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On the Randomized Kaczmarz Algorithm
Liang Dai, Mojtaba Soltanalian, and Kristiaan Pelckmans

Abstract—The Randomized Kaczmarz Algorithm is a random-
ized method which aims at solving a consistent system of over de-
termined linear equations. This letter discusses how to find an opti-
mized randomization scheme for this algorithm, which is related to
the question raised by [2]. Illustrative experiments are conducted
to support the findings.

Index Terms—Convex optimization, linear system solver, ran-
domized kaczmarz algorithm.

I. PROBLEM STATEMENT

I N THIS letter, we discuss the Kaczmarz Algorithm (KA)
[4], in particular the Randomized Kaczmarz Algorithm

(RKA) [1], to find the unknown vector of the following
set of consistent linear equations:

(1)

where matrix , is of full column rank, and
. Since [4], the KA has been applied to different fields

and many new developments are reported. For instance, in [6],
the author study the RKA when applied to the case of the linear
systems are inconsistent. In [5], RKA is applied to the Com-
puter Tomography. In [7], the authors present a method to ac-
celerate the convergence of the RKA with the application of the
Johnson-Lindenstrauss Lemma. In [8], the authors analyze the
almost sure convergence of the RKA when proper stochastic
properties of matrix are introduced. In [9], the authors pre-
sented a practically more efficient approach to solve the linear
systems by projecting to different blocks of rows of , and a
randomization technique is applied to find a good partition of
the rows.
The KA can be described as follows. Let us define the hyper-

plane as:

where the -th row of is denoted as and the -th element
of is denoted as . Geometrically, the solution of (1) can be
thought as the intersection of all hyperplanes , and the
KA seeks to find the solution by successively projecting to the
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Fig. 1. A geometrical interpretation of the algorithm. Here, and ,
and the solution to is represented by the point . We can see that by
this sequence of projections, converges to the solution.

hyperplanes from an initial approximation . The process is
mathematically written as

(2)

where . Here we use the Matlab conven-
tion to denote themodulus after the division operation.
Fig. 1 illustrates the algorithm in a low dimensional case.
The key difference between the RKA and the KA is that

RKA chooses the rows following a specified probability distri-
bution. More precisely, the probability for selecting is given

as . Note that this probability is proportional to the square
of the vector norm.
Although the KA is simple to state, its rate of convergence is

still not completely explored. While for the RKA, with the pre-
described choice of the probability distribution, the following
convergence result is set up in [1]:

(3)

in which , and with concerning the
random choices of rows in the RKA.
However, it is argued in [2] that ‘Assigning probabilities cor-

responding to the row norms is in general certainly not optimal’.
In the follows, we will try to find an optimized probability dis-
tribution for selecting the rows from , so that a better perfor-
mance can be obtained. The distribution vector is derived by
minimizing an upper bound to the convergence rate which can
be obtained by solving a convex optimization problem.
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This letter is organized as follows. The next section discusses
themain results; In Section III, we discuss how to approximately
solve the arising Semi-Definite-Programming (SDP) problem
with smaller computational cost; In Section IV, illustrative ex-
periments will be conducted to verify the findings; Finally, we
draw some conclusions in Section V.

II. OPTIMIZED RKA

In the following, for convenience of discussion, we will in-
troduce a new matrix . Let denote the -th row
of , which is defined as

(4)

i.e. every row of the matrix is a normalized version of the
corresponding row of matrix .
Let be a probability distribution vector (i.e. ,

) for selecting the rows in the RKA method and let
denote the th element of .
Assume that currently we have , and based on ,

the next approximation is given by (2), in which the index
is chosen randomly according to . By the property of the
projection operation, we have that

(5)

in which denotes the angle between and the selected
, i.e. the normal direction of the chosen hyperplane.
Based on the previous formula, we have that

(6)

in which denotes the expectation operator conditioned
on . It follows that:

(7)

and

(8)

in which denotes the angle between and .
Based on the relations in (6), (7) and (8), we have that

(9)

and

(10)

By iterating the relations given in (9) and (10), the following
results follow.
Theorem 1: We have that

(11)

and

(12)

in which the expectations are taken with respect to all the
random choices of the rows up to time
Remark 1: Note that can be guaranteed if is

a strictly positive vector. This can be proven by a contradic-
tion argument as follows. If , and since
for any and , we have that , i.e.

holds for all . Considering that ,
i.e. , hence can not be orthogonal to the
vectors , and the contradiction happens. Based on this
observation, we can see that exponential convergence in expec-
tation can be obtained by awide range of probability distribution
vectors. This finding extends the result in [1], which only guar-
antees the exponential convergence for a given specific choice
of the probability distribution vector.
According to Theorem 1, in order to get a better performance,

we need to find a probability distribution vector, such that
can be made as small as possible. When the optimized is
obtained, we can also have a lower bound to the convergence
speed of the RKA based on . In the following, we will first
derive a closed form for and , and then introduce a convex
optimization problem to calculate the probability distribution
vector which minimizes .
Notice that

so in order to minimize , equivalently, we can maximize the
following

If we restrict , then we have that

Therefore

where the right hand side equals

Notice that

in which denotes the smallest singular value of the matrix.
The previous discussions can be summarized as:
Theorem 2:

(13)

Similarly, we have that:
Corollary 1:

(14)

in which denotes the maximal singular value of the matrix.
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Notice that minimizing is equivalent to maximizing
, then we can solve the following problem

instead:

(15)

This problem can be rewritten as the following SDP problem,
in which denotes the optimized and denotes the corre-
sponding probability distribution vector:

(16)

After solving the optimization problem of (16), is applied to
the RKA to select the rows. Such a scheme will be abbreviated
as ORKA in the following.
Remark 2: There exist cases such that , i.e. there

exists a vector , such that

i.e. . In such cases, ,
and the optimized probability distribution obtained by solving
(16) is the same as suggested in [1]. It can be verified that when
the columns of are orthogonal and of equal norm, then such
property will hold.
Remark 3: The optimization problem (16) can also be for-

mulated as

(17)

in the sense that and .
Since in (17) is nonnegative, one has that . It is

known that the norm minimization problem is likely to return
sparse solutions [11], which gives that is likely to be sparse. In
the experiment section, we will also illustrate this phenomena.

Next, we discuss the relation between the ORKA and the
RKA. It is obvious that the projection operations in (2) depend
only on the corresponding normal vectors of the hyperplanes

, so we can optimize subject to
the norms of the rows of matrix . The optimization problem is
given as

Define , in which for . Then
the previous optimization problem can be written as

Set and notice the fact that ,
then we can rewrite the previous problem as follows

(18)

It can be observed that this optimization is equivalent to the
problem given by (16).
We conclude this observation in the following theorem.
Theorem 3: The ORKA can do at least as good as the RKA,

in the sense that if we optimize over the norms of rows of
, we obtain the same probability distribution vector as the one
obtained by the ORKA.

III. FURTHER DISCUSSIONS

Note that although the formulation in (16) is convex, it is
still time consuming to solve this SDP optimization problem. In
this section, we will discuss two possibilities to solve it approx-
imately, which can alleviate some of the computational cost.
One approximation of (16) is obtained by relaxing the constraint

by the following linear constraints:

(19)

It is due to the fact that, for two positive semidefinite matrices
, if , then holds for

= . Such relaxation reduces the SDP problem into a
Linear Programming (LP) problem, which is computationally
easier to solve.
In order to get a better relaxation, we introduce another

approximation method which relates to the research of Optimal
Input Design [10]. Notice that , i.e. the
summation of all the singular values of is fixed,
then maximizing means that we want all
the singular values of to be close. This leads us
to consider maximizing the product of the singular values of

, or maximizing the determinant of .
As the function is monotonically increasing, we can opti-
mize the following

(20)

in which denotes the matrix determinant. Optimizing this
quantity subject to the same constraints of (15) boils down to
solve the so-called D-Optimal Design problem. One simple it-
erative algorithm to solve such problem has been suggested in
[12], which is given as

(21)

Here, denotes the estimation at time , and denotes its
-th element. It has been proven in [13] that for this algorithm,

decreases monotonically w.r.t. . We will
make use of such property to approximately solve (15) when



DAI et al.: ON THE RANDOMIZED KACZMARZ ALGORITHM 333

Fig. 2. The curves demonstrate the MSE for different methods. We can see that
the ORKA improves the convergence speed the most; the LPORKAmethod and
the ITERKA method also improve the convergence speed, and the ITEORKA
method improves more than the LPORKA method.

Fig. 3. An illustration of the probability distribution vectors obtained by dif-
ferent methods. Note that there are 68 zero elements of the probability distribu-
tion vector obtained by the ORKA method, which is 34% sparsity of the total
length.

the objective function is replace by (20). More discussions will
be given in next section.

IV. EXPERIMENTS

In this section, we will conduct experiments to illustrate the
efficacy of the presented methods. The setup of our experi-
ment is given as follows. The matrix is first generated by

in Matlab with and , after that,
each row is normalized, and then scaled with a random number
which is uniformly distributed in [0,1]. The reason for gener-
ating as such is that in the first stage, the generated rows of
will have different directions which are uniformly distributed

on the sphere [14]; and in the second stage, different rows
of with be assigned with different norms, which is directly
related to the probability distribution vector chosen in [1]. is
generated by , and is generated as . We

will compare theMean Square Error (MSE) along the projection
path obtained by all these methods, the first is the one suggested
in [1] (abbreviated as RKA), the second is the one obtained by
the SDP optimization given by (16) (abbreviated asORKA) and
the third is the one obtained by the LP approximations given
by (19) (abbreviated as LPORKA), the last is the one obtained
by the iterative method to solve the D-Optimal Design criteria
(abbreviated as ITEORKA). We iterate (21) for 10 times in this
experiment. For eachmethod, we run the experiment 2000 times
to get the averaged performance. The CVX toolbox1 is used to
solve the SDP and LP optimization problems. From the experi-
ment, we can observe that the time for solving the LP problem
in LPORKA is close to the time needed for the 10 iterations of
(21), and the time needed for solving (16) in ORKA is approx-
imately 7 times as them. The experiment results are reported in
Figs. 2 and 3.

V. CONCLUSION

This letter discusses the possibility and methodology to
find a probability distribution vector for selecting the rows of
to result in a better convergence speed of the Randomize

Kaczmarz Algorithm. The lower bound and upper bound for
the convergence speed is derived first. Then an optimized
probability distribution vector is obtained by minimizing the
upper bound, which turns to be given by solving a convex
optimization problem. Properties of the approach are also
discussed along the letter.
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