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ABSTRACT

Unlike multidimensional signals, reconstruction of one di-
mensional signals from their Fourier phase or magnitude is
faced with an inherent dilemma. In this paper, the reconstruc-
tion of 1D Time Division Multiplexing (TDM) signals (which
are sparse in time) is discussed. We will show that such sig-
nals can be uniquely reconstructed from their Fourier phase;
on the other hand, reconstruction from the Fourier magnitude
results in a class of signals. For reconstruction of the men-
tioned signals, we propose a method followed by a modifi-
cation inspired by the Hayes uniqueness theorems for recov-
ery of the 2D signals from their Fourier phase or magnitude.
In contrast to the previous works which consider criterion in
frequency-domain, this work aims to recover the signals us-
ing the knowledge of the non-zero sample locations in time-
domain. Simulation results confirm the performance of the
proposed methods.

Index Terms— TDM signal, signal reconstruction, Fourier
transform phase or magnitude.

1. INTRODUCTION

In the past couple of decades, reconstruction of the signals,
solely from the phase or magnitude of their Fourier trans-
form, has been the topic of extensive research works. Recon-
struction from the magnitude (sometimes referred as phase
retrieval) is required in a number of fields including optical
astronomy, electron microscopy, crystallography and wave-
front sensing. Also applications in antenna and filter design
are available [1]. Importance of the reconstruction from the
phase (known as magnitude retrieval) is revealed in the blind
deconvolution of a mixture of signals in order to extract a de-
sired signal [2]. Other applications are addressed in [3].

In 1982, Hayes Showed that multidimensional signals are
reconstructable using either the phase or the magnitude of
their Fourier transform [4]. He concluded that the reconstruc-
tion from the magnitude would result in a unique equivalence
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class of signals which we will review in section 3. In ad-
dition, besides a constant scaling factor, reconstruction from
the phase results in a unique signal. Unfortunately, these re-
sults are not valid for one dimensional signals; i.e., samples
of Fourier phase or magnitude do not produce a unique 1D
signal (or an equivalence class of 1D signals). Nevertheless, a
number of methods, whether direct or iterative, are proposed
for reconstruction of multidimensional signals [1, 3].

Since only the samples of the Fourier transform are avail-
able in practice, the quality of the reconstructed signal, highly
depends on the precision of the samples. Furthermore, it is
shown that the problem is ill-conditioned for the large se-
quences [3]. Due to the lack of an almost one to one mapping
between the 1D signals and their Fourier phase or magnitude,
extra constraints (in addition to the phase or magnitude in-
formation) are usually considered to uniquely point out the
signal. Common constraints are zero, minimum or maximum
phase criterion [5]. In this paper, unlike the previous common
constraints considered in the frequency-domain, we focus on
the characteristics in the time domain; i.e., we aim to recover
the signals with the knowledge of their non-zero sample loca-
tions in time-domain.

As well as the previous applications, the problem of blind
deconvolution of multi-channel communication signals is
sometimes solved by considering the Fourier phase or mag-
nitude of the mixture [6]. In this paper, theoretic aspects of
the reconstruction of a TDM signal from its Fourier phase or
magnitude is discussed; TDM signals are the transport ele-
ments in most of the communication networks and their spar-
sity is due to the divided access of the users to the resources in
time. The mentioned reconstruction problem arises in cases
where the magnitude or the phase of the Fourier transform of
the signal is either lost or impractical to measure. We employ
the time sparsity of the mentioned class (TDM) of signals to
overcome the inherent reconstruction problem of 1D signals
from the phase or the magnitude of the Fourier transform.

This work has two major parts: In the first part, a transfor-
mation converting the 1D to the 2D Discrete Fourier Trans-
form (DFT) is introduced and their relationship is investi-
gated. In the second part, the primary objective is to use this



relationship to reconstruct the 1D TDM signal. Analysis of
the 1D TDM signal recovery is followed by proposing a rough
direct and an accurate iterative reconstruction algorithm.

2. TRANSFORMATION BETWEEN 1D AND 2D DFTS

In order to relate the �-D DFT to the �-D DFT we define a
transformation that maps a vector to a matrix. That is, for a
given signal ���� of length� and a factorization of� such as
� � ���, we define the��� 2D signal corresponding to
���� by ������ ��� � ���������, where � � �� � ��� and
� � �� � � � �. Also we denote the linear transformation
converting the 1D signal into the 2D form by �������. In
this paper, we represent the Fourier transform of the signals
by uppercase letters; for instance, 	� represents the Fourier
transform of ��:
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and �	 and �� are horizontal and
vertical DFT operators, respectively.
In addition, 	 (the one dimensional DFT of �) is:
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Let �	 be the matrix obtained from �� by taking the DFT of
its rows (�	����). Using the mentioned linear transformation
(����), the relationship between 	 and �	 is given by:

	 ��� �

����
����

�

����
���

������ ���
������

�
�
����������


�

����
����

�	����
�

�
��������
 (3)

Assuming � � �� � 
 with � � 
 � �, we have:
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The above equation indicates a non-uniform sampling over
the continuous Fourier transform of ��. From the basic equa-

tions of an � point DFT
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Applying equations in (5) to all the rows of the matrix �	,
we conclude:
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This yields
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Therefore, for every � � 
 � �, the following linear system
could be defined:�
����
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The above equality provides us with the possibility to di-
rectly obtain 	 from 	�. Now we show the invertibility of
the above transformation. Consider the following sequential
process flow:

	 �� � �� �� �� 	� (9)

The transformation of 	 to � is linear. Therefore, since
������ ��� � ����� � ���, the value of ������ ��� could be
represented linearly by 	 ���:
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. Due to the definition of the 2D DFT

we have:

	 ���� 	 
	� � ��
�� (11)

Therefore, (10) implies the existence of a square matrix
���� that relates 
	� and 
	 by the equation 
	� � � � 
	 .
On the other hand, from the linear system in (8), we conclude
that there exists a square matrix � that satisfies the equation

	 � � � 
	� where ���� is formed by diagonal arrangement

of the matrices����. Since� � ��� exists, all matrices����

are invertible.



3. 1D TDM SIGNAL RECONSTRUCTION

Knowing the phase or magnitude of the Fourier transform of a
1D signal, we wish to reconstruct the original signal. To bene-
fit from the existing reconstruction algorithms for 2D signals
we use the transformation discussed in the previous section
to transform this 1D signal to a 2D signal. To accomplish
1D reconstruction we will first review the theoretical back-
ground for 2D reconstruction of the signals and then describe
our idea.

Suppose we want to reconstruct a �	 � �	 matrix ��� from
the magnitude or phase of a��� DFT-domain matrix 
	��.
Under the following conditions, Hayes theorems guarantee
the uniqueness of the reconstructed signal:
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(12)

As discussed before, reconstruction from Fourier phase re-
sults in a unique signal while reconstruction from the mag-
nitude results in a unique equivalence class of signals. This
equivalence class is defined as follows:
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where � and � are 2D indices. Given a phase or magnitude
matrix 
	��, by adding the lost information (magnitude or
phase respectively), �� (the inverse DFT of 	�) is a � � �

matrix which includes ��� and zero sub-matrices:
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Considering the nature of TDMA systems, TDMs are sig-
nals with constant length frames where a specific part of each
frame is dedicated to a user’s data and values of other indices
are zero. The basic idea is that when � �� acts on ������� it
results in a TDM signal followed by some zeros.

Now we explain, how uniqueness of reconstruction in 2D
case results in the uniqueness in 1D case. Consider the 1D
signal in the 2D form:
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Using equation (4), 
 
	�� represents the phase or magni-
tude of another Fourier transform which is relatively rotated
and its sampling rate is changed in comparison to Fourier
transform of ��. Since the Fourier transform of this signal
is uniquely recoverable, the elements of 	� (which are sam-
ples of 2D Fourier transform of ��) and (as a direct outcome)
the desired signal (�) can be recovered uniquely.

It is clear that TDM signals have some kind of sparsity
in which non-zero elements are gathered in clusters. There-
fore, we obtained the uniqueness in 1D case owing to this
kind of sparsity. Supposing the 2D reconstruction algorithm
to be perfect, due to uniqueness constrains discussed in (12),
following constrains for 1D unique reconstruction will be ob-
tain:

1. For �	 (number of non-zero samples in each frame) and
� (the length of each frame), the constraint inequality
is � � ��	 � �. The concept of time multiplexing sat-
isfies this constraint because only multiplexing of time
between two users is needed.

2. The corresponding constraint for �	� (length of the
TDM signal) and � � � (length of the known DFT
phase or magnitude) is � � ��	 � �. This inequality
is a generalization of the similar constraint in 2D (and
also multidimensional) case; i.e., if the length of the
desired signal is � , for unique reconstruction, we need
�� � � samples of its Fourier phase or magnitude.

It is interesting to notice that because of the predicted ef-
fect of shift in the time-domain signal on its Fourier transform
phase or magnitude, the idea could be used for reconstruction
of all TDM channel signals.

3.1. Proposed Reconstruction Methods

In this subsection we propose a basic and an improved
method for 1D TDM signal reconstruction. Clearly, 
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� is an approximation of 
	��, because by using
zero-order interpolation, we obtain:
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A basic method (which we call it zero-order reconstruc-
tion) is to use this approximation as an input for the 2D recon-
struction algorithm which leads to a rough reconstruction of
the signal. The idea which improved the reconstruction is to
use a mechanism for vanishing phase or magnitude distortion
caused by zero-order interpolation. For the rows of �	 and
its corresponding estimation ��	, we have:
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Therefore 	� can be calculated using these steps: (i) cal-
culate the inverse DFT of the rows of 
	�, (ii) multiply the re-
sulted matrix elements by ����


��

�� and (iii) finally calculate
the DFT of the rows. We call this sequential operation Zero-
Order Correction (ZOC) and the similar operation which lead
from	� to 
	� INVerse ZOC (INV-ZOC). The block diagram
of corrected zero-order method is depicted in figure 1. In this
method, in each iteration, with successive use of INV-ZOC
and ZOC the known phase or magnitude is replaced in its cor-
rect location in frequency-domain. For initial phase or mag-
nitude attribution to 	�, its zero-order estimation 
 
	�� can
be used.
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(a) Random fourier magnitude: SNR=2.3443
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(b) After 5 iterations: SNR=15.5781
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(c) After 10 iterations: SNR=30.6892
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(d) After 15 iterations: SNR=54.6915

Fig. 2. Reconstruction of a random TDM signal (� � ��� � � ��� �	 � �� �	 � �) from its Fourier phase using: (a) a random
Fourier transform magnitude denoted by (�) and (b-d) corrected zero-order method denoted by (�).

Fig. 1. Block diagram of corrected zero-order method

4. SIMULATION RESULTS

In this section, we present some simulation results to validate
the convergence and accuracy of the proposed methods. Since
the signal can be uniquely reconstructed from the phase of the
Fourier transform, experiments are done using phase only re-
construction. For 2D signal reconstruction an internal simple
iterative algorithm is used, however, experiments show that
the overall algorithm achieves adequate results.

An intuitive view of the reconstruction of a random TDM
signal is depicted in figure 2 using the corrected zero-order
method with 
� internal iterations. Also figure 3 plots the
SNR curves resulting from both zero-order and corrected
zero-order methods. It seems, the corrected method has a
great improvement in comparison to the basic method.

5. CONCLUSIONS

A DFT transformation between 1D and 2D spaces is sug-
gested and uniqueness conditions for reconstruction of 1D
TDM signal from its 2D counterpart is obtained. We pro-
vide some methods in which with the usage of these methods
and such a transformation, every 2D signal reconstruction al-
gorithm from phase or magnitude can be used for 1D TDM
signal reconstruction. Experimental results have shown that
the proposed method exhibits good performance from visual
and objective points of view.
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