







9TH 13TH SEPTEMBER

### MAJORIZATION-MINIMIZATION TECHNIQUE FOR MULTI-STATIC RADAR CODE DESIGN

Mohammad Mahdi Naghsh\*+, Mahmoud Modarres-Hashemi<sup>+</sup>, Shahram ShahbazPanahi<sup>×</sup>, Mojtaba Soltanalian<sup>†</sup>, Petre Stoica<sup>†</sup>

<sup>+</sup>ECE Dept., Isfahan University of Technology, Isfahan, Iran

<sup>×</sup> Faculty of Eng. and App. Science, University of Ontario Institute of Technology, ON, Canada

<sup>†</sup>Dept. of Information Technology, Uppsala University, Uppsala, Sweden



## Problem Formulation: Data Modeling

We consider a multi-static pulsed-radar with one transmitter and  $N_r$  widely separated receive antennas. The baseband transmit signal can be formulated as

$$s(t) = \sum_{n=1}^{N} a_n \phi(t - [n-1]T_P)$$
 (1)

where  $\phi(t)$  is the basic unit-energy transmit pulse,  $T_P$  is the pulse repetition period, N is the number of transmitted pulses, and  $\{a_n\}_{n=1}^N$  are the deterministic coefficients that are to be "optimally" determined. The vector  $\mathbf{a} \triangleq [a_1 \ a_2 \ \dots \ a_N]^T$  is referred to as the code vector of the radar system.



# Problem Formulation: Data Modeling

ullet Therefore, the discrete-time signal corresponding to a certain radar cell for the  $k^{th}$  receiver can be described as:

$$\mathbf{r}_k \triangleq \mathbf{s}_k + \mathbf{c}_k + \mathbf{w}_k = \alpha_k \mathbf{a} + \widetilde{\rho}_k \mathbf{a} + \mathbf{w}_k$$
 (6)

binary hypothesis problem

$$\begin{cases}
H_0: & \mathbf{r} = \mathbf{c} + \mathbf{w} \\
H_1: & \mathbf{r} = \mathbf{s} + \mathbf{c} + \mathbf{w}
\end{cases}$$
(7)

$$\mathbf{D}_{k} \triangleq (\sigma_{\mathrm{c},k}^{2} \mathbf{a} \mathbf{a}^{H} + \mathbf{M}_{k})^{-\frac{1}{2}}$$
 $\mathbf{x}_{k} = \mathbf{D}_{k} \mathbf{r}_{k}$ 
 $\theta_{k} \triangleq \mathbf{a}^{H} \mathbf{D}_{k} \mathbf{x}_{k} / \|\mathbf{a}^{H} \mathbf{D}_{k}\|_{2}$ 
 $\lambda_{k} = \sigma_{k}^{2} \mathbf{a}^{H} (\sigma_{\mathrm{c},k}^{2} \mathbf{a} \mathbf{a}^{H} + \mathbf{M}_{k})^{-1} \mathbf{a}$ 

detection problem

$$T = \sum_{k=1}^{N_r} \frac{\lambda_k |\theta_k|^2}{1 + \lambda_k} \underset{\mathcal{H}_1}{\overset{\mathcal{H}_0}{\leqslant}} \eta$$



## From KL-Divergence to the Design Problem

$$\mathcal{D}\left(f(\mathbf{r}|\mathbf{H}_0)\|f(\mathbf{r}|\mathbf{H}_1)\right) = \sum_{k=1}^{N_r} \left\{\log(1+\lambda_k) - \lambda_k/(1+\lambda_k)\right\}$$

$$\max_{\mathbf{a},\lambda_k} \quad \sum_{k=1}^{N_r} \left\{\log(1+\lambda_k) - \lambda_k/(1+\lambda_k)\right\}$$
subject to 
$$\lambda_k = \sigma_k^2 \mathbf{a}^H (\sigma_{c,k}^2 \mathbf{a} \mathbf{a}^H + \mathbf{M}_k)^{-1} \mathbf{a}$$

$$\max_{n=1,\dots,N} \left\{|a_n|^2\right\} \le \zeta\left(e/N\right)$$

$$\|\mathbf{a}\|_2^2 = e,$$
total transmit energy

PAR-constrained code design

$$PAR(\mathbf{a}) = \max_{n} \{|a_n|^2\}/(\frac{1}{N}\|\mathbf{a}\|_2^2) \le \zeta$$



#### & The MaMi!

 $\min_{\mathbf{z}} \ \widetilde{f}(\mathbf{z})$  subject to  $c(\mathbf{z}) \leq 0$ 

• Majorization Step: Finding  $p^{(l)}(\mathbf{z})$  such that its minimization is simpler than that of  $\widetilde{f}(\mathbf{z})$ , and that  $p^{(l)}(\mathbf{z})$  majorizes  $\widetilde{f}(\mathbf{z})$ , i.e.

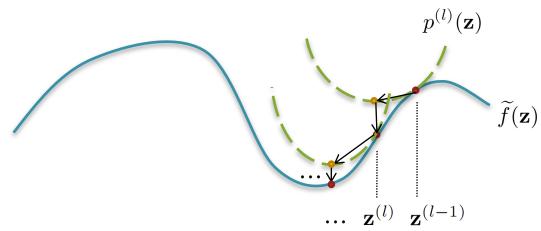
$$p^{(l)}(\mathbf{z}) \ge \widetilde{f}(\mathbf{z}), \quad \forall \mathbf{z} \text{ and } p^{(l)}(\mathbf{z}^{(l-1)}) = \widetilde{f}(\mathbf{z}^{(l-1)})$$
 (13)

with  $\mathbf{z}^{(l-1)}$  being the value of  $\mathbf{z}$  at the  $(l-1)^{th}$  iteration.

• Minimization Step: Solving the optimization problem,

$$\min_{\mathbf{z}} \ p^{(l)}(\mathbf{z}) \quad \text{subject to} \quad c(\mathbf{z}) \le 0 \tag{14}$$

to obtain  $\mathbf{z}^{(l)}$ .





# The Final Form: QP@ Each Iteration.

$$\frac{(l+1)^{th}}{\text{iteration}}$$
:

$$\min_{\mathbf{a}} \quad \mathbf{a}^{H} \left( \sum_{k=1}^{N_{r}} \phi_{k}^{(l)} \mathbf{M}_{k}^{-1} \right) \mathbf{a} - \operatorname{Real} \left( \sum_{k=1}^{N_{r}} \mathbf{a}^{H} \mathbf{d}_{k}^{(l)} \right)$$
subject to
$$\max_{n=1,\dots,N} \left\{ |a_{n}|^{2} \right\} \leq \zeta \left( e/N \right) \tag{25}$$

$$\|\mathbf{a}\|_{2}^{2} = e$$

$$\mathbf{d}_{k}^{(l)} \triangleq (\psi_{k}^{l} / \sqrt{y_{k}^{(l)}}) \mathbf{M}_{k}^{-1} \mathbf{a}^{(l)}$$

$$\phi_{k}^{(l)} \triangleq \frac{\beta_{k}}{1 + \beta_{k} y_{k}^{(l)}} + \beta_{k} (1 + \gamma_{k}) + \frac{\gamma_{k}}{(1 + \lambda_{k}^{(l)})^{2}} \left( \frac{\beta_{k}}{(1 + \beta_{k} y_{k}^{(l)})^{2}} \right)$$

$$\psi_{k}^{(l)} \triangleq \sqrt{y_{k}^{(l)}} \left( \frac{2\beta_{k} (1 + \gamma_{k})}{1 + \beta_{k} y_{k}^{(l)} (1 + \gamma_{k})} + 2\beta_{k} (1 + \gamma_{k}) \right)$$

$$\gamma_{k} = \frac{\sigma_{k}^{2}}{\sigma_{c,k}^{2}}$$

$$\beta_{k} = \sigma_{c,k}^{2}$$



### QP with PAR Constraint?

$$\max_{\mathbf{a}} \quad \widehat{\mathbf{a}}^H \mathbf{K} \, \widehat{\mathbf{a}}$$
 subject to 
$$\max_{n=1,\cdots,N} \{|a_n|^2\} \le \zeta \, (e/N)$$
 
$$\|\mathbf{a}\|_2^2 = e$$

$$\widehat{\mathbf{a}} = [\mathbf{a} \ 1]^T, \mathbf{K} = \mu \mathbf{I}_{N+1} - \mathbf{J},$$

$$\mathbf{J} = \begin{bmatrix} \left( \sum_{k=1}^{N_r} \phi_k^{(l)} \mathbf{M}_k^{-1} \right) & -0.5 \left( \sum_{k=1}^{N_r} \mathbf{d}_k^{(l)} \right) \\ -0.5 \left( \sum_{k=1}^{N_r} \mathbf{d}_k^{(l)} \right)^H & 0 \end{bmatrix}$$

 $\mu > \mu_{max} \longrightarrow \text{maximum eigenvalue}$ 



#### Power Method-Like Iterations

The code vector  $\mathbf{a}$  at the  $(l+1)^{th}$  iteration of MaMi can be obtained from  $\mathbf{a}^{(p)}$  (at convergence), using the power method-like iterations [11]:

$$\max_{\mathbf{a}^{(p+1)}} \quad \|\mathbf{a}^{(p+1)} - \breve{\mathbf{a}}^{(p)}\|$$
subject to
$$\max_{n=1,\dots,N} \{|a_n^{(p+1)}|^2\} \le \zeta(e/N)$$

$$\|\mathbf{a}^{(p+1)}\|_2^2 = e$$

$$(27)$$

where  $\check{\mathbf{a}}^{(p)}$  represents the vector containing the first N entries of  $\mathbf{K}$   $\widehat{\mathbf{a}}^{(p)}$ .



### Algorithm: Summary

### **Table 1**. The MaMi Algorithm for maximizing the KL-divergence with a PAR constraint

**Step 0**: Initialize **a** with a random vector in  $\mathbb{C}^N$  and set the iteration number l to 0.

**Step 1**: Solve the problem in (25) iteratively considering the nearest-vector problem in (27); set  $l \leftarrow l + 1$ .

**Step 2**: Compute  $\phi_k^{(l)}$  and  $\mathbf{d}_k^{(l)}$ .

**Step 3**: Repeat steps 1 and 2 until a pre-defined stop criterion is satisfied, e.g.  $\|\mathbf{a}^{(l+1)} - \mathbf{a}^{(l)}\|_2 \le \xi$  for some  $\xi > 0$ .



### Simulation Results

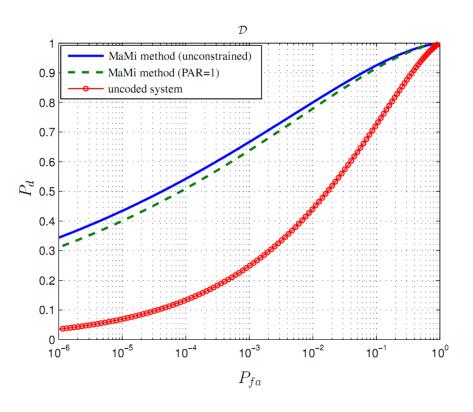
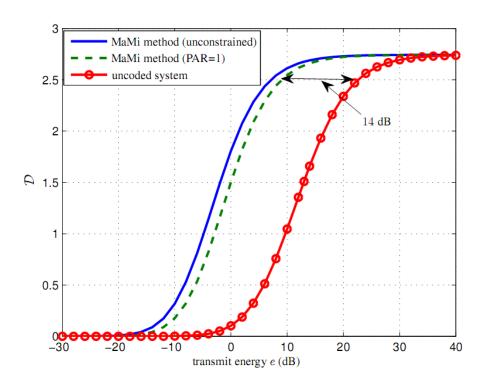


Fig. 1. ROCs of optimally coded and the uncoded systems.



#### Simulation Results



**Fig. 2**. Behavior of KL-divergence versus transmit energy e for the coded and uncoded systems.



## Thank you for your kind attention! -Qs?