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Abstract—In this paper, we study the problem of meeting peak
periodic or aperiodic correlation bounds for complex-valued sets
of sequences. To this end, the Welch, Levenstein, and Exponential
bounds on the peak inner-product of sequence sets are considered
and used to provide compound peak correlation bounds in both pe-
riodic and aperiodic cases. The peak aperiodic correlation bound
is further improved by using the intrinsic dimension deficiencies
associated with its formulation. In comparison to the compound
bound, the new aperiodic bound contributes an improvement of
more than 35% for some specific values of the sequence length
and set cardinality . We study the tightness of the provided

bounds by using both analytical and computational tools. In partic-
ular, novel algorithms based on alternating projections are devised
to approach a given peak periodic or aperiodic correlation bound.
Several numerical examples are presented to assess the tightness
of the provided correlation bounds as well as to illustrate the effec-
tiveness of the proposed methods for meeting these bounds.

Index Terms—Autocorrelation, correlation bound, cross-corre-
lation, peak sidelobe level (PSL), sequence set, Welch bound.

I. INTRODUCTION

S EQUENCE sets with impulse-like autocorrelation and
small cross-correlation are required in many communica-

tion and active sensing applications. For example, such sets are
used in asynchronous CDMA to separate different users while
performing a synchronization operation at the same time [1].
As an active sensing example, such correlation properties of the
probing sequences enable the multi-input multi-output (MIMO)
radars to conveniently retrieve (via matched filters) the received
signals from the range bin of interest while suppressing the
probing signals backscattered from other range bins [2].
Let be a set of sequences of length . We assume that

the sequences in have identical energy1, i.e., for all
. Let and denote two sequences from the set . The
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1For the sake of generality, an energy of is considered for sequences
throughout the paper. We note that the typical values of suggested in the
literature are for inner-product bounds, and for correlation
bounds. However, one can easily verify that using different values of leads
to nothing but a scaling of the inner-product or correlation bounds.

periodic and aperiodic cross-correlations
of and are defined as

(1)

(2)

for . The periodic and aperiodic autocorrela-
tions of any are obtained from the above definitions
by using . Moreover, the inner product of and is
given by .
The Welch bounds [3] are the most well-known theoretical

limits on the collective smallness measures of both inner-prod-
ucts and correlations of sequence sets. Several such measures
along with the associated Welch lower bounds are summarized
in Table I. Briefly stated, the main objectives of this paper are:
• To update the peak correlation bounds based on the current
sate-of-knowledge on peak inner-product bound, as well
as to propose a scheme for improvement of the aperiodic
correlation bound. The proposed scheme exploits the in-
trinsic low dimensional properties that appear in derivation
of the peak aperiodic bound. The new aperiodic peak side-
lobe level (PSL) bound can be significantly larger than the
previously known aperiodic bound (by more than 35% for
some ).

• To determine how close we can get to the previously
known or improved PSL correlation bounds. In order to
achieve this goal, a computational method is devised to ap-
proach any given (feasible) PSL level for both periodic and
aperiodic correlations. To the best of our knowledge, the
provided computational method is the first (non-heuristic)
algorithm to tackle the problem of achieving a given low
PSL.

The rest of this paper is organized as follows. In Section II, the
relationship between the inner-product and correlation bounds
is studied and employed to provide a derivation of peak cor-
relation bounds. The tightness of the provided bounds along
with an improvement of the aperiodic correlation bound are dis-
cussed in Section III. In Section IV, a general framework is de-
vised to approach a given (periodic or aperiodic) peak corre-
lation bound. Section V is devoted to the numerical examples.
Finally, Section VI concludes the paper.

Notations

We use bold lowercase letters for vectors/sequences and
bold uppercase letters for matrices. , and denote
the vector/matrix transpose, the complex conjugate, and the
Hermitian transpose, respectively. and are the all-one and
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TABLE I
SUMMARY OF INNER-PRODUCT AND CORRELATION SMALLNESS MEASURES ALONG WITH THE ASSOCIATED WELCH LOWER BOUNDS

all-zero vectors/matrices. is the -norm of the vector
defined as where are the entries of
. The Frobenius norm of a matrix (denoted by )

with entries is equal to .

denotes the trace of the matrix . and represent
the dominant eigenvalue and the corresponding eigenvector
of the Hermitian matrix , respectively. The symbol stands
for the Hadamard (element-wise) product of matrices, whereas
stands for the Kronecker product of matrices. is equal

to . denotes the set . For any

, is equal to . , often
read as “ choose ”, is the coefficient of the -term in the
polynomial expansion of the binomial power . Finally,
, , and represent the set of natural, integer, real and

complex numbers, respectively.

II. A STUDY OF THE INNER-PRODUCT AND CORRELATION
BOUNDS

In the following, a study of the currently known inner-product
and correlation bounds is accomplished. The provided back-
ground lays the ground for tightness assessments as well as the
bound improvements suggested in the paper.

A. Inner-Product Bounds

The collective smallness of the inner products of can be
measured by using the peak inner-product level metric:

(3)

as well as the root-mean-square (RMS) inner-product level
metric,

(4)

where clearly . In [3], Welch derived
lower bounds on the above collective smallness measures of the
inner-product levels associated with ; theWelch lower bounds
on and are given (assuming ) by

(5)

and

(6)

Note that both and are zero for .
Knowledge of inner-product bounds is essential to the

derivation of both periodic and aperiodic correlation bounds.
Let where denotes the angle between
the two vectors and . From a geometrical point of view,
the Welch peak inner-product bound provides a lower bound
on the maximum of the angles among the set of
equi-norm vectors in . A direct algebraic derivation of
the inner-product bound (which appears to be simpler than that
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in [3]) is as follows. Let (with ) represent
the matrix whose columns are . Then we have that

(7)

where are the non-zero eigenvalues of . As a result,

(8)

which implies

(9)
As an aside remark, it is straightforward to verify that for
, (7)–(9) yield a trivial lower bound i.e., zero.
Next observe that for any , one can verify that

. However, even though are of
length , they lie in a lower dimensional subspace of . To
see this, we count the number of distinct entries in any general
vector . Note that any entry of is of the form

(10)

where , and . The number
of possible combinations of which satisfy this
same condition is given by Let denote a ma-
trix whose columns are . Based on the above argument,
there exist a semi-unitary matrix and a rank– ma-
trix such that . By using the same
approach as in (7) we have that

(11)

It follows from (11) that

(12)

which yields

(13)

The above dimension reduction scheme, which lies at the core
of the higher order (i.e., with ) Welch bounds, emphasizes
the usefulness of considering hidden dimension deficiencies of
the vector sets. Such dimension deficiencies play a main role in
improving the peak aperiodic correlation bound in Section III-B.
Due to applications in compressive sensing and synchronous

CDMA, meeting the Welch bounds on the inner-products asso-
ciated with sequence sets (also referred to as measurement ma-

trices [4], codebooks [5]–[7], or Grassmannian frames [8] de-
pending on the application) has been studied widely. It is known
that the Welch bound on can be met for many
(see, e.g., [1] and the references therein). An meeting the
Welch bound on is called Welch-bound-equality (WBE)
set [1]. On the other hand, sequence sets meeting the Welch
bound on the peak inner-product level (known as maximum-
Welch-bound-equality (MWBE) sets, see [1]) are hard to obtain
either analytically or numerically. Examples of and some con-
ditions for the existence of MWBE sets for given were
presented in [8], [9]. Particularly, if MWBE sets do not exist2

for in (6), then they do not exist for any [10].
Note that in (6) associated with is equal to .
These facts not only emphasize the importance of the Welch
peak inner-product level bound for but also imply that if
the peak inner-product level of a sequence set meets the Welch
bound (i.e., the Welch bound is tight) then all the inner products
among the sequences in the set have the same absolute value
which is equal to . Furthermore, let the maximum of the
functions in (6) occur for . Then a necessary condition
for the existence of MWBE sets for given is [10]

(14)

It is also known that theWelch inner-product bound can be tight
only if [9].
Two other bounds on were derived in the literature

which are tighter than for some . The latter bounds,
which are not discussed in the literature as much as the Welch
bound, are the Levenstein bound [12], [13],

(15)

for , and the Exponential bound [5],

(16)

for . The above bounds can be combined with the
Welch bound to yield

(17)

that encapsulates the current state-of-knowledge on the lower
bounds for the peak inner-product level. Note that some bounds
in (17) might not be useful (i.e., ) for a specific .

B. Correlation Bounds

Excluding the in-phase (i.e., for ) lags of the autocorre-
lations of (which equal the energy of sequences), one can
measure the level of the out-of-phase correlations of sequences
in by using the integrated sidelobe level (ISL) metric:

(18)

(19)

2Note that MWBE sets exist for iff (6) is maximized with
and there exist a sequence set with peak inner-product equal to the
obtained value of .
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where and stand for periodic and aperiodic correlations,
respectively. Lower bounds on the above ISL metrics are given
by [16], [17]

(20)

(21)

Note that the ISLmetric can be related to the RMS inner-product
level defined in (4). Particularly, similar to , the ISL
bounds can be (nearly) met even for sequence sets with con-
strained alphabet [16], [17].
A different criterion for measuring the collective smallness

of the out-of-phase correlations is the PSL metric:

(22)

(23)

The PSL criteria have a close relationship with the peak inner-
product level metric. In particular, Welch [3] used (6) to derive
the following lower bounds on the periodic, and respectively,
aperiodic PSL metrics:

with the bounds being non-trivial for .
We continue this section noting that the Welch peak corre-

lation bounds are a direct consequence of the Welch bound on
inner-products. To observe this fact, let be the periodic
shifting matrices defined by

(24)

Given a sequence set with sequences of length and
energy , it is straightforward to verify that the inner-products
of the sequences become the out-of-phase
periodic correlations of the set . Therefore, by using
the Welch inner-product bound we obtain the following lower
bound on :

(25)

The Welch correlation bound in the aperiodic case can be de-
rived by additionally observing that the periodic out-of-phase
correlations of where are iden-
tical to the aperiodic out-of-phase correlations of . As
a result,

(26)

A consequence of the above formulation is the fact that, sim-
ilar to the case of inner products, the Welch peak correlation
bounds can be met if and only if all out-of-phase correlation
terms possess the same value. As a side consequence, the above
formulation implies that the correlation lags compose the set
of inner-products associated with circulant measurement ma-
trices (or frames). Therefore, any of the obtained correlation
bounds can be useful when designing measurement matrices
(or frames) with circulant structure. In light of the above usage
of the Welch peak inner-product bound for deriving peak cor-
relation bounds, we can exploit the tighter peak inner-product
bound to obtain the following compound peak correla-
tion bounds:

(27)

Note that achieving the above PSL bounds is harder (both
analytically and computationally) not only than meeting the
ISL bounds in (20) but also than achieving the aforementioned
peak inner-product bounds. It is worth pointing out that for
designing sequence sets with constrained alphabet or with other
practical limitations, the above bounds can be modified accord-
ingly. For instance, when employing root-of-unity (i.e.,
-ary) sequences with prime to design sequence sets with low
periodic out-of-phase correlations, one can use the Sidelnikov
bound [18] which is usually tighter (although not always) than
the Welch bound. For the binary alphabet, improved lower
bounds on periodic and aperiodic ISL metrics are proposed in
[19] and [20], respectively.
The long-standing research problem of finding sequence sets

with small out-of-phase correlations has resulted in several an-
alytical constructions for specific values of (see e.g.,
[21]–[23]). However, the analytical constructions are usually
proposed for the periodic correlation case and not for the ape-
riodic case which is deemed to be more difficult [17]. As an
example, Kasami family includes sets of binary sequences of
length and cardinality where is an
even natural number [21]. The value of a Kasami set is
given by . In addition, for odd , Gold binary sequence
sets can be constructed for that have
a value of [22]. TheWeil family consists
of sequence sets with and , where is
prime, that possess a value of [23]. Such sets
are usually referred to as asymptotically optimal owing to the
fact that their PSL values behave like as sim-
ilar to the behavior of Welch peak correlation bounds for .
We refer the interested reader to [24] for further details on this
aspect.

III. CORRELATION BOUNDS: TIGHTNESS AND IMPROVEMENT

By using the analytical tools provided earlier, we provide a
tightness assessment of the compound correlation bounds. In
order to improve the tightness condition of the bounds in the
aperiodic case, a new improvement of the aperiodic bound is
discussed and the obtained improvement is evaluated.
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Fig. 1. The values of (depicted in yellow) for which
the peak correlation bounds and were found to be loose (by satis-
fying both conditions (28) and (29)): (a) periodic correlation, and (b) aperiodic
correlation.

A. Tightness of and

Ourmain results regarding the tightness of and can
be briefly stated as follows. Examples of can be provided
for which the tightness of or is straightforward to
show. However, there exist for which these bounds are
not tight. Overall, the theoretical (as well as the computational)
evidence suggests that the tightness of the above bounds may
be rather an exception than the rule. The next two propositions
(whose proofs are given in the Appendix) provide examples of
cases in which and are tight.
Proposition 1: The peak periodic correlation bound is

tight for .
Proposition 2: The peak aperiodic correlation bound

is tight for .
Next we present a simple computational approach to find

cases in which the compound peak correlation bounds are not
tight. Specifically, the correlation bounds and are not
tight if both conditions below hold:
1) The corresponding Welch bound is not tight, viz.

periodic case,

aperiodic case
(28)

for all sets including sequences of length , and en-
ergy .

2) The Welch bound dominates both Levestein and Exponen-
tial bounds. Due to the fact that the compound bound is the
maximum of Welch, Levestein and Exponential bounds,
the latter condition is equivalent to

Periodic case,
Aperiodic case.

(29)

Condition 1) can be verified, for example, by checking the two
necessary tightness conditions of the Welch bound given in In-
troduction, see (14) and the related observations. The second
condition makes sure that the compound bounds are identical
to the Welch bounds. Fig. 1 depicts the values of

for which the use of the above approach shows

that the bounds and are not tight. The next sub-sec-
tion shows that, in general, the (compound) aperiodic correla-
tion bound is loose even more often than what is suggested by
Fig. 1.

B. An Improvement of the Aperiodic Correlation Bound

In this sub-section, we propose an improvement of . The
new bound relies on the specific structure of aperiodic correla-
tions. More concretely, one needs to observe that even though
the sequence dimensions are increased by zero-padding (with
the goal of deriving the aperiodic bound from the periodic one),
the sequences retain their intrinsic low dimensional properties.
In particular, for subsets of sequences lying in lower dimen-
sional subspaces the angles among the vectors in the set may be
smaller— so the inner product may be larger. In the following,
a more precise usage of this observation is proposed.
Let , and consider the sequence set

(30)

Now let be a fixed integer such that . Consider
the subset of sequences in (30) whose non-zero entries occur
only in their first locations. It is straightforward to verify
that such property holds for any . As a result, at
least sequences of (30) lie in the dimensional
space associated with the first entries of the sequences in
(30). This fact implies the following lower bound on the peak
aperiodic correlation:

(31)

Note that the above observation can be made for any window of
length over the entries of the sequences in (30), but does
not seem to further improve the bound in (31). However, using
(31) for yields

(32)

Fig. 2 compares the new aperiodic correlation bound
with the aperiodic bound . The comparison

is accomplished by computing the ratio for
. A considerable improvement

(even by more than 35%) can be observed for some . As a
specific example, we consider the case of .
In this case, the maximum of occurs for
leading to , whereas . As a
result, we obtain .
Finally, we end this section by noting that similar to , the

formulation of relies on the inner-product bounds
and hence, its growth rate is determined by .

IV. APPROACHING A CORRELATION BOUND

In this section, the challenging problem of meeting a correla-
tion bound is addressed. Particularly, it is of interest to find out
how close one can get to a given periodic or aperiodic bound. In
the following, we provide a general computational framework
(inspired by the formulation of the twisted product in [31]) that
can be used to approach any feasible correlation bound.
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Fig. 2. The improvement of the aperiodic correlation bound. The new bound
is compared to the bound by computing the ratio . The

contours represent the areas with the indicated minimum level of improvement.

A. Problem Formulation

The twisted product of two vectors and of length is
defined as

...
...

. . .
...

(33)

where and are the entries of and respectively.
In a more general context, we define the twisted product of two
matrices and as

...

...

...

(34)

where all and are of length . Interestingly, meeting
a PSL bound can be formulated by using the concept of twisted
product for both periodic and aperiodic correlations. It should be
observed that meets a peak periodic correlation bound if
and only if the entries of

(35)

satisfy

, ,
otherwise

(36)

where the first condition corresponds to the energy constraints
on .
Next note that for any two sequences the peri-

odic cross-correlations of and
are given by

,
. (37)

Consequently, a similar approach as in the case of the peri-
odic correlation can be used to characterize the sequence sets
meeting a peak aperiodic correlation bound . Let

(38)

Now note that meets if and only if the entries of

(39)

satisfy

, ,
otherwise.

(40)

B. Computational Framework

In the sequel, we devise a computational framework based
on alternating projections to approach the given bounds and

.
1) The Periodic Case: Consider the convex set of all

matrices for which the entries of satisfy the con-
ditions in (36). Furthermore, consider the set

(41)

Let denote the sequence sets with a peak periodic
correlation equal to . As there exists a one-to-one mapping
between the two sets and , a natural
approach to find the elements of is to employ alter-
nating projections onto the two sets and .
Let . It can be seen that all the

entries of occur in exactly one
time. Therefore, there exists a unique re-ordering function that
maps the two matrices to one another. We denote this function
by which is such that

(42)

In words, this mapping defines the element of the right-
hand side as the corresponding let us say element of the
matrix argument. As such, it can be easily generalized to any ar-
bitrary matrix. The Frobenius norm projection of any

on can be obtained as the solution to the opti-
mization problem

(43)
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whose objective function may be recast as:

(44)

By using (44), the minimizer of (43) can be obtained as
which yields

(45)

as the optimal projection on .
Remark 1: It is worth noting that for any , the

value of for the corresponding represents the total
energy of the sequences denoted by . Moreover, finding the
close points (or the intersection) of the two sets and
can be roughly interpreted as the maximization of for

. As a result, for a feasible PSL bound it can be prac-
tically assumed that throughout the projections.

Next, we study the Frobenius norm projection of any
on . Such a projection can be obtained by solving

the optimization problem

(46)

We note that the conditions (36) on are row-wise.
Let and represent two generic rows of and , respec-
tively. Therefore, we consider the nearest-vector problem

(47)

in which is constrained either to have a given sum , i.e.,
, or the absolute value of its sum is supposed to be

upper bounded by , viz. .
To tackle the above nearest-vector problem, assume

and for some ,
, and let . By using the Cauchy-Schwarz

inequality we have that

(48)

where the equality is attained if and only if all the entries of
are identical:

(49)

Moreover, the equality in (48) can be achieved for any given
and via (49). As a result, to minimize , it
is sufficient to minimize with respect to
and . For any fixed , the minimizer of the latter criterion
is given by . On the other hand, the optimal depends
on the constraint imposed on . In particular, for the constraint

then we have the optimum . In the case of the
constraint , the minimizer is given by

,
.

(50)

TABLE II
THE PROPOSED ALGORITHM FOR APPROACHING A GIVEN

PERIODIC/APERIODIC PSL BOUND

Table II summarizes the steps of the proposed algorithm for ap-
proaching a given periodic PSL bound. Note that while the pro-
jection on the set is performed by a rank-one approxima-
tion, the projection on the set has a closed-form expression
which leads to an even smaller computational burden.
2) The Aperiodic Case: Similar to the derivations in the pe-

riodic case, we consider the set

(51)

We define the masking matrix as

...
. . .

...

(52)

and in addition consider the convex set of all matrices
such that

(53)

where is as defined in the periodic case but with dimension
parameter in lieu of , and for which the entries of

satisfy the conditions in (40). Let
denote the sequence sets with a peak aperiodic correlation equal
to . In the following, we propose an alternating projection
onto the two sets and in order to obtain an element
(if any) of associated with the
given aperiodic bound .
Similar to the case of periodic correlation, we use the Frobe-

nius norm as a measure of distance between the two sets. The
Frobenius norm projection of any
on can be obtained as the solution to the optimization
problem

(54)
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Fig. 3. of the obtained sequence sets by using the algorithm in Table II (the periodic case), versus sequence length , and for different set cardinalities .
Gold, Kasami, and Weil sequence sets are used to initialize the algorithm when they exist (pinpointed by arrows).

Note that

(55)

where the operator collects the entries of the matrix ar-
gument corresponding to the non-zero entries of the masking
matrix . As a result, the minimizer of (54) is given by

, which conse-
quently yields

(56)

as the optimal projection on .
The Frobenius norm projection of any

on can be obtained sim-
ilarly to that of with a small modification. Note that
the variables and can be calculated by using the same
arguments as for . However, the number of non-zero
entries in the rows of is different. Particularly, the exact
positions of non-zero entries of are given by the locations
of ones in . Therefore, the entries of are given by

,
otherwise

(57)

where represents the corresponding row in , and
denotes the set of non-zero locations in the vector

argument.
Finally, the steps of the proposed alternating projections, in

the periodic and aperiodic cases, are summarized in Table II.
Note that in both cases, each iteration of the algorithms has
a -complexity. The obtained complexity measure is
a direct consequence of the generally large cardinality (i.e.,
) of the data that the algorithms should handle as well as

the hardness of the original problem (with constraints,
which should be compared to the fewer constraints (i.e., )
for achieving a given peak inner-product level). Due to the
practical interest of constrained sequence design, e.g., with
finite-alphabet or low-PAR, a modified version of the proposed

algorithms that handles such cases is discussed in the Appendix.
However, a more extensive discussion of the constrained se-
quence design is beyond the scope of this paper.

V. NUMERICAL RESULTS

Several numerical examples will be presented to examine the
performance of the proposed algorithms for approaching the
peak correlation bounds. Amain goal of these examples is to de-
termine how close one can get to the peak correlation bounds via
the proposed computational tools. The obtained sequence sets
are provided online at http://www.anst.uu.se/mojso279/sets.
We employ the suggested algorithm in Table II for different

values of . In the case of periodic correlation, we con-
sider the bound in (27). Fig. 3 shows the peak periodic
correlation ( ) values corresponding to the initializations
and the obtained sequence sets along with the bound , for

and . Note that
due to the non-convexity of , the problem is multi-modal
(i.e., it may have many convergence points), and hence, many
random initial points might be needed to achieve a certain low
peak correlation level. In this example, different random ini-
tializations are considered for 40 experiments, and the resul-
tant of the proposed algorithm (in Table II) represents
the best outcome of the 40 experiments. To examine the sensi-
tivity to choosing the initial set, well-known sequence sets in-
cluding Gold, Kasami, and Weil are used as initializing sets for
the values for which they exist. Such cases are also re-
ported in Fig. 3. It can be observed that can be practically
met in several cases, e.g., for all with . Furthermore, a
considerable decrease of the peak periodic correlation obtained
by using the proposed algorithm can be observed in all cases
(even for the cases with well-known sets as initialization).
As discussed earlier, if the Welch bound can be met for given

, then the absolute values of all out-of-phase correlations
will be identical and have a value equal to the Welch bound. As
an example of such behavior, we study the correlation properties
of the resultant set for . The absolute values of
periodic correlations are plotted in Fig. 4(a)–(c). In
this case, the bound is nothing but the Welch bound
corresponding to . As expected, all the periodic correlation
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Fig. 4. Correlation levels of the obtained sequence set for : (a) autocorrelation of the first sequence, (b) autocorrelation of the second sequence,
(c) cross-correlation of the first and the second sequences.

Fig. 5. of the obtained sequence sets by using the algorithm in Table II (aperiodic case), versus sequence length , for different set cardinalities .

levels (excluding the in-phase one) are equal to
.

The mixed bound is used to conduct a
similar numerical investigation in the aperiodic case. Fig. 5
illustrates the achieved values by using the pro-
posed alternating projections along with the mixed bound

. As expected, the bound is met for the
case (see Proposition 2). For other cases, in
which the aperiodic bound cannot be met exactly, significant
reductions in the obtained can be observed compared
to the values corresponding to the initial sets.

VI. CONCLUDING REMARKS

Peak correlation bounds have been studied, and the problem
of meeting peak periodic and aperiodic correlation bounds has
been addressed. Themain results can be summarized as follows:
• Welch, Levenstein, and Exponential bounds on peak inner-
product level of sequence sets were discussed. Peak cor-
relation bounds were derived based on the peak inner-
product bounds.

• An improvement of the peak aperiodic correlation bound
was provided.

• Analytical examples of the tightness of the peak correlation
bounds were provided in both the periodic and aperiodic
cases.

• Two novel algorithms were devised to tackle the problem
of approaching a given periodic or aperiodic bound. Nu-
merical examples were provided to show the potential of
the proposed methods. In several cases, particularly in the
case of periodic correlation, the considered peak correla-
tion bound was met by using the proposed methods. In
all examples, a significant decrease in the peak correla-
tions of the designed sets was observed, compared to the
PSL of the initial sequence sets (even for initializations by
well-known sets such as Gold, Kasami and Weil families).

We believe that more studies are needed to achieve a deeper
understanding and formulation of tighter peak correlation
bounds. The focus of this work was on studying and on at-
tempting to achieve peak correlation bounds when no extra
constraints on the sequences were enforced. However, a mod-
ification of the algorithms to handle constrained sequence
design was proposed. Extensive studies concerning constrained
sequence set design, e.g., sets containing low peak-to-av-
erage-power ratio (PAR), unimodular or root-of-unity se-
quences, can be interesting topics for future research.
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APPENDIX

Proof of Proposition 1: First note that with
. We provide the characterization of all sequence sets

meeting the peak periodic bound . Let

(58)

and observe that the out-of-phase periodic correlation levels
of the two sequences and belong to the set

. The
necessary and sufficient conditions for meeting the Welch peak
correlation bound (for ) imply that all the elements
in the latter set should be equal to . The structure of

for meeting can be studied as follows.
By considering the energy constraint as well as the constraint

, we obtain that

(59)

for some phase angles and . In a similar manner, for
we have that

(60)

with and being auxiliary phase angles. The result in (60)
is also based on verifying that the assumption of the same order
in “ ” signs of and (as well as and ) in (59) and (60)
violates the satisfaction of the following constraints

(61)

On the other hand, for as given in (59) and as given
in (60), the constraints in (61) lead to the following equation

(62)

which implies

(63)

Therefore, includes characterized by (59) and
(60), and with the auxiliary phase angles such that

(64)

for some .
Proof of Proposition 2: Observe that

(with ) and let

(65)

In what follows, a characterization of that meets the aperi-
odic bound is derived. The set of aperiodic out-of-phase
correlation levels of the columns of is given by

. By using the nec-
essary and sufficient conditions for meeting theWelch peak cor-
relation bound, we conclude that

(66)

and that . By applying the energy constraint we
obtain

(67)

The solutions to (67) are given by , which also
yields .

To determine the phase angles of the sequences in , we
employ the equation which results in

(68)

with and being the phase angles of and
, respectively. Equation (68) can be simplified to obtain

(69)

Consequently, meeting have the structure

(70)

such that where .
Modified Projections for Constrained Sequence Design:

With some modifications, the alternating projections proposed
in Section IV can be used for designing constrained sequences
such as cases with finite-alphabet or low PAR. Note that in con-
strained cases, finding the optimal projection on the two sets

and could be more complicated. However, the con-
vergence of the projections is guaranteed if the distance between
the latest projection points on the two sets is decreasing. In the
following, we discuss a set of modifications that can enable the
proposed approaches in Section IV to tackle the constrained
case.
Let represent the required sequence structure.

We revise the definition of by replacing the constraint
with . Therefore, finding the projection

on becomes equivalent to minimizing (44) and (55), in the
periodic and aperiodic cases, respectively, but for .
Hereafter, we study the periodic case as the extension to the
aperiodic case is straightforward. Due to the fact that has a
fixed power (or Frobenius norm), minimizing (44) is equivalent
to:

(71)
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where is positive-definite. More important,
any increase in the objective function of (71) leads to a decrease
of (44). Interestingly, increasing quadratic functions such as the
one in (71), over constrained vector sets can be dealt with con-
veniently via the power-method like iterations proposed in [32]
and [33]. Namely, considering the previously known projection
on as initialization ( ), the quadratic function in (71)
can be increased monotonically by using the iterations:

(72)

The solution to (72) for unimodular or -ary vector sets can be
obtained analytically. In low-PAR scenarios, (72) can be solved
using an efficient recursive algorithm developed in [34].
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