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ABSTRACT

In this paper, we study the problem of approaching peak peri-

odic or aperiodic correlation bounds for complex-valued sets

of sequences. In particular, novel algorithms based on alter-

nating projections are devised to approach a given peak peri-

odic or aperiodic correlation bound. Several numerical exam-

ples are presented to assess the tightness of the known corre-

lation bounds as well as to illustrate the effectiveness of the

proposed methods for meeting these bounds.

Index Terms— Autocorrelation, correlation bound, cross-

correlation, peak sidelobe level (PSL), Welch bound.

1. INTRODUCTION

Sequence sets with impulse-like autocorrelation and small

cross-correlation are required in many communication and

active sensing applications. For example, such sets are used

in asynchronous CDMA to separate different users while per-

forming a synchronization operation [1]. As an active sensing

example, such correlation properties of the probing sequences

enable the multi-input multi-output (MIMO) radars to con-

veniently retrieve (via matched filters) the received signals

from the range bin of interest while suppressing the probing

signals backscattered from other range bins [2]-[4].

Let X be a set of m sequences of length n. We assume

that the sequences in X have identical energy1, i.e. ‖x‖22 = σ

for all x ∈ X . Let xu and xv denote two sequences from

the set X . The periodic {cu,v(k)} and aperiodic {ru,v(k)}
cross-correlations of xu and xv are defined as

cu,v(k) =

n∑

l=1

xu(l)x
∗
v(l + k)mod n, (1)

ru,v(k) =

n−k∑

l=1

xu(l)x
∗
v(l + k) = r∗v,u(−k), (2)
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1For the sake of generality, an energy of σ is considered for sequences

throughout the paper. We note that the typical values of σ suggested in the

literature are σ = 1 for inner-product bounds, and σ = n for correlation

bounds. However, one can easily verify that using different values of σ leads

to nothing but a scaling of the inner-product or correlation bounds.

for 0 ≤ k ≤ (n− 1). The periodic and aperiodic autocorrela-

tions of any xu ∈ X are obtained from the above definitions

by using xv = xu. Moreover, the inner product of xu and xv

is given by xH
v xu = cu,v(0) = ru,v(0).

The Welch bounds [5] are the most well-known theoreti-

cal limits on the collective smallness measures of both inner-

products and correlations of sequence sets. A brief presenta-

tion of the correlation peak sidelobe level (PSL) metric (for

both periodic and aperiodic cases) as well as the correspond-

ing Welch bounds can be found in Table 1. The main objective

of this work is to determine how close we can get to the known

peak correlation bounds. In order to achieve this goal, a com-

putational method is devised to approach any given (feasible)

PSL level for both periodic and aperiodic correlations. To the

best of our knowledge, the provided computational method

is the first (non-heuristic) algorithm to tackle the problem of

achieving a given low PSL value.

2. APPROACHING A CORRELATION BOUND

2.1. Problem Formulation

The twisted product [6] of two vectors x and y of length n is

defined as x � yH ,




x(1)y∗(1) x(2)y∗(2) · · · x(n)y∗(n)
x(1)y∗(2) x(2)y∗(3) · · · x(n)y∗(1)

...
...

. . .
...

x(1)y∗(n) x(2)y∗(1) · · · x(n)y∗(n− 1)


 (3)

where x(k) and y(k) are the kth entries of x and y re-

spectively. In a more general context, we define the twisted

product of two matrices X = (x1 x2 · · ·xp) and Y =
(y1 y2 · · ·yq) as

X � Y H ,




x1 � yH
1

...

x1 � yH
q

x2 � yH
1

...

...

xp � yH
q




(4)



Table 1. The correlation peak sidelobe level (PSL) metric and the associated Welch bounds
Metric Metric definitions and Welch lower bounds (W)

Periodic case:

PSLP (X)

PSLP (X) = max
(
{|cu,v(k)|}u 6=v; k ∪ {|cu,u(k)|}u; k 6=0

)
≥

WP
m,n , max

s:
(

n+s−1
s

)

≤mn
σ

(
1

mn−1

[
mn

(

n+s−1
s

) − 1

]) 1
2s

Aperiodic case:

PSLAP (X)

PSLAP (X) = max
(
{|ru,v(k)|}u 6=v; k ∪ {|ru,u(k)|}u; k 6=0

)
≥

WAP
m,n , max

s:
(

2n+s−2
s

)

≤m(2n−1)
σ

(
1

m(2n−1)−1

[
m(2n−1)
(

2n+s−2
s

) − 1

]) 1
2s

where all {xk} and {yl} are of length n. Interestingly, meet-

ing a PSL bound can be formulated by using the concept of

twisted product for both periodic and aperiodic correlations.

Let 1 denote an all one vector/matrix. It should be observed

that X meets a peak periodic correlation bound BP if and

only if the entries of

c = (X � XH)1n×1 (5)

satisfy

{
c(t) = σ t = l(m+ 1)n+ 1, 0 ≤ l ≤ m− 1,
|c(t)| ≤ BP otherwise

(6)

where the first condition corresponds to the energy constraints

on {xk}.

Next note that for any two sequences xu,xv ∈ C
n the pe-

riodic cross-correlations {c̃u,v(k)} of x̃u = (xT
u 01×(n−1))

T

and x̃v = (xT
v 01×(n−1))

T are given by

c̃u,v(k) =

{
ru,v(k) 0 ≤ k ≤ n− 1,
r∗u,v(2n− k − 1) n ≤ k ≤ 2n− 2.

(7)

Consequently, a similar approach as in the case of the pe-

riodic correlation can be used to characterize the sequence

sets meeting a peak aperiodic correlation bound BAP . Let

X̃ =
(
XT

0m×(n−1)

)T
. Now note that X meets BAP if

and only if the entries of

c̃ = (X̃ � X̃H)1(2n−1)×1 (8)

satisfy

{
c̃(t) = σ t = l(m+ 1)(2n− 1) + 1, 0 ≤ l ≤ m− 1,
|c̃(t)| ≤ BAP otherwise.

(9)

2.2. Computational Framework

In the sequel, we devise a computational framework based on

alternating projections to approach the given bounds BP and

BAP . The case of approaching a periodic PSL bound will be

discussed in detail. However, the generalization of the ideas

to the aperiodic case is straightforward.

• The Periodic Case: Consider the convex set ΓP
n,m of all

matrices Z for which the entries of c = Z1n×1 satisfy the

conditions in (6). Furthermore, consider the set

ΛP
n,m =

{
Z | Z = X � XH , X ∈ C

n×m
}
. (10)

Let ΨP
m,n(B

P) denote the sequence sets with a peak periodic

correlation equal to BP . As there exists a one-to-one mapping

between the two sets ΨP
m,n(B

P) and ΓP
n,m ∩ ΛP

n,m, a natural

approach to find the elements of ΨP
m,n(B

P) is to employ al-

ternating projections onto the two sets ΓP
n,m and ΛP

n,m.

Let vec(X) = (xT
1 xT

2 · · ·xT
m)T . Note that, as all the

entries of X � XH occur in vec(X) vecH(X) exactly

once, there exists a unique re-ordering function that maps

the two matrices to each other; more concretely, there exists

G : Cm2n×n → C
mn×mn such that

G(X � XH) = vec(X) vecH(X) (11)

for all X ∈ C
n×m, and also G−1 exists. As a result, the

Frobenius norm projection ZΛ
⊥ of any Z ∈ C

m2n×n on ΛP
n,m

can be obtained as the solution to the optimization problem

min
X⊥,ZΛ

⊥

‖Z −ZΛ
⊥‖F (12)

s.t. ZΛ
⊥ = X⊥ � XH

⊥

whose objective function may be recast as:

‖Z −ZΛ
⊥‖F = ‖Z −X⊥ � XH

⊥ ‖F (13)

= ‖G(Z)− vec(X⊥) vec
H(X⊥)‖F .

Let η(.) and v(.) represent the dominant eigenvalue, and re-

spectively, the corresponding eigenvector of the Hermitian

matrix argument. By using (13), the minimizer X⊥ of (12)

can be obtained as vec(X⊥) =
√

η(G(Z))v (G(Z)) , which

yields

ZΛ
⊥ = X⊥ � XH

⊥ (14)

as the optimal projection on ΛP
n,m.

Next, we study the Frobenius norm projection ZΓ
⊥ of any

Z ∈ C
m2n×n on ΓP

n,m. Such a projection can be obtained by

solving the optimization problem

min
ZΓ

⊥
∈ΓP

n,m

‖Z −ZΓ
⊥‖F . (15)



We note that the condition (6) on ZΓ
⊥ ∈ ΓP

n,m is row-wise.

Let zT and zT
⊥ represent two generic rows of Z and ZΓ

⊥, re-

spectively. Therefore, we consider the nearest-vector problem

min
z⊥

‖z − z⊥‖2 (16)

in which z⊥ is constrained either to have a given sum σ, i.e.

zT
⊥1 = σ, or the absolute value of its sum is supposed to be

upper bounded by BP , viz. |zT
⊥1| ≤ BP .

To tackle the above nearest-vector problem, assume

zT
1 = α1e

jθ1 and zT
⊥1 = α2e

jθ2 for some α1, α2 ∈ R+,

θ1, θ2 ∈ [0, 2π), and let zd = z − z⊥. By using the Cauchy-

Schwarz inequality we have that

‖zd‖
2
2 ≥

|zT
d 1|

2

‖1‖22
=

|α1e
jθ1 − α2e

jθ2 |2

n
(17)

where the equality is attained if and only if all the entries of

zd are identical:

zd(k) =
α1e

jθ1 − α2e
jθ2

n
, 1 ≤ k ≤ n. (18)

Moreover, the equality in (17) can be achieved for any given

α2 and θ2 via (18). As a result, to minimize ‖z − z⊥‖2 =
‖zd‖2, it is sufficient to minimize |α1e

jθ1 − α2e
jθ2 |2 with

respect to α2 and θ2. For any fixed α2, the minimizer θ2 of

the latter criterion is given by θ2 = θ1. On the other hand,

the optimal α2 depends on the constraint imposed on z⊥. In

particular, for the constraint zT
⊥1 = σ we have the optimum

α2 = σ. In the case of the constraint |zT
⊥1| ≤ BP , the mini-

mizer α2 is given by

α2 =

{
α1 α1 ≤ BP ,

BP α1 > BP .
(19)

Table 2 summarizes the steps of the proposed algorithm for

approaching a given periodic PSL bound.

• The Aperiodic Case: To approach a given aperiodic

PSL bound BAP , similar (modified) alternating projections

can be devised. We consider the set

ΛAP
n,m =

{
Z | Z = X̃ � X̃H , X̃ =

(
X

0(n−1)×m

)
(20)

,X ∈ C
n×m

}
.

Let us define the masking matrix M as

M =




M ′ · · · M ′

...
. . .

...

M ′ · · · M ′


 , (21)

M ′
(2n−1)×(2n−1) =

(
1n×n 0

0 0

)
,

and in addition consider the convex set ΓAP
n,m of all matrices

Z such that

Z ⊙ G−1(M) = Z, (22)

Table 2. The Proposed Algorithm for approaching a given

periodic/aperiodic PSL bound

Step 0: Initialize X with a random matrix in Cn×m;

(i) in the periodic case: set ZΛ
⊥ = X � X

H ,

(ii) in the aperiodic case: set ZΛ
⊥ = X̃ � X̃

H .

Step 1: Compute the optimal projection Z
Γ
⊥ of ZΛ

⊥,

(i) in the periodic case: find Z
Γ
⊥ ∈ ΓP

n,m by using (15)-(19).

(ii) in the aperiodic case: find Z
Γ
⊥ ∈ ΓAP

n,m by using (24).

Step 2: Compute the optimal projection Z
Λ
⊥ of ZΓ

⊥,

(i) in the periodic case: find Z
Λ
⊥ ∈ ΛP

n,m by using (14).

(ii) in the aperiodic case: find Z
Λ
⊥ ∈ ΛAP

n,m by using (23).

Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion is satisfied,

e.g. ‖ZΛ
⊥ − Z

Γ
⊥‖F ≤ ξ, or ‖X

(t+1)
⊥

− X
(t)
⊥

‖F ≤ ξ, for some ξ > 0,

in which t denotes the iteration number.

where G is as defined in the periodic case but with dimension

parameter 2n − 1 in lieu of n, and for which the entries of

c̃ = Z1(2n−1)×1 satisfy the conditions in (9).

We note that the projections onto the two sets ΓAP
n,m and

ΛAP
n,m can be obtained in (almost) the same manner as in the

periodic case. Particularly, the Frobenius norm projection ZΛ
⊥

of any Z ∈ C
m2(2n−1)×(2n−1) on ΛAP

n,m can be obtained as

ZΛ
⊥ = X̃⊥ � X̃H

⊥ (23)

where vec(X⊥) =
√
η(M(G(Z))) v (M(G(Z))), with the

operator M(.) collecting the entries of the matrix argument

corresponding to the non-zero entries of the masking matrix

M . To compute the Frobenius norm projection ZΓ
⊥ of any

Z ∈ C
m2(2n−1)×(2n−1) on ΓAP

n,m, the variables α2 and θ2 can

be obtained using the same approach as for ΓP
n,m but with

zd(k) =

{
α1e

jθ1−α2e
jθ2

|µT 1|
k ∈ supp(µ),

0 otherwise
(24)

where µ represents the corresponding row in G−1(M), and

supp(.) denotes the set of non-zero locations in the vector ar-

gument.

Finally, the steps of the proposed alternating projections,

in the periodic and aperiodic cases, are summarized in Ta-

ble 2. Note that in both cases, each iteration of the algorithms

has a O(m2n2)-complexity. The obtained complexity mea-

sure is a direct consequence of the generally large cardinality

(i.e. mn) of the data that the algorithms should handle as well

as the hardness of the original problem (with m2n constraints,

which should be compared to the fewer constraints (i.e. m2)

for achieving a given peak inner-product level).

3. NUMERICAL RESULTS AND DISCUSSION

Both periodic and aperiodic correlations are employed in ac-

tive sensing and communication applications. In particular,

sequences with good periodic correlation are typically used



Fig. 1. PSLP of the obtained sequence sets by using the algorithm in Table 2 (the periodic case), versus sequence length n,

and for different set cardinalities m. Gold, Kasami, and Weil sequence sets are used to initialize the algorithm when they exist

(pinpointed by arrows).

Fig. 2. PSLAP of the obtained sequence sets by using the algorithm in Table 2 (aperiodic case), versus sequence length n, and

for different set cardinalities m.

when each sequence can be transmitted several times in suc-

cession, whereas sequences with good aperiodic correlation

are required when each sequence can be used only once . As

a result, we consider numerical investigations of the proposed

method in both periodic and aperiodic cases. We employ the

suggested algorithm in Table 2 for different values of (n,m).
The aim of these examples will be to approach the Welch

bounds in Table 1.

Fig. 1 shows the peak periodic correlation (PSLP ) val-

ues corresponding to the initializations and the obtained se-

quence sets along with the bound WP
m,n, for m ∈ {2, 3, 4}

and n ∈ {2, 4, 5, 7, 8, 10, 12, 15, 16}. Note that due to the

non-convexity of Λn,m, the problem is multi-modal (i.e. it

may have many convergence points), and hence, many ran-

dom initial points might be needed to achieve a certain low

peak correlation level. In this example, different random ini-

tializations are considered for 40 experiments, and the resul-

tant PSLP of the proposed algorithm represents the best out-

come of the 40 experiments. To examine the sensitivity to

choosing the initial set, well-known sequence sets including

Gold [18], Kasami [19], and Weil [20] are used as initializing

sets for the (m,n) values for which they exist. Such cases

are also reported in Fig. 1. It can be observed that WP
m,n

can be practically met in several cases, e.g. for all n with

m = 2. Furthermore, a considerable decrease of the peak pe-

riodic correlation obtained by using the proposed algorithm

can be observed in all cases (even for the cases with well-

known sets as initialization).

We conduct a similar numerical investigation in the aperi-

odic case. Fig. 2 illustrates the achieved PSLAP values by us-

ing the proposed alternating projections along with the Welch

bound. The bound is met for the case (m,n) = (2, 2). For

other cases, in which the aperiodic bound cannot be met ex-

actly, significant reductions in the obtained PSLAP can be

observed compared to the PSLAP values corresponding to the

initial sets.
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