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Problem Formulation:
Data Modeling

We consider a multi-static pulsed-radar with one transmit-
ter and NV, widely separated receive antennas. The baseband
transmit signal can be formulated as

s(t) =) ano(t—[n—1]Tp) (1)

where ¢(t) is the basic unit-energy transmit pulse, T'p is the
pulse repetition period, /V is the number of transmitted pulses,
and {a, }._, are the deterministic coefficients that are to be
“optimally” determined. The vectora = [a; az ... an]’
1s referred to as the code vector of the radar system.



Problem Formulation:
Data Modeling

® Therefore, the discrete-time signal corresponding to a
certain radar cell for the k" receiver can be described as:

r, = s, +cp + Wi = aza+ pra + wy, (6)

binary hypothesis problem

{HO: r=c+w

(7)
H: r=s+c+w

Dy £ (02 jaa’! + M)~z detection problem
X = Drry
N,
0 2 afDyx;,/|[a" Dyl — M R (U
— = )

Ai = oja’ (0f paa + M) 'a L—1 1+ Ap 11,




From KL-Divergence to
the Design Problem

N

D (F(elHo) | £ (el H)) = 3 log(1 + Ae) — /(1 + A0}
k=1

max Z {log

a,)\k

subject to )\k = oja' (o] jaa" + Mj) 'a

PAR-constrained code design
PAR(a) = max {la,[’}/(Flal3) < ¢
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& The MaMi!  min f@) subjectio c(z) <0

e Majorization Step: Finding p(") (z) such that its minimiza-
tion is simpler than that of f(z), and that p()(z) majorizes

f(z),ie.
pV(z) > f(z), ¥z and p(z!~V) = f(z(=V)  (13)

with 2~ being the value of z at the (I — 1)*" iteration.
e Minimization Step: Solving the optimization problem,

min p)(z) subjectto ¢(z) <0 (14)

to obtain z(V.




The Final Form:
QP@ Each Iteration.
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Iteration  gupiect to max {|a.|?} < ¢ (e/N) (25)

n=1,...,
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QP with PAR Constraint?

max a’Ka
a
subject to max {lan]?} < ¢ (e/N)
lallz = e

5 = [a 1]T, K = MIN—H — J,

N ! — N, [
(Zk:l ¢.’E‘,)Mk 1) —0.5 (Zk:l dlg ))

J = H
05 (30, 4p) 0

> e —> maximum eigenvalue



Power Method-Like lterations

The code vector a at the (I + 1)*" iteration of
MaMi can be obtained from a'P) (at convergence), using the
power method-like iterations [11]:

max ||a(p+1) _ y(») [ (27)
aff—“|‘1}
subjectto max {\a, (P+1)121 < ¢(e/N)

=1,
oDl =

where a(P) represents the vector containing
the first V entries of K aP),



Algorithm: Summary

Table 1. The MaMi Algorithm for maximizing the KL-
divergence with a PAR constraint

Step 0: Initialize a with a random vector in C?V and set the iteration
number [ to 0.

Step 1: Solve the problem in (25) iteratively considering the nearest-
vector problem in (27); setl <— [ + 1.

Step 2: Compute gbg) and d](j).

Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion 1s satisfied,
e.g. [[alT1) —ald) ||y, < ¢ for some € > 0.
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Fig. 1. ROCs of optimally coded and the uncoded systems.
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Fig. 2. Behavior of KL-divergence versus transmit energy e
for the coded and uncoded systems.
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