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Abstract—Wireless channels especially for OFDM transmis-
sions can be precisely approximated by a time varying filter
with sparse taps (in the time domain). Sparsity of the channel is
a criterion which can highly improve the channel estimation task
in mobile applications. In sparse signal processing, many efficient
algorithms have been developed for finding the sparsest solution
to linear equations (Basis Pursuit, Matching Pursuit) in the
presence of noise. In current OFDM standards, a number of the
ending subcarriers at both positive and negative frequencies are
left unoccupied (for ease of analog filtering at the receiver) which
results in an ill-conditioned frequency to time transformation
matrix. This means that the initial estimate for the impulse
response of the channel (in time) easily varies as the noise
vector changes. Thus in this case we cannot use most of the
proposed algorithms in sparse signal processing. In this paper, we
propose iteration with adaptive thresholding and MMSEmethods
to overcome this difficulty. Simulation results indicate that the
proposed method is almost perfect for stationary channels and
only minor performance degradation is observed with increase
of Doppler frequency.

I. INTRODUCTION

Owing to the fact that OFDM transmission is robust against
multipath fading, most of the current digital wireless video
services such as DVB (-T, -H, -T2) [1], ISDB-T [2], T-DMB
[3] and etc. are based on this modulation. Insertion of the data
at orthogonal subcarriers, in addition to a long enough cyclic
prefix, enables the receiver to decode different parts of the
transmitted data (different subcarriers) almost independently.
Therefore, unwanted frequency notches caused by the channel
discards only a fraction of the data. On the other hand,
accurate decoding of the data requires compensation for the
channel distortion which in turn requires an approximate of
the Channel Frequency Response (CFR).
The basis of all OFDM channel estimators are the noisy

samples of the CFR at pilot tones. Pilot tones are a number
of subcariers which are known a priory at the receiver; in other
words, the transmitter sends a known pattern at a number of
predefined subcarriers in order to help the channel estimation
block of the receiver. For mobile purposes where the channel
may vary quickly, pilot tones are distributed in all OFDM
symbols to catch up with rapid changes of the channel.
Usually the location of the pilots are not exactly the same
in consecutive OFDM symbols which offers a wider range of
channel frequency samples (but at different time instants).

The samples obtained at pilots are further processed to
estimate the channel response at non-pilot subcarriers and then
the data are equalized using these estimates. The traditional
method for estimation of the channel at non-pilot subcarriers is
interpolation between the samples at pilot locations. According
to the continuous and lowpass nature of the channel frequency
response, a wide range of interpolating methods starting from
the simple Linear Interpolation (LI) up to more complicated
interpolants such as splines are introduced [4]. Since the
time spread of the channel is assumed to be less than the
cyclic length, further denoising of the interpolated estimate is
achieved by discarding the nonzero time samples outside the
cyclic interval. A more general approach is to consider the
time varying channel as a 2-D object (Time-Frequency) which
resembles a 2-D lowpass signal under limited time spread and
Doppler frequency conditions [5]. The channel estimation is
thus equivalent to the reconstruction of a 2-D lowpass signal
from its irregular samples (values obtained at pilots at different
OFDM symbol).
After recent results in sparse signal processing including

Sparse Component Analysis (SCA) [6] and Compressed Sens-
ing [7], there has been a trend to exploit the sparsity of the
Channel Impulse Response (CIR) in its estimation [8], [9],
[10]. In [8] reduction of the number of required pilots for
an estimation method based on one of the l1 minimization
algorithms (Basis Pursuit summarized in [11]) is devised
while in [10] another method based on the Matching Pursuit
algorithm is introduced.
A point which is often ignored in these techniques is that,

according to current OFDM standards, the bandwidth is not
fully occupied; i.e., a number of the subcarriers at both edges
of the bandwidth are set to zero to increase the allowable
transition band of the analog bandpass filter at the receiver.
Although the ending zero subcarriers reduce the complexity
of the receiver, they eliminate the possibility to have samples
of the CFR at these locations. Therefore, interpolation at these
parts are impossible and the frequency response can not be
stably translated to the sparse time taps (the coefficient matrix
relating the time domain signal to the pilot sub-carriers is ill-
conditioned due to the zero subcarriers). The drawback of
the previous sparsity-based methods is that they require an
almost accurate initial state for convergence which can not be
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guaranteed with the mentioned zero padding at the edges (ill-
conditioned frequency to time transformation matrix). In this
paper we propose a sparsity-based estimation method which
works for OFDM transmissions even with zero padding. Sim-
ulation results confirm the accuracy of the proposed method
for time invariant channels. Moreover, the performance of the
proposed method shows little degradation with increase of the
Doppler frequency.

II. PROBLEM STATEMENT

So as to clearly describe the previously mentioned chal-
lenge in channel estimation, we explain the issue in three
subsections. In II-A the main OFDM components related to
the channel estimation are briefly described. In II-B, OFDM
channel estimation is restated as a sparse signal processing
problem and finally in II-C we will point out the difficulty of
using time domain sparsity in conjunction with partial use of
the bandwidth.

A. OFDM System Components
In OFDM transmission, coded binary data, after interleaving

are grouped and mapped to constellation points based on a
specific modulation scheme. In the next step, these complex
symbols are divided into blocks and for each block a number
of pilots are inserted among the data at predefined locations.
The resulting blocks which have less samples than the required
block size is zero padded to form the final blocks (OFDM
symbols) which we denote in vector form by X (n) (n is
the block number). These blocks are converted into the time
domain (x(n)) by means of IFFT (Inverse Fast Fourier Trans-
form) and each block (in time) is extended by a Cyclic Prefix
(CP) containing a copy of the last samples; these extended
blocks are serially transmitted. The role of CP is to avoid
Inter Symbol Interference (ISI) between the adjacent OFDM
symbols (after passing through the multipath channel).
The channel which affects the transmitted signal is often

modeled as a linear time-varying multi-path channel with
Additive White Gaussian Noise (AWGN). The channel (h)
at time t for an impulse sent to the channel τ seconds ago
and its 2D Fourier transform (H) can be expressed as:

h(t, τ) =
L−1∑
l=0

αl(t)δ(t − τl)

H(t, f) =
∫ +∞

−∞
h(t, τ)e−j2πfτ dτ (1)

where L is the number of paths, αl is the lth complex path
gain, and τl is the corresponding path delay.
In the case of proper cyclic prefixing and perfect timing, it

can be shown that the digital channel affecting the data in the
frequency domain is given by:

H [n, k] � H(nTf , kΔf) =
L−1∑
l=0

h[n, L]e−
j2πkl

K (2)

where Tf is the symbol length which also includes CP, Δf
is the subcarrier spacing, Ts = 1

Δf is the sample interval

and K is the length of the OFDM symbols. At the receiver,
after removing the guard interval in the time domain and
demultiplexing the time samples (y(n)) into parallel OFDM
symbols, the data are converted into the frequency domain
(Y (n)) by means of FFT. If we denote the sampled vector
of the AWGN noise in the frequency domain by W and
we assume no interference, the equation relating the n th

transmitted and received OFDM symbols, respectively X(n)
and Y (n) is:

Y (n) = X(n) � H(n) + W (n) (3)

where � represents element by element multiplication of the
two vectors. As a result, the time varying fading channel is
similar to a 2-D discrete signal defined at the integer lattice
of the time-frequency plane. Due to the existence of the
pilots, certain noisy samples of this lattice are known and
the goal of the channel estimation is to estimate the rest via
interpolation. The estimated channel is used in the equalization
block to obtain an approximation of the transmitted OFDM
symbol, X(n). This block is usually followed by demapping,
deinterleaving and decoding of the data.

B. Restating OFDM Channel Estimation as a Sparse Problem

As stated earlier, the goal of the channel estimation process
is to obtain the channel coefficients in the frequency domain
using noisy values of the channel at pilot positions. Due to
the sparse distribution of the scattering objects, the equivalent
discrete OFDM channel is sparse in the time domain. Taking
sparsity into consideration, we look for a time domain sparse
channel (h) whose frequency samples are known:

Hkp = Fkp · h + Wkp (4)

where kp is the index vector representing the pilot positions
in the channel frequency spectrum, Hkp is a vector containing
the value of the channel frequency spectrum at these pilot
subcarriers and Fkp denotes the reduced DFT matrix by
keeping the rows pertaining to the pilot positions. Also W (kp)
denotes the additional noise on the pilots in the frequency
domain. As mentioned earlier, in a well designed OFDM
system, the length of the cyclic prefix is larger than the channel
time spread; thus, the only non-zero values of the vector h
reside in the first NCP samples where NCP is the length of
the cyclic prefix. Using this fact, the equation can be simplified
to:

Hkp = Fkp, NCP · hCP + Wkp (5)

where Fkp,NCP is obtained from the matrix Fkp by keeping the
first NCP columns and the sparse vector hCP is the first NCP

points of h. So in this sense the channel estimation problem
is equivalent to finding the sparse vector hCP from the above
equation. In the next subsection we present a major difficulty
in using time-domain sparsity, the partial use of the bandwidth,
an issue that most of the authors neglected.
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C. Sparsity with partial Use of Bandwidth
Conventional channel estimation methods are not able to

exploit the inherent sparsity of the channel in the time domain.
Very recently the idea of using time-domain sparsity in OFDM
channel estimation has been proposed in [8]. Exploiting the
sparsity has many advantages; it increases the system perfor-
mance, and can be used to decrease the number of pilots,
thus decreasing overhead and increasing bandwidth efficiency.
In [8] the authors proposed the idea of using compressive
sensing methods in OFDM channel estimation and proved
that the OFDM channel estimation problem as stated, satisfies
the uniform uncertainty principle described in [7], and thus
linear programming-based algorithms similar to the ones used
in [11] can be employed for channel estimation. Simula-
tion results show that this method works effectively even in
quickly changing channels. However, the authors of [8] did
not consider zero padding at the endpoints of the bandwidth
in their scenario, which is an essential part of the current
standards based on OFDM transmission. This assumption,
which we hereafter name partial use of bandwidth, causes
the matrix Fkp,NCP defined in subsection II-B to contradict
the RIP (Restricted Isometry Property) defined in [7] (Since
the FFT matrix and its submatrices are Vandermond it is easy
to evaluate their determinant; the submatrices which we are
dealing with are close to singularity). This makes the use of
compressive sensing algorithms described in [8] impractical.
The problem that zero padding poses is that the Fkp,NCP

matrix is ill-conditioned in the presence of the zero padding
block. Also due to this block we do not have any pilots in
the zero padded parts, complicating the use of time-domain
techniques. We propose a method that exploits this inherent
sparsity and also solves the zero padding problem, which is
briefly described in the next section.

III. PROPOSED CHANNEL ESTIMATION METHOD

As mentioned in section II, the time domain OFDM channel
(CIR) is sparse. In this section we will propose a new channel
estimation scheme that exploits this inherent sparsity.
Similar to other sparsity-based estimators, our method is

based on an iterative technique which improves the estimates
in each step starting at an initial value. However, the sensitivity
of our algorithm to this initial state is not restricting; better
initial values result in faster convergence. Since the samples
of the channel are in the frequency domain and the sparsity
criterion is valid in the time domain, we shall switch between
the two domains to benefit from both sets of information.
To save the computational capacity for the iterations, we

use a simple initial state; i.e., we begin by the spectrum of the
estimated channel at the previous OFDM symbol as the initial
value. At the start of the reception when there is no previous
estimate, we begin by the linear interpolated version (linear
interpolation between the samples taken at pilot subcarriers).
As stated in section II-C, the linear interpolation is not possible
at the zero-padded end points; thus, we leave these parts as
zero, which means we have rejected the highpass coefficients
of CIR.

Up to this point we have not employed the samples obtained
at pilot locations which are considered as the most confident
set of available data. The simple way to use them is to
replace the estimated values at pilot locations with the obtained
samples.
Now it is turn to consider the time sparsity criterion. For

this aim, we should convert the estimated spectrum into the
time samples by means of the IFFT operation. If we had the
exact spectrum, the signal after the IFFT would have been
sparse; however, rejection of the highpass coefficients spreads
each original nonzero sample over a range of the neighboring
samples and existence of the additive noise changes the
original zero samples into arbitrary nonzero values. Therefore,
the initial sparsity criterion is no longer valid. With use of
an adaptive thresholding method on the current time samples
which we call MAT (Modified Adaptive Thresholding) we
will find the most likely combination of the nonzero locations
which form a sparse signal (will be described in the following
subsection). It should be emphasized that the output of MAT
is only the location of the nonzero samples, not their values.
The last step in each iteration is to estimate the value of the

locations reported by MAT. In fact, Since the values of the time
samples before MAT are not reliable, we only employ them
for finding the nonzero locations and we again estimate their
values using the MMSE method. The employed MMSE which
is based on the matrix relating the pilot values to the time
sample values of the MAT-reported locations will be discussed
in III-B. After finding the values, the time samples are again
converted to the frequency domain (FFT) and the next iteration
will be started; i.e., the samples at pilot values are replaced
with their respective estimated values and so on. The stepwise
algorithm in each iteration is briefly shown below:

1) Replace the estimated values (results of the previous
iteration or the initial estimate) at pilot locations by the
samples obtained from the received data and convert the
spectrum into the time domain (IFFT).

2) Locate channel tap positions using MAT based on the
into-time-transformed estimated spectrum.

3) Estimate the corresponding tap values using MMSE
method.

For the stopping condition of the iterations we use the Power
Ratio (PR) measure defined as the power of the estimated
channel divided by the power of the actual channel:

PR =
Estimated Channel Power

Actual Channel Power
(6)

The receiver is aware of the actual channel power by cal-
culating the power of the to-be-equalized data (power of
the equalized data is the same as the average power of the
constellation). The iterations should continue until PR exceeds
1− ε or a predefined maximum iteration number is reached; ε
is a small positive real determining the trade-off between the
accuracy and complexity.
The block diagram of the method is depicted in Fig. 1.
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Fig. 1. Overall block diagram of the proposed estimation method

A. Channel Tap Detection Using MAT
A sparse channel is characterized by the number, position

and value of its taps. MAT is a method that by means of
thresholding, decides for the number and the position of
the taps. It is composed of three successive thresholds (all
thresholds in this paper will be shown by η with proper
indices) with the main based on the CML-CFAR (Censored
Mean Level Constant False Alarm Rate). In [12] a CFAR-
based method for impulse noise cancellation is proposed which
we have modified it here to suit the estimation problem (that
explains the word ”Modified” in the name MAT).
In the employed CFAR algorithm, amplitude of each sample

is compared (hard decision) to an average of the neighboring
amplitudes (which ideally represents the standard deviation of
the noise) in order to decide whether it is a tap or just a noisy
sample. Since the neighboring samples may include a tap,
among the considered l samples, only the least m amplitudes
are averaged to avoid including the tap amplitudes (practical
choices are l = 6 and m = 3):

ηCFAR[i] =

∣∣h[i1]
∣∣ + · · · + ∣∣h[im]

∣∣
m

(7)

where{
h[i1] ≤ · · · ≤ h[il]

}
=

{
h[i + k]

}k= l
2

k=− l
2
− {

h[i]
}

(8)

Since for each sample we require a CFAR threshold and
each threshold is formed by an average, it is reasonable to
exclude unlikely samples prior to CFAR so as to both decrease
the computational complexity and increase the detection prob-
ability. Therefore, we discard the samples with amplitudes less
than the following threshold prior to CFAR:

ηinitial = βe−αi (9)

where i represents the iteration number; i.e., the threshold
exponentially decreases as the iterations proceed. α and β
are constants that depend on the number of taps and initial
powers of noise and channel taps; since these parameters are
not initially known, a rough estimate shall be used. The above
choice of the threshold will be justified in section IV.

Fig. 2. The block diagram of MAT

In the third and the final thresholding (the first two are
the above initial and the followed CFAR thresholds), it is
calculated that in what fraction of the previous iterations a
location is detected as a tap after CFAR. The locations with
the detection probability less than 0.3 are again discarded;
0.3 is a number found through simulations. The importance
of this probability thresholding is to prevent the possible
oscillations in the decision upon a location. The locations with
probability greater than 0.3 are reported to MMSE estimator
as the detected tap locations in this iteration.
The block diagram of the MAT showing the three thresh-

olding schemes is depicted in Fig. 2

B. Value Estimation using MMSE
In the problem at hand we wish to solve a linear equation in

the presence of noise. That is, we wish to obtain the value of
the CIR vector h at set of tap positions T reported by MAT,
from the equation

H̃kp = Fkp,T hT + Wkp (10)

where the vector H̃kp is the measured CFR vector at pilot
positions, Fkp,T is obtained from the DFT matrix by selecting
the rows that pertain to pilot positions (kp) and the columns
that pertain to actual channel taps T and Wkp is the noise
vector at pilot positions. The MMSE estimator tries to estimate
the vector hT by minimizing E{‖hT−ĥT ‖2}, hence the name
Minimum Mean Squared Error. This estimate vector is given
by:

ĥT = RhT FH
kp,T

(
Fkp,T RhT FH

kp,T + RW

)−1
H̃kp (11)

where .H denotes the Hermitian operation and RhT and RW

are the auto-covariance matrices of hT and Wkp respectively.
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When the noise vector Wkp is a complex zero-mean random
white Gaussian process, RW is equal to 2σ2

W I, where the
variance of both real and imaginary parts are assumed to be
σ2
W. Also RhT can be estimated with PhI where Ph is the

average power of the channel (it can be obtained as mentioned
earlier in this section). Thus the estimate vector can be written
as:

ĥT = FH
kp,T (Fkp,T FH

kp,T +
2σ2

W

Ph
I)−1H̃kp (12)

IV. MATHEMATICAL ANALYSIS

For simplicity of the analysis, let us assume that both
channel taps and the additive noise in the time domain at the
ith iteration are zero-mean normal complex random variables
with variance of σ2

tap and σ2
n,i (for each of the real and

imaginary parts), respectively. Hence, their amplitudes which
are of main concern in MAT follow the Rayleigh distribution.
Moreover, we assume that the probability of a time sample to
be a channel tap is ptap; i.e., if NCP represents the length of
the cyclic prefix, we expect to have a channel with p tap ·NCP

taps. As shown in [12], the best hard threshold (ηopt) with
respect to the error probability which distinguishes the taps
and the solely noise samples is given by:

ηopt = σn,i ·
√

2
1 + SNRi

SNRi
ln

(1 − ptap

ptap
(1 + SNRi)

)
(13)

where SNRi = σ2
tap

σ2
n,i

. If we define η̄2
opt,i = η2

opt

2σ2
n,i

, the power

of the noise samples detected as tap (Σtap|n) and the power
of the undetected taps (Σn|tap) in the ith iteration will be:⎧⎪⎨⎪⎩

Σtap|n = σ2
n,i

(
1 + η̄2

opt,i

)
e−η̄2

opt,i

Σn|tap = σ2
tap

(
1 − (

1 + η̄2
opt,i

1+SNRi

)
e
−

η̄2
opt,i

1+SNRi

)
(14)

For good initial states and converging conditions, SNR i is
large enough to use the following approximations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

η̄2
opt,i = η2

opt

2σ2
n,i

≈ ln
( 1−ptap

ptap

)
+ ln(SNRi)

Σtap|n ≈ σ2
n,i

(
1 + ln

( 1−ptap

ptap
SNRi

)) ptap

(1−ptap)·SNRi

Σn|tap ≈ σ2
tap

ln2
(

1−ptap
ptap

SNRi

)
2SNR2

i

(15)

After thresholding, some of the taps are not detected and
some of the noise samples are detected as tap. Although we
have assumed i.i.d. distribution for the time samples, due to
rejection of the highpass coefficients, neighboring samples are
correlated; i.e., if the amplitude of a sample stays above the
threshold, the amplitudes of the neighboring samples are likely
to do so. However, CFAR thresholding keeps almost one of
these neighboring samples; hence, after CFAR the i.i.d. con-
dition is almost satisfied. We model the first two thresholding
blocks (initial and CFAR) as a simple thresholding for an i.i.d.
input. Thus, the noise variance of the next iteration can be
approximated by:

σ2
n,i+1 = ptap · Σn|tap + (1 − ptap) · Σtap|n (16)

TABLE I
SIMULATION PARAMETERS

Parameter Specifications
DVB-H mode 2K

Number of carriers 1705
OFDM symbol duration 224μs

Gaurd Interval 1/8 (256)
Signal Constellation 16QAM
Channel Model Brazil Channel D

itermax 8
(ε , α , β) (0.05 , 0.1 , 0.5)

TABLE II
MULTI-PATH PROFILE (BRAZIL CHANNEL D)

Delay (μs) Amplitude (dB)
0.0 −0.1

+0.48 −3.9
+2.07 −2.6
+2.90 −1.3
+5.71 0.0
+5.78 −2.8

therefore:

σ2
n,i+1

σ2
n,i

≈ ptap

SNRi

(
1 + ln

(1 − ptap

ptap
SNRi

)
+ 0.5 ln2

(1 − ptap

ptap
SNRi

))
� ptap

SNRi
e
ln

(
1−ptap

ptap
SNRi

)
= 1 − ptap (17)

which means:{
σ2

n,i ≈ σ2
n,0 · (1 − ptap)i

SNRi ≈ SNR0 · (1 − ptap)−i (18)

The last approximation, reveals the linear change of η̄ 2
opt,i

with respect to the iteration number:

η̄2
opt,i ≈ ln

(1 − ptap

ptap

)
+ ln(SNR0) − i ln(1 − ptap) (19)

As shown in (18), σn,i exponentially decreases with respect
to the iteration number, while (19) shows linear increase of
η̄2

opt,i; consequently, the overall effect on ηopt would be the
exponential decrease with respect to the iteration number (i)
which justifies the choice of ηinitial in (9).

V. SIMULATION RESULTS

We performed computer simulations using MATLAB to
verify the performance of the proposed method applied to
the DVB-H standard. Parameters of the system used in the
simulations are shown in table I. Since in this paper we only
focus on the channel estimation, we have ignored other issues
such as synchronization or frequency offset. As shown in table
I, the length of the considered cyclic prefix exceeds the time
spread of the applied channel (“Brazil D”channel with the
profile as shown in table II) which means we have no ISI in
the received symbols.
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Fig. 3. Performance of the ideal, linear-interpolated and the proposed channel
estimates under time-invariant Brazil D channel.
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Fig. 4. Performance of the proposed method at different Doppler frequencies
for Brazil D channel.

The performance of the proposed channel estimation mea-
sured as Bit Error Rate (BER) is shown in Fig. 3 for the time-
invariant Brazil D channel. For the purpose of comparison, we
have also used the ideal channel (which is just a hypothetical
upperbound for the estimation in simulations) for MMSE
equalization of the data. As can be seen in Fig. 3, the BER
obtained using MAT coincides with that of the ideal channel;
we should mention that an AR time averaging on the estimated
channel is also applied (excluding this time averaging we
expect deviation from the ideal channel at low SNRs). That is
if we used the ideal channel for equalization rather than the
proposed scheme we would get the same BER. In this sense
the proposed channel estimation is perfect. Furthermore, the
BER of the linear interpolation method is shown in Fig. 3 as
a conventional channel estimation method for comparison.
To show the efficacy of the proposed method in time vary-

ing channels we tested the proposed method under different
Doppler frequencies. As can be seen in Fig. 4 the proposed
method shows little performance degradation with increase of
the Doppler frequency.
Not only does the MAT method work perfectly under severe

multipath channels such as Brazil D, but it also shows similar
trends under simple channels such as AWGN (Fig. 5). As can
be seen, the channel estimation performance obtained using
the proposed method is close to the one obtained using the
ideal channel. This again shows the channel estimation to be

0 5 10 15 20
10−6

10−4

10−2

100

Carrier to Noise (dB)

B
E

R

    Ideal channel
linear Interpolation
      MAT

Fig. 5. Performance of the ideal, linear-interpolated and the proposed channel
estimates under AWGN channel.

perfect in terms of BER.

VI. CONCLUSION

In this paper, we have considered the OFDM channel
estimation problem with use of the sparsity of the equivalent
discrete channel in time. The main difficulty in exploiting
this sparsity is that due to the partial use of the bandwidth
in current OFDM standards, the reduced frequency to time
transformation is no longer stable which sometimes leads to
divergence of the previously introduced sparsity-based estima-
tors. We have proposed a thresholding method which solves
this problem. The simulation results show that the performance
of this method after data equalization is almost the same as if
we used the exact channel.
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