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ABSTRACT

Costas arrays are mainly known as a certain type of optimized

time-frequency coding pattern for sonar and radar. In order to

fulfill the need for effective computational approaches to find

Costas arrays, in this paper, we propose a sparse formulation

of the Costas array search problem. The new sparse repre-

sentation can pave the way for using an extensive number of

methods offered by the sparse signal recovery literature. It

is further shown that Costas arrays can be obtained using an

equivalent quadratic program with linear constraints. A nu-

merical approach is devised and used to illustrate the perfor-

mance of the proposed formulations.

Index Terms— Code design, Costas arrays, frequency

hopping, radar codes, sparsity

1. INTRODUCTION

Costas arrays have been studied in engineering and mathe-

matics for around half a century— however, many related

fundamental questions are not yet answered [1][2]. The defi-

nition of a Costas array is fairly straightforward:

Definition 1. A Costas array is a set of n points lying on the

squares of an n×n checkerboard, such that each row and col-

umn contains only one point, and all of the
(
n

2

)
displacement

vectors1 between each pair of points are distinct.

Fig. 1 shows an example of a Costas array of size 8 ×
8. Costas arrays are mainly known as time-frequency coding

patterns that optimize the performance of sonars and radars.

They have also shown promising applications in data hiding

and mobile radio [3][4]. The usefulness of Costas arrays in

sonar and radar applications can be seen more clearly by the

following alternative definition of Costas arrays:

Definition 2. A permutation matrix P of size n×n represents

a Costas array if and only if for any pair of integers (r, s) 6=
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1Note that the points in the checkerboard can be associated with position

vectors (initiated from an arbitrary origin). Then the displacement vectors

are the differences of such position vectors.

Fig. 1. A Costas array of size 8× 8.

(0, 0), |r| ≤ n, |s| ≤ n, the two-dimensional (2D) correlation

function c(r, s) associated with P satisfies

c(r, s) =

n∑

k=1

n∑

l=1

P (k, l)P (k + r, l + s) ≤ 1 (1)

where P is extended with zeros when required.

Note that the low 2D correlation character described in (1)

leads to a low ambiguity in detection of moving targets. Due

to their importance, several analytical construction methods

have been proposed for Costas arrays [5]. Thanks to such

constructions, Costas arrays are known for an infinite number

of orders n. On the other hand, it is not yet known whether

Costas arrays exist for all n.

Using computer clusters, the enumeration of Costas ar-

rays has been accomplished via brute-force computational

methods for all n ≤ 29 [6]. However, the size of the search

space is reported to grow exponentially with n, which makes

the problem of finding Costas arrays impossible to tackle via

exhaustive search when n grows large [7]. With such issues

in mind, in this paper (Sections 2 and 3), we propose a sparse

formulation of the Costas array search problem:

• We believe that the sparse formulation introduced in

this paper lays the ground for using the many meth-

ods offered by the extensive literature on sparse signal

recovery— which can lead to more effective numerical

approaches than the exahustive search.



• To the best of our knowledge, this work is the first to

cast the Costas array search problem as an optimization

problem, particularly in a form which is well-known in

the signal processing community.

Based on the proposed formulation, and in order to show its

performance, a numerical approach is devised and used to find

a Costas array in Section 4.

Notation: We use bold lowercase letters for vectors and

bold uppercase letters for matrices. (·)T denotes the vec-

tor/matrix transpose. 1 and 0 are the all-one and all-zero vec-

tors/matrices. ek and ẽk are the kth standard basis vectors

in R
n, and R

n2

, respectively. vec(X) is a vector obtained by

stacking the columns of X successively. ‖x‖n or the ln-norm

of the vector x is defined as (
∑

k |x(k)|n)
1
n where {x(k)}

are the entries of x; for n = 0, ‖x‖0 is given by the number

of nonzero entries of x. Finally, the symbol ⊗ stands for the

Kronecker product of matrices.

2. COSTAS ARRAYS: A LINEAR FORMULATION

In this section, we introduce a linear interpretation of the

Costas array constraints. Particularly, we show that such con-

straints can be expressed as an under-determined linear sys-

tem of equations along with some linear inequalities. To this

end, we propose the following geometrically equivalent defi-

nition of Costas arrays:

Definition 3. A Costas array is a set of n points lying on the

squares of an n× n checkerboard, such that (i) each row and

column contains only one point (permutation property), and

that (ii) no four points form a parallelogram; moreover no

three equidistant points occur on the same line (distinctness

property).

Let the binary matrix Xn×n (with entries in {0, 1}) de-

note a Costas array, and let x = vec(X). Assuming binary

variables, the permutation property in Definition 3 can be ex-

pressed by the linear equality constraint:

Ax = 12n×1 , b (2)

where

A2n×n2 =

(
O1 O2 · · · On

I I · · · I

)
(3)

and Ok = ek ⊗ 1
T
n . We further note that the distinctness

property in Definition 3 can be formulated using a num-

ber of linear inequalities. Suppose that the location indices

{i1, i2, i3, i4} in x represent the vertices of a parallelogram

in X . To avoid forming such a parallelogram, it is sufficient

to add the inequality

x(i1) + x(i2) + x(i3) + x(i4) ≤ 3, (4)

i.e. (ẽi1 + ẽi2 + ẽi3 + ẽi4)
T
x ≤ 3

Table 1. An algorithmic construction of (A′, b′)

Step 1: For all triples (i1, i2, i3) (not on the same row/column) sorted

by their row number in the checkerboard do:

Step 1-1: If i2 is in the middle of i1 and i3,

Step 1-1-1: Add the row vector (ẽi1 + ẽi2 + ẽi3 )
T at the bottom of

A
′, and 2 at the bottom of b′.

Step 1-2: Else,

Step 1-2-1: Find the 4th vertices {i4} corresponding to the two parallel-

ograms that can be formed using the available vertices (i1, i2, i3) with

i1 as the vertex with the minimum row number.

Step 1-2-2: For any of the two possible locations {i4} which occur in-

side the checkerboard, include the row vector (ẽi1 + ẽi2 + ẽi3 + ẽi4 )
T

at the bottom of A′, and 3 at the bottom of b′.

to the constraint set. Furthermore, any pattern of equidistant

points on the same line, represented by the location indices

{i1, i2, i3} in x, can be avoided by the linear inequality con-

straint

x(i1) + x(i2) + x(i3) ≤ 2, (5)

i.e. (ẽi1 + ẽi2 + ẽi3)
T
x ≤ 2.

By including the linear constraints associated with all possible

parallelograms and three equidistant points on a same line in

the checkerboard, one can formulate the distinctness property

in the following unified form:

A
′
x ≤ b

′. (6)

Note that although A
′ and b

′ can be hardly formulated in an

explicit form, they are easy to generate algorithmically. An

example of such an algorithmic construction of (A′, b′) is

given in Table 1. Finally, a binary vector xn2×1 represents

a Costas array if and only if it is a solution to the linear sys-

tem
{

Ax = b,
A

′
x ≤ b

′.
(7)

As indicated earlier, the linear system in (7) contains 2n
equality constraints. We refer the interested reader to the Ap-

pendix for enumeration results regarding the inequality con-

straints in (7).

3. SPARSE REPRESENTATION OF COSTAS

ARRAYS

It is interesting to observe that the binary constraint on x can

be omitted if one seeks for the sparsest solution of the linear

system in (7). Consider the following optimization problem:

P0 : min
x∈Rn2

‖x‖0 (8)

s.t.





Ax = b,
A

′
x ≤ b

′,
0 ≤ x ≤ 1

(9)



Theorem 1. Every solution of P0 represents a Costas array,

and vice versa.

Proof: According to the equality constraint in (9), every

solution of P0 has at least one nonzero element in the location

indices corresponding to each row/column of the checker-

board. This implies that every solution x to P0 has an l0-norm

of at least n. On the other hand, if ‖x‖0 = n, the satisfac-

tion of the equality constraint in (9) implies that x denotes

a permutation matrix, and as a result, the satisfaction of the

inequality constraint in (9) shows that x represents a Costas

array. Moreover, any x representing a Costas array is a fea-

sible solution to the linear system in (9) with the minimum

l0-norm, i.e. n. �

Note that the sparse formulation above paves the way for

employing many existing, as well as emerging sparse signal

recovery techniques in the literature. The recovery of sparse

signals subject to linear constraints has been studied widely in

the past decade, see [8]-[14] and the references therein. We

note that as the l1-norm of any feasible x ≥ 0 of P0 is con-

stant, it is not possible to employ the convex l1 minimization

alternative of P0, although it is a common practice in sparse

signal recovery [11]. From a geometrical point of view, the

solutions to P0, i.e. the sparsest solutions to (7), have the

maximum Euclidean distance from the origin. In other words,

P0 is equivalent to

P2 : max
x∈Rn2

‖x‖2 (10)

s.t.





Ax = b,
A

′
x ≤ b

′,
0 ≤ x ≤ 1

(11)

To observe this fact, we recall that the equality constraint

Ax = b implies a constant sum of entries corresponding to

each row/column of X . Using such a constant-sum property,

the connection between the solutions of P0 and P2 can be

studied in a constructive way. Let x(k) ≥ x(l), and α > 0.

Then it is easy to verify that

(x(k) + α)2 + (x(l)− α)2 > (x(k))2 + (x(l))2. (12)

The latter inequality implies that the l2-norm of x can be in-

creased monotonically by decreasing the small elements of x

and increasing the large elements of x at the same rate— i.e.

enhancing sparsity while increasing the l2-norm. The latter

result can be applied to a feasible x of P0, meaning that a

solution x of P0 has the minimal l0-norm (i.e. n) and at the

same time the maximal l2-norm (i.e.
√
n) among all feasible

candidates in the search space of P0.

We end this section with two remarks. First of all, the lin-

ear system in (9) and (11) describes a convex polytope, which

we call the Costas ball in the sequel. Based on the above dis-

cussion, Costas arrays can be viewed as the farthest subset (in

Euclidean sense) of vertices of the Costas ball from the origin,

Fig. 2. An intuitive illustration of the Costas ball and the

Costas arrays ({xk}, shown by the blue dots) possessing max-

imal l2-norm. Costas arrays intersect with the n2-sphere Bn2 .

that intersect with the n2-sphere

Bn2 = {x ∈ R
n2

: ‖x‖22 = n}. (13)

This observation is illustrated in Fig. 2. Second, both op-

timization problems P0 and P2 are NP-hard in general; see

[14], and [15],[16]. Nevertheless, such new formulations

might be employed to devise numerical methods that can

handle the Costas array search problems more effectively

than the brute-force methods.

4. A NUMERICAL APPROACH— ALONG WITH AN

ILLUSTRATIVE EXAMPLE

In order to show the potential of the proposed sparse formu-

lation, we consider a reweighted iterative approach to tackle

P2. More precisely, starting from a random positive weight

vector w(1) ∈ R
n2

, we obtain the variable x(k) (at the kth

iteration) using the linear program:

P2 − reweighted : max
x

(k)∈Rn2
wT (k)x(k) (14)

s.t.





Ax(k) = b,
A

′
x(k) ≤ b

′,
0 ≤ x(k) ≤ 1

(15)

where the weight vector is updated as

w
(k+1) = x

(k) + ǫ, k ≥ 1 (16)

and ǫ is a random vector in R
n2

consisting of elements with

i.i.d. standard Gaussian distribution N (0, σ). Note that P2 −
reweighted aims to (approximately) maximize the l2-norm,

while it also provides a randomized leverage to skip the local



optima of P2 (corresponding to some vertices of the Costas

ball with an l2-norm less than
√
n). We stop the iterations

when x becomes binary, and hence will represent a Costas

array.

We note that, the reweighted method in (14)-(16) typi-

cally requires more iterations until convergence as n grows

large. As an example, we consider using the proposed iter-

ative approach to find a Costas array of size 8 × 8; a size

which enables us to present the results through iterations. Due

to the binary (i.e. 0/1) nature of the ultimate results, we

use a standard deviation σ of 0.5. The resultant 2D patterns

X
(k) = vec−1

(
x(k)

)
are shown in Fig. 3. In this example,

the algorithm finds a Costas array after 6 iterations. It is worth

observing that the 2D patterns obtained from successive iter-

ations appear to be rather correlated (i.e. similar); at the same

time, the obtained Costas array looks rather different from the

pattern obtained at the end of the first iteration.

A. APPENDIX: THE NUMBER OF INEQUALITY

CONSTRAINTS IN (7)

We begin by observing that the number of distinct (k, l)-
vectors2 in an n × n checkerboard is given by (n − |k| +
1)(n − |l| + 1). Note that (i) the pattern described by three

equidistant points on the same line is also a parallelogram

whose two vertices share the same location. Moreover, (ii)

each parallelogram including a (k, l)-edge is uniquely deter-

mined by placing two (k, l) vectors in the checkerboard. The

number of all parallelograms including a (k, l)-edge in the

n× n checkerboard is thus given by

(
(n− |k|+ 1)(n− |l|+ 1)

2

)
. (17)

Now we should exclude the parallelograms which have two

vertices on the same row/column, except those for which the

two mentioned vertices are exactly at the same location. The

number of such parallelograms with two vertices on the same

row is given by the number of (t, 2l)-vectors with −(n−2|l|+
2) ≤ t ≤ n. Similarly, the number of such parallelograms

with two vertices on the same column is given by the number

of (2k, t)-vectors with −(n − 2|k| + 2) ≤ t ≤ n. On the

other hand, the number of parallelograms with a (k, l)-edge

and two vertices sharing the same location is given by the

number of (2k, 2l)-vectors in the checkerboard. In sum, the

number of parallelograms including a (k, l)-edge for which

no two vertices occur on the same row/column unless they

2i.e. the displacement vectors that map a point location (i, j) to the loca-

tion (i+ k, j + l) in the checkerboard.

share a same location is equal to

fk,l =

(
(n− |k|+ 1)(n− |l|+ 1)

2

)
(18)

−
n∑

t=−(n−2|l|+2)

(n− 2|l|+ 1)(n− |t|+ 1)

−
n∑

t=−(n−2|k|+2)

(n− 2|k|+ 1)(n− |t|+ 1)

+2 (n− 2|k|+ 1)(n− 2|l|+ 1)

We note that by considering all 1 ≤ k ≤ n− 1 and 1 ≤ |l| ≤
n − 1, each parallelogram (except those with two vertices in

the same location) will be counted two times in {fk,l}. There-

fore, the number of all parallelograms (corresponding to the

linear inequality constraints) becomes

Tn =
1

2

n−1∑

k=1

∑

1≤|l|≤n−1

fk,l (19)

+
1

2

n−1∑

k=1

∑

1≤|l|≤n−1

(n− 2|k|+ 1)(n− 2|l|+ 1).

Finally, it is worthwhile to observe that fk,l = O(n4) which

implies that Tn = O(n6) according to (19).
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