO radar via a single-stage transmit signal design. We consider the transmit beamspace processing (TBP) scheme [15] for system modeling (see Section 2 for details). Due to different practical (or computational) demands, two optimization problems are considered for both TBP weight matrix design as well as a direct design of the transmit signal. In comparison to the two-stage framework of beamforming approaches in the literature:

- Beam-Shape is able to directly consider in its formulation the matrix rank or signal constraints (such as low peak-to-average-power ratio (PAR), or discrete-phase); an advantage which generally is not shared with the covariance matrix design. As a result, the matching optimization problem will produce optimized solutions considering all the constraints of the original problem at once, and may thus avoid the optimality losses imposed by a further signal synthesis stage. See Section 4 for some numerical illustrations.
- In beamforming scenarios with large grid size, Beam-Shape appears to have a significantly smaller computational burden compared to the twostage framework. See the related discussions in Sections 3 and 4.

Notation: We use bold lowercase letters for vectors and bold uppercase letters for matrices. $(\cdot)^{T},(\cdot)^{*}$ and $(\cdot)^{H}$ denote the vector/matrix transpose, the complex conjugate, and the Hermitian transpose, respectively. $\mathbf{1}$ and $\mathbf{0}$ are the all-one and all-zero vectors/matrices. The symbol \odot stands for the Hadamard (element-wise) product of matrices. $\|\boldsymbol{x}\|_{n}$ or the l_{n}-norm of the vector \boldsymbol{x} is defined as $\left(\sum_{k}|\boldsymbol{x}(k)|^{n}\right)^{\frac{1}{n}}$ where $\{\boldsymbol{x}(k)\}$ are the entries of \boldsymbol{x}. The Frobenius
norm of a matrix \boldsymbol{X} (denoted by $\|\boldsymbol{X}\|_{F}$) with entries $\{\boldsymbol{X}(k, l)\}$ is equal to $\left(\sum_{k, l}|\boldsymbol{X}(k, l)|^{2}\right)^{\frac{1}{2}}$. We use $\Re(\boldsymbol{X})$ to denote the matrix obtained by collecting the real parts of the entries of \boldsymbol{X}. Finally, $\mathcal{Q}_{p}(\boldsymbol{X})$ yields the closest p-ary phase matrix with entries from the set $\{2 k \pi / p: k=0,1, \cdots, p-1\}$, in an element-wise sense, to an argument phase matrix \boldsymbol{X}.

2. Problem Formulation

Consider a MIMO radar system with M antennas and let $\left\{\theta_{l}\right\}_{l=1}^{L}$ denote a fine grid of the angular sector of interest. Under the assumption that the transmitted probing signals are narrow-band and the propagation is non-dispersive, the steering vector of the transmit array (at location θ_{l}) can be written as

$$
\begin{equation*}
\boldsymbol{a}\left(\theta_{l}\right)=\left(e^{j 2 \pi f_{0} \tau_{1}\left(\theta_{l}\right)}, e^{j 2 \pi f_{0} \tau_{2}\left(\theta_{l}\right)}, \ldots, e^{j 2 \pi f_{0} \tau_{M}\left(\theta_{l}\right)}\right)^{T} \tag{1}
\end{equation*}
$$

where f_{0} denotes the carrier frequency of the radar, and $\tau_{m}\left(\theta_{l}\right)$ is the time needed by the transmitted signal of the $m^{\text {th }}$ antenna to arrive at the target location θ_{l}.

In lieu of transmitting M partially correlated waveforms, the TBP technique employs K orthogonal waveforms that are linearly mixed at the transmit array via a weighting matrix $\boldsymbol{W} \in \mathbb{C}^{M \times K}$. The number of orthogonal waveforms K can be determined by counting the number of significant eigenvalues of the matrix [15]:

$$
\begin{equation*}
\boldsymbol{A}=\sum_{l=1}^{L} \boldsymbol{a}\left(\theta_{l}\right) \boldsymbol{a}^{H}\left(\theta_{l}\right) . \tag{2}
\end{equation*}
$$

The parameter K can be chosen such that the sum of the K dominant eigenvalues of \boldsymbol{A} exceeds a given percentage of the total sum of eigenvalues [15]. Note that usually $K \ll M$ (especially when M is large) [15][18]. Let $\boldsymbol{\Phi}$ be the matrix containing K orthonormal TBP waveforms, viz.

$$
\begin{equation*}
\boldsymbol{\Phi}=\left(\boldsymbol{\varphi}_{1}, \boldsymbol{\varphi}_{2}, \ldots, \boldsymbol{\varphi}_{K}\right)^{T} \in \mathbb{C}^{K \times N}, \quad K \leq M \tag{3}
\end{equation*}
$$

where $\varphi_{k} \in \mathbb{C}^{N \times 1}$ denotes the $k^{t h}$ waveform (or sequence). The transmit signal matrix can then be written as $\boldsymbol{S}=\boldsymbol{W} \boldsymbol{\Phi} \in \mathbb{C}^{M \times N}$, and the transmit beampattern becomes

$$
\begin{align*}
P\left(\theta_{l}\right) & =\left\|\boldsymbol{S}^{H} \boldsymbol{a}\left(\theta_{l}\right)\right\|_{2}^{2} \\
& =\boldsymbol{a}^{H}\left(\theta_{l}\right) \boldsymbol{W} \boldsymbol{\Phi} \boldsymbol{\Phi}^{H} \boldsymbol{W}^{\boldsymbol{H}} \boldsymbol{a}\left(\theta_{l}\right) \\
& =\boldsymbol{a}^{H}\left(\theta_{l}\right) \boldsymbol{W} \boldsymbol{W}^{H} \boldsymbol{a}\left(\theta_{l}\right) \\
& =\left\|\boldsymbol{W}^{H} \boldsymbol{a}\left(\theta_{l}\right)\right\|_{2}^{2} . \tag{4}
\end{align*}
$$

Eq. (4) sheds light on two different perspectives for radar beampattern design. Observe that matching a desired beampattern may be accomplished by considering \boldsymbol{W} as the design variable. Doing so, one can control the rank (K) of the covariance matrix $\boldsymbol{R}=\boldsymbol{S} \boldsymbol{S}^{\boldsymbol{H}}=\boldsymbol{W} \boldsymbol{W}^{\boldsymbol{H}}$ by fixing the dimensions of $\boldsymbol{W} \in \mathbb{C}^{M \times K}$. This idea becomes of particular interest for the phased-array radar formulation with $K=1$. Note that considering the optimization problem with respect to \boldsymbol{W} for small K may significantly reduce the computational costs. On the other hand, imposing practical signal constraints (such as discrete-phase or low PAR) while considering \boldsymbol{W} as the design variable appears to be difficult. In such cases, one can resort to a direct beampattern matching by choosing \boldsymbol{S} as the design variable.

In light of the above discussion, we consider beampattern matching problem formulations for designing either \boldsymbol{W} or \boldsymbol{S} as follows. Let $P_{d}\left(\theta_{l}\right)$ denote the desired beampattern. According to the last equality in (4), $P_{d}\left(\theta_{l}\right)$ can be synthesized exactly if and only if there exist a unit-norm vector $\boldsymbol{p}\left(\theta_{l}\right)$ such that

$$
\begin{equation*}
\boldsymbol{W}^{H} \boldsymbol{a}\left(\theta_{l}\right)=\sqrt{P_{d}\left(\theta_{l}\right)} \boldsymbol{p}\left(\theta_{l}\right) \tag{5}
\end{equation*}
$$

Therefore, by considering $\left\{\boldsymbol{p}\left(\theta_{l}\right)\right\}_{l}$ as auxiliary design variables, the beampattern matching via weight matrix design can be dealt with conveniently via the
optimization problem:

$$
\begin{array}{cc}
\min _{\boldsymbol{W}, \alpha,\left\{\boldsymbol{p}\left(\theta_{l}\right)\right\}} & \sum_{l=1}^{L}\left\|\boldsymbol{W}^{H} \boldsymbol{a}\left(\theta_{l}\right)-\alpha \sqrt{P_{d}\left(\theta_{l}\right)} \boldsymbol{p}\left(\theta_{l}\right)\right\|_{2}^{2} \\
\text { s.t. } & \left(\boldsymbol{W} \odot \boldsymbol{W}^{*}\right) \mathbf{1}=\frac{E}{M} \mathbf{1}, \\
& \left\|\boldsymbol{p}\left(\theta_{l}\right)\right\|_{2}=1, \forall l, \tag{8}
\end{array}
$$

where (7) is the transmission energy constraint at each transmitter with E being the total energy, and α is a scalar accounting for the energy difference between the desired beampattern and the transmitted beam. Similarly, the beampattern matching problem with \boldsymbol{S} as the design variable can be formulated as

$$
\begin{array}{cc}
\min _{\boldsymbol{S}, \alpha,\left\{\boldsymbol{p}\left(\theta_{l}\right)\right\}} & \sum_{l=1}^{L}\left\|\boldsymbol{S}^{H} \boldsymbol{a}\left(\theta_{l}\right)-\alpha \sqrt{P_{d}\left(\theta_{l}\right)} \boldsymbol{p}\left(\theta_{l}\right)\right\|_{2}^{2} \\
\text { s.t. } & \left(\boldsymbol{S} \odot \boldsymbol{S}^{*}\right) \mathbf{1}=\frac{E}{M} \mathbf{1}, \\
& \left\|\boldsymbol{p}\left(\theta_{l}\right)\right\|_{2}=1, \forall l, \\
& \boldsymbol{S} \in \Psi, \tag{12}
\end{array}
$$

where Ψ is the desired set of transmit signals. The above beampattern matching formulations pave the way for an algorithm (which we call Beam-Shape) that can perform a direct matching of the beampattern with respect to the weight matrix \boldsymbol{W} or the signal \boldsymbol{S}, without requiring an intermediate synthesis of the covariance matrix.

3. Beam-Shape

We begin by considering the beampattern matching formulation in (6). For fixed \boldsymbol{W} and α, the minimizer $\boldsymbol{p}\left(\theta_{l}\right)$ of (6) is given by

$$
\begin{equation*}
\boldsymbol{p}\left(\theta_{l}\right)=\frac{\boldsymbol{W}^{H} \boldsymbol{a}\left(\theta_{l}\right)}{\left\|\boldsymbol{W}^{H} \boldsymbol{a}\left(\theta_{l}\right)\right\|_{2}} . \tag{13}
\end{equation*}
$$

Let $P \triangleq \sum_{l=1}^{L} P_{d}\left(\theta_{l}\right)$. For fixed \boldsymbol{W} and $\left\{\boldsymbol{p}\left(\theta_{l}\right)\right\}$ the minimizer α of (6) can be obtained as

$$
\begin{equation*}
\alpha=\Re\left\{\left(\sum_{l=1}^{L} \sqrt{P_{d}\left(\theta_{l}\right)} \boldsymbol{p}^{H}\left(\theta_{l}\right) \boldsymbol{W}^{H} \boldsymbol{a}\left(\theta_{l}\right)\right) / P\right\} . \tag{14}
\end{equation*}
$$

Using (13), the expression for α can be further simplified as

$$
\begin{equation*}
\alpha=\left(\sum_{l=1}^{L} \sqrt{P_{d}\left(\theta_{l}\right)}\left\|\boldsymbol{W}^{H} \boldsymbol{a}\left(\theta_{l}\right)\right\|_{2}\right) / P . \tag{15}
\end{equation*}
$$

Now assume that $\left\{\boldsymbol{p}\left(\theta_{l}\right)\right\}$ and α are fixed. Note that

$$
\begin{align*}
Q(\boldsymbol{W}) & =\sum_{l=1}^{L}\left\|\boldsymbol{W}^{H} \boldsymbol{a}\left(\theta_{l}\right)-\alpha \sqrt{P_{d}\left(\theta_{l}\right)} \boldsymbol{p}\left(\theta_{l}\right)\right\|_{2}^{2} \\
& =\operatorname{tr}\left(\boldsymbol{W} \boldsymbol{W}^{H} \boldsymbol{A}\right)-2 \Re\{\operatorname{tr}(\boldsymbol{W} \boldsymbol{B})\}+P \alpha^{2} \tag{16}
\end{align*}
$$

where \boldsymbol{A} is as defined in (2), and

$$
\begin{equation*}
\boldsymbol{B}=\sum_{l=1}^{L} \alpha \sqrt{P_{d}\left(\theta_{l}\right)} \boldsymbol{p}\left(\theta_{l}\right) \boldsymbol{a}^{H}\left(\theta_{l}\right) \tag{17}
\end{equation*}
$$

By dropping the constant part in $Q(\boldsymbol{W})$, we have

$$
\begin{align*}
\widetilde{Q}(\boldsymbol{W}) & =\operatorname{tr}\left(\boldsymbol{W} \boldsymbol{W}^{H} \boldsymbol{A}\right)-2 \Re\{\operatorname{tr}(\boldsymbol{W} \boldsymbol{B})\} \tag{18}\\
& =\operatorname{tr}(\binom{\boldsymbol{W}}{\boldsymbol{I}} \underbrace{\left(\begin{array}{cc}
\boldsymbol{A} & -\boldsymbol{B}^{H} \\
-\boldsymbol{B} & \mathbf{0}
\end{array}\right)}_{\triangleq \boldsymbol{C}} \underbrace{\binom{\boldsymbol{W}}{\boldsymbol{I}}}_{\triangleq \widetilde{\boldsymbol{W}}}) .
\end{align*}
$$

Therefore, the minimization of (6) with respect to \boldsymbol{W} is equivalent to

$$
\begin{array}{cc}
\min _{\boldsymbol{W}} & \operatorname{tr}\left(\widetilde{\boldsymbol{W}}^{H} \boldsymbol{C} \widetilde{\boldsymbol{W}}\right) \\
\text { s.t. } & \left(\boldsymbol{W} \odot \boldsymbol{W}^{*}\right) \mathbf{1}=\frac{E}{M} \mathbf{1} \\
& \widetilde{\boldsymbol{W}}=\left(\boldsymbol{W}^{T} \boldsymbol{I}\right)^{T} \tag{21}
\end{array}
$$

As a result of the energy constraint in (20), $\widetilde{\boldsymbol{W}}$ has a fixed Frobenius norm, and hence a diagonal loading of \boldsymbol{C} does not change the solution to (19). Therefore, (19) can be written in the following equivalent form:

$$
\begin{array}{lc}
\max _{\boldsymbol{W}} & \operatorname{tr}\left(\widetilde{\boldsymbol{W}}^{H} \widetilde{\boldsymbol{C}} \widetilde{\boldsymbol{W}}\right) \\
\text { s.t. } & \left(\boldsymbol{W} \odot \boldsymbol{W}^{*}\right) \mathbf{1}=\frac{E}{M} \mathbf{1}, \\
& \widetilde{\boldsymbol{W}}=\left(\boldsymbol{W}^{T} \boldsymbol{I}\right)^{T} \tag{24}
\end{array}
$$

where $\widetilde{\boldsymbol{C}}=\lambda \boldsymbol{I}-\boldsymbol{C}$, with λ being larger than the maximum eigenvalue of \boldsymbol{C}. In particular, an increase in the objective function of (22) leads to a decrease of the objective function in (6). Although (22) is non-convex, a monotonically increasing sequence of the objective function in (22) may be obtained (see the Appendix for a proof) via a generalization of the power method-like iterations proposed in [19] and [20], namely:

$$
\begin{equation*}
\boldsymbol{W}^{(t+1)}=\sqrt{\frac{E}{M}} \eta\left(\binom{\boldsymbol{I}_{M \times M}}{\mathbf{0}}^{T} \widetilde{\boldsymbol{C}} \widetilde{\boldsymbol{W}}^{(t)}\right) \tag{25}
\end{equation*}
$$

where the iterations may be initialized with the latest approximation of \boldsymbol{W} (used as $\boldsymbol{W}^{(0)}$), t denotes the internal iteration number, and $\eta(\cdot)$ is a row-scaling operator that makes the rows of the matrix argument have unit-norm

Next we study the optimization problem in (9). Thanks to the similarity of the problem formulation to (6), the derivations of the minimizers $\left\{\boldsymbol{p}\left(\theta_{l}\right)\right\}$ and α of (9) remain the same as for (6). Moreover, the minimization of (9) with respect to the constrained \boldsymbol{S} can be formulated as the following optimization problem:

$$
\begin{array}{lc}
\max _{\boldsymbol{S}} & \operatorname{tr}\left(\widetilde{\boldsymbol{S}}^{H} \widetilde{\boldsymbol{C}} \widetilde{\boldsymbol{S}}\right) \\
\text { s.t. } & \left(\boldsymbol{S} \odot \boldsymbol{S}^{*}\right) \mathbf{1}=\frac{E}{M} \mathbf{1}, \\
& \widetilde{\boldsymbol{S}}=\left(\boldsymbol{S}^{T} \boldsymbol{I}\right)^{T}, \boldsymbol{S} \in \Psi \tag{28}
\end{array}
$$

with $\widetilde{\boldsymbol{C}}$ being the same as in (22). An increasing sequence of the objective function in (26) can be obtained via power method-like iterations that exploit the following nearest-matrix problem (see the Appendix for a sketched proof):

$$
\begin{array}{ll}
\min _{\boldsymbol{S}^{(t+1)}} & \left\|\boldsymbol{S}^{(t+1)}-\binom{\boldsymbol{I}_{M \times M}}{\mathbf{0}}^{T} \widetilde{\boldsymbol{C}} \widetilde{\boldsymbol{S}}^{(t)}\right\|_{F} \\
\text { s.t. } & \left(\boldsymbol{S}^{(t+1)} \odot \boldsymbol{S}^{*(t+1)}\right) \mathbf{1}=\frac{E}{M} \mathbf{1}, \quad \boldsymbol{S}^{(t+1)} \in \Psi . \tag{30}
\end{array}
$$

Obtaining the solution to (29) for some constraint sets Ψ such as real-valued,
unimodular, or p-ary matrices is straightforward, viz.

$$
\boldsymbol{S}^{(t+1)}= \begin{cases}\sqrt{\frac{E}{M}} \eta\left(\Re\left\{\widehat{\boldsymbol{S}}^{(t)}\right\}\right), & \Psi=\text { real-values matrices } \tag{31}\\ e^{j \arg \left(\widehat{\boldsymbol{S}}^{(t)}\right),} & \Psi=\text { unimodular matrices } \\ e^{j \mathcal{Q}_{p}\left(\arg \left(\widehat{\boldsymbol{S}}^{(t)}\right)\right),} & \Psi=p \text {-ary matrices }\end{cases}
$$

where

$$
\begin{equation*}
\widehat{\boldsymbol{S}}^{(t)}=\binom{\boldsymbol{I}_{M \times M}}{\mathbf{0}}^{T} \widetilde{\boldsymbol{C}} \widetilde{\boldsymbol{S}}^{(t)} \tag{32}
\end{equation*}
$$

Furthermore, the case of PAR-constrained \boldsymbol{S} can be handled efficiently via a recursive algorithm devised in [21].

Finally, the Beam-Shape algorithm for beampattern matching via designing the weight matrix \boldsymbol{W} or the transmit signal \boldsymbol{S} is summarized in Table 1.

Remark: A brief comparison of the computational complexity of the BeamShape algorithm and the two-stage beamforming approaches in the literature is as follows. The design of the covariance matrix $\boldsymbol{R} \in \mathbb{C}^{M \times M}$ for the twostage framework can be done using a semi-definite program (SDP) representation with $\mathcal{O}(L)$ constraints. The corresponding SDP may be solved with $\mathcal{O}\left(\max \{M, L\}^{4} M^{1 / 2} \log (1 / \epsilon)\right)$ complexity, where $\epsilon>0$ denotes the solution accuracy [22]. Using the formulation in [4], the design of \boldsymbol{W} or \boldsymbol{S} (for fitting the given covariance matrix) leads to an iterative approach with an iteration complexity of $\mathcal{O}\left(M^{2} K+K M^{2}+K^{3}\right)$, or $\mathcal{O}\left(M^{2} N+N M^{2}+N^{3}\right)$, respectively. On the other hand, Beam-Shape is an iterative method with an iteration complexity of $\mathcal{O}(M(L+K H)(M+K))$ for designing \boldsymbol{W}, and $\mathcal{O}(M(L+N H)(M+N))$ for designing \boldsymbol{S}; where H denotes the number of required internal iterations of the power method-like methods discussed in (25) or (29). The above results suggest that Beam-Shape may be more computationally efficient when the grid size (L) grows large. The next section provides numerical examples for further computational efficiency comparison between the two approaches.
and $\left\{\boldsymbol{p}\left(\theta_{l}\right)\right\}$ and initialize the matrix \boldsymbol{B} using (17).
Step 1: Use the power method-like iterations in (25) (until con-
vergence) to obtain \boldsymbol{W}, or (29) to obtain \boldsymbol{S}.
Step 2: Update $\left\{\boldsymbol{p}\left(\theta_{l}\right)\right\}, \alpha$, and \boldsymbol{B} using (13), (15), and (17),
respectively.
Step 3: Repeat steps 1 and 2 until a stop criterion is satisfied,
e.g. $\left\|\boldsymbol{W}^{(v+1)}-\boldsymbol{W}^{(v)}\right\|_{F}<\varepsilon$ for some given $\varepsilon>0$, where v
denotes the total iteration number.

4. Numerical Examples with Discussions

In this section, we provide several numerical examples to show the potential of Beam-Shape in applications. Consider a MIMO radar with a uniform linear array (ULA) comprising $M=32$ antennas with half-wavelength spacing between adjacent antennas. The total transmit power is set to $E=M N$. The angular pattern covers $\left[-90^{\circ}, 90^{\circ}\right]$ with a mesh grid size of 1° and the desired beampattern is given by

$$
P_{d}(\theta)=\left\{\begin{array}{l}
1, \theta \in\left[\widehat{\theta}_{k}-\Delta, \widehat{\theta}_{k}+\Delta\right] \tag{33}\\
0, \text { otherwise }
\end{array}\right.
$$

where $\widehat{\theta}_{k}$ denotes the direction of a target of interest and 2Δ is the chosen beamwidth for each target. In the following examples, we assume 3 targets located at $\widehat{\theta}_{1}=-45^{\circ}, \widehat{\theta}_{2}=0^{\circ}$ and $\widehat{\theta}_{3}=45^{\circ}$ with a beamwidth of $24^{\circ}(\Delta=$ 12°). The results are compared with those obtained via the covariance matrix synthesis-based (CMS) approach proposed in [3] and [4]. For the sake of a fair comparison, we define the mean square error (MSE) of a beampattern matching as

$$
\begin{equation*}
\mathrm{MSE} \triangleq \sum_{l=1}^{L}\left|\boldsymbol{a}^{H}\left(\theta_{l}\right) \boldsymbol{R} \boldsymbol{a}\left(\theta_{l}\right)-P_{d}\left(\theta_{l}\right)\right|^{2} \tag{34}
\end{equation*}
$$

which is the typical optimality criterion for the covariance matrix synthesis in the literature (including the CMS in [3] and [4]).

We begin with the design of the weight matrix \boldsymbol{W} using the formulation in (6). In particular, we consider $K=M$ corresponding to a general MIMO radar,

Figure 1: Comparison of radar beampattern matchings obtained by CMS and Beam-Shape using the weight matrix \boldsymbol{W} as the design variable: (a) $K=M$ corresponding to a general MIMO radar, and (b) $K=1$ which corresponds to a phased-array.
and $K=1$ which corresponds to a phased-array. The results are shown in Fig. 1. For $K=M$, The MSE values obtained by Beam-Shape and CMS are 1.79 and 1.24, respectively. Note that a smaller MSE value was expected for CMS in this case, as CMS obtains \boldsymbol{R} (or equivalently \boldsymbol{W}) by globally minimizing the MSE in (34). On the other hand, in the phased-array example (Fig. 1(b)), Beam-Shape yields an MSE value of 3.72 , whereas the MSE value obtained by CMS is 7.21. Such a behavior was also expected due to the embedded rank constraint when designing \boldsymbol{W} by Beam-Shape, while CMS appears to face a considerable loss during the synthesis of the rank-constrained \boldsymbol{W}.

Next we design the transmit signal \boldsymbol{S} using the formulation in (9). In this example, \boldsymbol{S} is constrained to be unimodular (i.e. $|\boldsymbol{S}(k, l)|=1$), which corresponds to a unit PAR. Fig. 2 compares the performances of Beam-Shape and CMS for two different lengths of the transmit sequences, namely $N=8$ (Fig. 2(a)) and $N=128$ (Fig. 2(b)). In the case of $N=8$, Beam-Shape obtains an MSE value of 1.80 while the MSE value obtained by CMS is 2.73 . For $N=128$, the MSE values obtained by Beam-Shape and CMS are 1.74 and 1.28, respectively. Given the fact that $M=32$, the case of $N=128$ provides a large number of DOFs for CMS when fitting $\boldsymbol{S} \boldsymbol{S}^{H}$ to the obtained \boldsymbol{R} in the covariance matrix

Figure 2: Comparison of MIMO radar beampattern matchings obtained by CMS and BeamShape using the signal matrix \boldsymbol{S} as the design variable: (a) $N=8$, (b) $N=128$.
synthesis stage, whereas for $N=8$ the number of DOFs is rather limited.
Finally, it can be interesting to examine the performance of Beam-Shape in scenarios with large grid size L. To this end, we compare the computation times of Beam-Shape and CMS for different L, using the same problem setup for designing \boldsymbol{S} (as the above example) but for $N=M=32$. According to Fig. 3, the overall CPU time of CMS is growing rapidly as L increases, which implies that CMS can hardly be used for beamforming design with large grid sizes (e.g. $L \gtrsim 10^{3}$). In contrast, Beam-Shape runs well for large L, even for $L \sim 10^{6}$ on a standard PC. The results leading to Fig. 3 were obtained by averaging the computation times for 100 experiments (with different random initializations) using a PC with Intel Core i5 CPU 750 @ 2.67 GHz , and 8GB memory.

Appendix A. Power Method-Like Iterations Monotonically Increase the Objective Functions in (22) and (26)

In the following, we study the power method-like iterations for designing \boldsymbol{W} in (22). The extension of the results to the design of \boldsymbol{S} in (26) is straightforward. For fixed $\boldsymbol{W}^{(t)}$, observe that the update matrix $\boldsymbol{W}^{(t+1)}$ is the minimizer of the

Figure 3: Comparison of computation times for Beam-Shape and CMS with different grid sizes L.
criterion

$$
\begin{equation*}
\left\|\widetilde{\boldsymbol{W}}^{(t+1)}-\widetilde{\boldsymbol{C}} \widetilde{\boldsymbol{W}}^{(t)}\right\|_{2}^{2}=\mathrm{const}-2 \Re\left\{\operatorname{tr}\left(\widetilde{\boldsymbol{W}}^{(t+1) H} \widetilde{\boldsymbol{C}} \widetilde{\boldsymbol{W}}^{(t)}\right)\right\} \tag{A.1}
\end{equation*}
$$

or, equivalently, the maximizer of the criterion

$$
\begin{equation*}
\Re\left\{\operatorname{tr}\left(\widetilde{\boldsymbol{W}}^{(t+1) H} \widetilde{\boldsymbol{C}} \widetilde{\boldsymbol{W}}^{(t)}\right)\right\} \tag{A.2}
\end{equation*}
$$

in the search space satisfying the given fixed-norm constraint on the rows of \boldsymbol{W} (for \boldsymbol{S}, one should also consider the constraint set Ψ). Therefore, for the optimizer $\widetilde{\boldsymbol{W}}^{(t+1)}$ of (22) we must have

$$
\begin{equation*}
\Re\left\{\operatorname{tr}\left(\widetilde{\boldsymbol{W}}^{(t+1) H} \widetilde{\boldsymbol{C}} \widetilde{\boldsymbol{W}}^{(t)}\right)\right\} \geq \operatorname{tr}\left(\widetilde{\boldsymbol{W}}^{(t) H} \widetilde{\boldsymbol{C}} \widetilde{\boldsymbol{W}}^{(t)}\right) \tag{A.3}
\end{equation*}
$$

Moreover, as $\widetilde{\boldsymbol{C}}$ is positive-definite:

$$
\begin{equation*}
\operatorname{tr}\left(\left(\widetilde{\boldsymbol{W}}^{(t+1)}-\widetilde{\boldsymbol{W}}^{(t)}\right)^{H} \widetilde{\boldsymbol{C}}\left(\widetilde{\boldsymbol{W}}^{(t+1)}-\widetilde{\boldsymbol{W}}^{(t)}\right)\right) \geq 0 \tag{A.4}
\end{equation*}
$$

which along with (A.3) implies

$$
\begin{equation*}
\operatorname{tr}\left(\widetilde{\boldsymbol{W}}^{(t+1) H} \widetilde{\boldsymbol{C}} \widetilde{\boldsymbol{W}}^{(t+1)}\right) \geq \operatorname{tr}\left(\widetilde{\boldsymbol{W}}^{(t) H} \widetilde{\boldsymbol{C}} \widetilde{\boldsymbol{W}}^{(t)}\right) \tag{A.5}
\end{equation*}
$$

and hence, a monotonic increase of the objective function in (22).

Acknowledgement

This work was supported in part by the European Research Council (ERC) under Grant \#228044 and the Swedish Research Council.

References

[1] J. Li, P. Stoica, MIMO radar with colocated antennas, IEEE Signal Processing Magazine 24 (5) (2007) 106-114.
[2] A. M. Haimovich, R. S. Blum, L. J. Cimini, MIMO radar with widely separated antennas, IEEE Signal Processing Magazine 25 (1) (2008) 116129.
[3] P. Stoica, J. Li, X. Yao, On probing signal design for MIMO radar, IEEE Transactions on Signal Processing 55 (8) (2007) 4151-4161.
[4] P. Stoica, J. Li, X. Zhu, Waveform synthesis for diversity-based transmit beampattern design, IEEE Transactions on Signal Processing 56 (6) (2008) 2593-2598.
[5] P. Gong, Z. Shao, G. Tu, Q. Chen, Transmit beampattern design based on convex optimization for MIMO radar systems, Signal Processing 94 (2014) 195-201.
[6] T. Aittomaki, V. Koivunen, Signal covariance matrix optimization for transmit beamforming in MIMO radars, in: Asilomar Conference on Signals, Systems and Computers, 2007, pp. 182-186.
[7] T. Aittomaki, V. Koivunen, Low-complexity method for transmit beamforming in MIMO radars, in: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vol. 2, 2007, pp. 305-308.
[8] D. R. Fuhrmann, G. San Antonio, Transmit beamforming for MIMO radar systems using signal cross-correlation, IEEE Transactions on Aerospace and Electronic Systems 44 (1) (2008) 171-186.
[9] G. Hua, S. Abeysekera, MIMO radar transmit beampattern design with ripple and transition band control, IEEE Transactions on Signal Processing 61 (11) (2013) 2963-2974. doi:10.1109/TSP.2013.2252173.
[10] K. Shadi, F. Behnia, MIMO radar beamforming using orthogonal decomposition of correlation matrix, Circuits, Systems, and Signal Processing (2013) 1-19.
[11] S. Ahmed, J. S. Thompson, Y. R. Petillot, B. Mulgrew, Unconstrained synthesis of covariance matrix for MIMO radar transmit beampattern, IEEE Transactions on Signal Processing 59 (8) (2011) 3837-3849.
[12] H. Xu, J. Wang, J. Yuan, X. Shan, MIMO radar transmit beampattern synthesis via minimizing sidelobe level, Progress In Electromagnetics Research B 53 (2013) 355-371.
[13] H. He, J. Li, P. Stoica, Waveform design for active sensing systems: a computational approach, Cambridge University Press, 2012.
[14] A. Khabbazibasmenj, S. A. Vorobyov, A. Hassanien, Robust adaptive beamforming via estimating steering vector based on semidefinite relaxation, in: Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), IEEE, 2010, pp. 11021106.
[15] A. Hassanien, S. A. Vorobyov, Transmit energy focusing for DOA estimation in MIMO radar with colocated antennas, IEEE Transactions on Signal Processing 59 (6) (2011) 2669-2682.
[16] C. Xiang, D.-Z. Feng, H. Lv, J. He, Y. Cao, Robust adaptive beamforming for MIMO radar, Signal Processing 90 (12) (2010) 3185-3196.
[17] M. Soltanalian, M. M. Naghsh, P. Stoica, A fast algorithm for designing complementary sets of sequences, Signal Processing 93 (7) (2013) 20962102.
[18] A. Hassanien, M. W. Morency, A. Khabbazibasmenj, S. A. Vorobyov, J.-Y. Park, S.-J. Kim, Two-dimensional transmit beamforming for MIMO radar with sparse symmetric arrays, in: IEEE Radar Conference, 2013.
[19] M. Soltanalian, P. Stoica, Designing unimodular codes via quadratic optimization, IEEE Transactions on Signal Processing.
[20] M. Soltanalian, B. Tang, J. Li, P. Stoica, Joint design of the receive filter and transmit sequence for active sensing, IEEE Signal Processing Letters 20 (5) (2013) 423-426.
[21] J. A. Tropp, I. S. Dhillon, R. W. Heath, T. Strohmer, Designing structured tight frames via an alternating projection method, IEEE Transactions on Information Theory 51 (1) (2005) 188-209.
[22] Z.-q. Luo, W.-k. Ma, A.-C. So, Y. Ye, S. Zhang, Semidefinite relaxation of quadratic optimization problems, IEEE Signal Processing Magazine 27 (3) (2010) 20-34.
[23] J. Li, P. Stoica (Eds.), Robust adaptive beamforming, Wiley, New York, 2006.
[24] B. Friedlander, On transmit beamforming for MIMO radar, IEEE Transactions on Aerospace and Electronic Systems 48 (4) (2012) 3376-3388.
[25] A. Srinivas, V. Reddy, Transmit beamforming for colocated MIMO radar, in: International Conference on Signal Processing and Communications (SPCOM), IEEE, Bangalore, India, 2010, pp. 1-5.
[26] W. Rowe, M. Ström, J. Li, P. Stoica, Robust adaptive beamforming for MIMO monopulse radar, in: SPIE Defense, Security, and Sensing, International Society for Optics and Photonics, Baltimore, Maryland, USA, 2013, pp. 1-15.

