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Abstract—In this paper, we study the problem of code design to
improve thedetectionperformance ofmulti-static radar in thepres-
ence of clutter (i.e., a signal-dependent interference). To this end,we
briefly present a discrete-time formulation of the problem aswell as
the optimal detector in the presence of Gaussian clutter. Due to the
lack of analytical expression for receiver operation characteristic
(ROC), code design based on ROC is not feasible. Therefore, we
consider several popular information-theoretic criteria including
Bhattacharyya distance, Kullback-Leibler (KL) divergence, J-di-
vergence, andmutual information (MI) as designmetrics. The code
optimization problems associated with different information-theo-
retic criteria are obtained and cast under a unified framework. We
propose two general methods based onMajorization-Minimization
to tackle the optimization problems in the framework. The first
method provides optimal solutions via successive majorizations
whereas the second one consists of a majorization step, a relax-
ation, and a synthesis stage. Moreover, derivations of the proposed
methods are extended to tackle the code design problems with a
peak-to-average ratio power (PAR) constraint. Using numerical
investigations, a general analysis of the coded system perfor-
mance, computational efficiency of the proposed methods, and the
behavior of the information-theoretic criteria is provided.

Index Terms—Code design, information-theoretic criteria,
multi-static radar, majorization-minimization, peak-to-average
power ratio (PAR).

I. INTRODUCTION

S IGNAL design for detection performance improvement
has been a long-term research topic in the radar litera-

ture. Active radars deal with both signal-dependent as well as
signal-independent interferences. Indeed, the signals backscat-
tered from undesired obstacles (known as clutter) depend on
the transmit signal, whereas noise, unwanted emissions, and
jammer emissions do not depend on the transmit signal.
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The effect of the clutter has been considered in early studies
for single-input single-output (SISO) systems [1]–[5]. The
aim of these studies is to maximize the signal-to-interfer-
ence-plus-noise-ratio (SINR) by means of joint optimization of
the transmit signal and the receive filter. The results of [6] and
[7] are recent extensions of [5] which use different methods to
tackle some related problems. In [8], a solution for the optimal
energy spectral density (ESD) of the transmit signal as well as
a method for approximate synthesis of the signal have been
presented for SISO systems. Problems related to that of [8]
have been considered in [9] and [10] for cases where practical
constraints such as low peak-to-average-power ratio (PAR)
and similarity to a given code are imposed in the design stage.
The work of [11] employs mutual information (MI) as design
metric for target detection and estimation. In [12], two signal
design approaches based on MI and SINR have been studied for
extended target recognition in SISO systems. KL-divergence
has been considered in [13] for target classification.
Inmulti-static scenarios, the interpretationof thedetectionper-

formance is not easy in general and in several cases expressions
for detection performance are too complicated to be amenable
to utilization as design metrics (see e.g., [14], [15]). In such
circumstances, information-theoretic criteria can be considered
as design metrics to guarantee some types of optimality for the
obtained signals. For example, in [15] an approach similar to that
of [8] has been applied to the case of multi-static radars with one
transmit antenna, and a concave approximation of the J-diver-
gence has been used as the designmetric.MI has been considered
as a design metric for non-orthogonal multiple-input mul-
tiple-output (MIMO) radar signal design in [16] for clutter-free
scenarios. A problem related to that of [16] has been studied in
[18] where Kullback-Leibler (KL) divergence and J-divergence
are used as design metrics. In [19], KL-divergence and MI have
been taken into account for MIMO radar signal design in the
absence of clutter. Information-theoretic criteria have also been
used in research subjects related to the detection problem. The
authors in [20] study the target classification for MIMO radars
usingminimummean-square error (MMSE) and theMI criterion
assuming no clutter. The [21] employs Bhatacharyya distance,
KL-divergence, and J-divergence for signal design of a com-
munication system with multiple transmit antennas. MI has
also been used to investigate the effect of the jammer on MIMO
radar performance in clutter-free situations in [22].
In this paper, we provide a unified framework for multi-static

radar code design in the presence of clutter. Although
closed-form expressions for the probability of detection and the
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probability of false alarm of the optimal detector are available,
the analytical receiver operating characteristic (ROC) does
not exist. As such, we employ several information-theoretic
criteria that are widely used in the literature (see e.g., [16],
[19], [21]), namely Bhattacharyya distance, KL-divergence,
J-divergence, and MI as metrics for code design. In particular,
we express these metrics in terms of the code vector and then
present corresponding optimization problems. We show that
the arising optimization problems can be conveniently dealt
with using a unified framework. To tackle the code design
problem, two novel methods based on Majorization-Minimiza-
tion (MaMi) technique are devised. In the first method (which
we call Sv-MaMi) successive majorizations are employed,
whereas the second one (which we call Re-MaMi) is based
on majorizations, a relaxation, and a synthesis stage. We also
extend the proposed methods to the code design problem with
PAR constraints and to the case of multiple transmitters (with
orthogonal transmission). To the best of our knowledge, no
study of code design with PAR constraints using informa-
tion-theoretic criteria was conducted prior to this work.
The rest of this paper is organized as follows. In Section II, we

present a discrete-time formulation of the detection problem as
well as the optimal detector. We briefly review different infor-
mation-theoretic criteria in Section III and cast the associated
optimization problems under a unified framework. Section IV
contains the derivations of the steps of Sv-MaMi to deal with
the optimization problems formulated in the unified framework
presented in Section III. Re-MaMi is introduced in Section V as
an alternative approach to obtain optimized codes of the arising
optimization problems. Extensions of the design problem to the
cases of PAR-constrained design andmultiple transmitters (with
orthogonal transmission) are discussed in Section VI. Numer-
ical examples are provided in Section VII. Finally, conclusions
are drawn in Section VIII.
Notation: We use bold lowercase letters for vectors and bold

uppercase letters for matrices. and denote the
vector/matrix transpose, the complex conjugate, and the Hermi-
tian transpose, respectively. represents the identity matrix
in . denotes the Frobenius norm of a matrix .
The notations and indicate the principal and
the minor eigenvalues of a Hermitian matrix, respectively. The
-norm of a vector is denoted by . is the trace of a
square matrix argument. denotes the block diagonal
matrix formed by its arguments. We write iff is
positive semi-definite, and iff is positive-definite.

stands for the statistical expectation operator.
denotes the circularly symmetric complex Gaussian distribution
with mean and covariance . The symbol is used to show
the distribution of a random variable/vector. Finally, de-
notes the real-part of the complex-valued argument.

II. DATA MODELING AND THE OPTIMAL DETECTOR

A. Data Modeling

We consider a multi-static pulsed-radar with one transmitter
and widely separated receive antennas. The baseband
transmit signal can be formulated as

(1)

where is the basic unit-energy transmit pulse (with time
duration ), is the pulse repetition period , and

are the deterministic coefficients that are to be “opti-
mally” determined. The vector is referred
to as the code vector of the radar system.
The baseband signal received at the th antenna backscat-

tered from a stationary target can be written as

(2)

where is the amplitude of the target return (including the
channel effects), is the clutter component, is a
Gaussian random process representing the signal-independent
interference component (including various types of noise,
interference, and jamming), and is the time corresponding to
propagation delay for the path from the transmitter to the target
and thereafter to the th receiver.
In what follows, we consider a few typical assumptions in the

radar literature which are key to the derivations that will appear
in this paper.
Assumption 1: We assume that the clutter component at the
th receiver is composed of signal echoes produced by many
stationary point scatterers (located within unambiguous-range
with respect to the th receiver [24]). The amplitudes and arrival
times of the echoes are assumed to be statistically independent
[25], [26].
According to Assumption 1, the clutter component can be

expressed as

(3)

where is the number of point scatterers, is the “am-
plitude” of the th scatterer observed by the th receive an-
tenna, and is the propagation delay at the th receiver cor-
responding to the th scatterer for which we have .
At the th receiver, the received signal is matched filtered by

. Then range-gating is performed by sampling the output
of the matched filter at time slots corresponding to a specific
radar cell. Note that the detection for a specific radar cell can be
accomplished using a successive chain of operations including
directional transmission and reception as well as range-gating
at each receiver [27].
The discrete-time signal corresponding to a certain radar cell

for the th receiver can be described as (see Appendix A):

(4)

where is the output of the matched filter at the th receiver
sampled at is a zero-mean complex
Gaussian random variable (RV) with variance associated
with the clutter scatterers, and denotes the th sample
of when filtered by at the th receiver. Using a
vector notation, we can write

(5)

where , , and
.

We further make the following assumptions:
Assumption 2: The Swerling-I model is used for the ampli-

tude of the target echo, i.e., for any stationary
target [8], [15].
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Assumption 3: The second-order statistics of the target,
clutter, and interference components at the th receiver (i.e.,

, and ) are assumed to be known.
The above assumption is common for radar systems using

cognitive (knowledged-aided) methods that employ geograph-
ical, meteorological, National Land Cover Data (NLCD), and
the information of the previous scan to interactively learn and
extract the characteristics of the environment (see e.g., [10],
[28]–[31]).
Assumption 4: The random variables in the set are

statistically independent. Such a statistical independence is also
considered for random variables/vectors in the sets and

.
Assumption 4 is well-justified, due to the fact that the re-

ceivers are widely separated [15], [16].

B. Optimal Detector

Using all the received signals, the target detection leads to the
following binary hypothesis problem

(6)

where , and are defined by column-wise stacking of
and for ; more precisely,

, and
.

Let denote the covariance matrices of Gaussian
random vectors . Further let and represent the
the covariance matrices of and , respectively. Using the
aforementioned assumptions we have that

(7)

Consequently, the underlying detection problem can be
equivalently expressed as

(8)

where
with .

Note that both and in (8) depend on the transmit code .
The optimal detector for (8) can be obtained by applying the
estimator-correlator theorem ([32] chapter 13) as:

(9)

where is the detection threshold, and

(10)

In particular, by defining

(11)

the canonical form of the detector in (9) can be obtained as

(12)

where .

III. OPTIMAL CODE DESIGN

In this section,we aim to obtain the optimal transmit signals by
judiciously designing the code vector . A reasonable approach
to code design is to exploit the knowledge of the analytical
receiver operating characteristic (ROC) which enables the de-
signer to obtain the largest possible value of the probability of
detection for a given value of the probability of false alarm

via optimal selection of the design parameters. However,
thismethod cannot be used if the analytical ROC is not amenable
to a closed-form expression which is the case for the problem
considered in this paper. Particularly, even though closed-form
expressions for and can be obtained by applying the
results of [14], derivation of the analytical ROC is not possible.
In such cases, one can resort to information-theoretic criteria in-
cluding Bhattacharyya distance, KL-divergence, J-divergence,
and MI (see the Introduction). In what follows, the goal is to
improve the detection performance by maximizing the afore-
mentioned information-theoretic criteria over the code vector .
Interestingly, the corresponding optimization problems can be
dealt with conveniently using a unified optimization framework.

A. Information-Theoretic Design Metrics

Bhattacharyya distance: Bhattacharyya distance mea-
sures the distance between two probability density functions
(pdf). In a binary hypothesis testing problem , the
design parameters can be chosen such that the Bhattacharyya
distance between the pdfs of the observation under and
is maximized. Note that the Bhattacharyya distance provides an
upper bound on , and at the same time yields a lower bound
on [21]. Therefore, maximization of the Bhattacharyya dis-
tance minimizes the upper bound on while it maximizes the
lower bound on 1.
The Bhattacharyya distance for two multivariate Gaussian

distributions, and , can be expressed
as [21]:

(13)

By applying (13) to the problem in (8) we obtain

(14)

1This is due to the fact that and where
is the likelihood threshold [33].
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The second equality in (14) holds due to the block-diagonal
structure of thematrices and . The last equality follows from
the fact that the eigenvalues of the matrix in-
clude ones and the maximum eigenvalue which is given
by . Eventually the underlying code
design problem can be formulated as

(15)

where denotes the total transmit energy.
KL-divergence: The KL-divergence is an-

other metric to measure the “distance” between two pdfs
and . Consider a binary hypothesis testing problem with

and . The Stein Lemma states that
for any fixed [21]

(16)

which implies that (for any fixed ) the maximization of the
KL-divergence metric leads to an asymptotic maximization of
(we refer the interested reader to ([34] Chapter 4), [21], ([35]

Theorem 1), [36], and references therein for some bounds on
the detection performance associated with the KL-divergence).
In addition, we have that [21]

(17)

where is the likelihood ratio defined as

Using (12), (17) and the identity
[32], the KL-divergence associated with (8) can be ob-

tained as

As a result, the problem of code design by maximizing the
KL-divergence metric can be stated as:

(18)

J-divergence: The J-divergence metric, denoted herein as
, is another measure of the distance between two pdfs and it

is defined as

(19)

According to Stein Lemma ([34] Chapter 4), in a binary hypoth-
esis testing problem (with and ),
and for any fixed , we can write

(20)

Equation (16) and (20) along with other properties and bounds
associated with the J-divergence (see e.g., ([34] Chapter 4),
([35] Theorem 1), [37], [21], and references therein) have
motivated several authors to consider as the design metric
for radar signal design (see [15], [21], [38], and references
therein). For the binary hypothesis testing problem in (8) with

and , we have that [21]

Using (21) along with similar calculations as in the case of
KL-divergence, the J-divergence metric associated with (8) can
be obtained as

(21)

Consequently, the corresponding code design problem can be
expressed as

(22)

Mutual information: MI is another metric that has been
used for radar transmit signal design (see the Introduction). The
MI between the amplitude of the target return and the received
signal is often considered as a design criterion. For the relation-
ship between MI and minimum mean-square error (MMSE) es-
timation see e.g., [39]. Note that the larger the MI the better the
MMSE estimation ([40] Chapter 2). Note also that, the optimal
detector for Gaussian pdfs has a close relationship to theMMSE
estimation (see e.g., the estimator-correlator theorem in ([32]
Chapter 5 and 13)) in the sense that better estimation leads to
detection performance improvements [16]. Furthermore, a com-
prehensive mathematical motivation for using MI as a metric
in radar signal design is provided in ([40] Chapter 2) and [11]
using rate-distortion function, Fano’s inequality, and Shannon’s
noisy channel coding theorem. Additionally, the results of [41]
relate the MI and Bayes risk in statistical decision problems.
An analysis of the connection between Bayesian classification
performance and MI has also been performed in [42]. The MI
metric associated with (8) is given by [43]

(23)
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where the second equality follows from the block-diagonal struc-
tures of and , and the third equality holds due to the fact that

are rank-one. Therefore, the -optimal code
is the solution to the following maximization problem:

(24)

B. Unified Framework

Herein we cast the optimization problems corresponding to
various information-theoretic criteria discussed earlier under a
unified optimization framework. More precisely, we consider
the following general form of the optimization problems in (15),
(18), (22), and (24):

(25)

where , and are concave and
convex functions for any , respectively, and we have that

Remark 1: In the case of spatially wide-sense stationary (up
to a power scale) signal-independent interferences, we have that

(see e.g., [16]). In such a sit-
uation, a closed-form solution to the optimization problem (25)
can be obtained. In particular, note that for any , a simpli-
fied expression of can be obtained using the matrix inversion
lemma as:

(26)

Therefore, one can recast (25) as the following optimization
problem:

(27)

where . Let denote the optimal value
of (27). We have that

(28)

with being the maximizer of subject to
for fixed . Now we claim that with being
the minor eigenvector of is an optimal solution to the
optimization problem in (27). To observe this fact, note that
the maximizes , for any , subject to the energy con-
straint because is an increasing function of .
Moreover, is an increasing function of for all

(see Appendix B) and hence for
all . Consequently, yields the upper bound on
for all .
We use the Majorization-Minimization (or Minoriza-

tion-Maximization) techniques to tackle the non-convex
problems in (25). Majorization-Minimization (MaMi) is an
iterative technique that can be used for obtaining a solution to
the general minimization problem [44], [45]:

(29)

where and are non-convex functions. Each iteration
(say the th iteration) of MaMi consists of two steps:
• Majorization Step: Finding such that its minimiza-
tion is simpler than that of and majorizes ,
i.e.,

(30)

with being the value of at the th iteration.
• Minimization Step: Solving the optimization problem,

(31)

to obtain .
Note that applying the Majorization-Minimization technique

to the optimization problem in (29) decreases the value of the
objective function at each iteration. Indeed, we have

(32)

The first inequality above follows from the minimization step in
(31) and the second inequality holds true due to the majorization
step in (30). The descent property in (32) guarantees the con-
vergence of the sequence (assuming is bounded
from below). Generally, the goodness of the obtained solution
(i.e., after the convergence) depends on the employed starting
point. The optimality of the obtained solution has been ad-
dressed in [44]–[46], where the solution was shown to be
a stationary point of (under some mild conditions). It is
worth mentioning that a similar monotonically increasing be-
havior is guaranteed for Minorization-Maximization technique.
Such a behavior of the values of the objective function is im-
portant when considering the objective as a measure of the code
performance.
Remark 2: Note that the objective function in

the problem (25) is bounded from above. To observe this fact,
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note that for all can be upper bounded (considering (26))
as

(33)

Due to the fact that is a monotonically increasing func-
tion of for all and (see Appendix B), the above equation
leads to an upper bound on the objective function in (25) for all
and .
In the following sections, we propose two novel algorithms

based on MaMi to yield optimized solutions to (25).

IV. OPTIMAL CODE DESIGN USING SUCCESSIVE
MAJORIZATIONS

In this section, we propose a novel algorithm based on suc-
cessive majorizations (which we call Sv-MaMi) to obtain an op-
timal code . In particular, we apply successive majorizations to
the optimization problem in (25) and show the following:
Theorem 1. (Sv-MaMi Algorithm): The solution

of (25) can be obtained iteratively by solving the following
convex quadratically constrained quadratic program (QCQP)
(at the th iteration):

(34)

where the positive constant and the vectors de-
pend on and will be given below.
In the sequel, we provide a proof of Theorem 1. We begin by

noting that the convex function can be minorized using
its supporting hyperplane at any given , viz.

(35)

which implies that

(36)

Herein denote the obtained at the th iteration
and denote the first-order derivative of for

.
Now observe that using (26), the optimal code can

be obtained in an iterative manner solving the following maxi-
mization at the th iteration:

(37)

(38)

(39)

where and . Note that the above problem

is non-convex due to the non-affine equality constraint (38).
The following Lemmas pave the way toward the derivation

of the convex QCQPs of Theorem 1 corresponding to
.

Lemma 1: If is twice differentiable and if there exists
such that for all , then for any given , the

convex quadratic function

(40)

majorizes at .
Proof: See ([45] Section 3.4).

Lemma 2: Let be an even function (i.e.,
for all ), and assume that is decreasing over the
interval . Then the function

(41)

majorizes at .
Proof: See ([47] Theorem 4.5).

Lemma 3: Let for some
. Then for all we have that

Proof: We can rewrite as

(42)

The first term satisfies the conditions in Lemma 2 and hence its
majorizer is given by

Moreover, let . It is straight-
forward to verify that

Consequently, can be majorized using Lemma 1, and
hence the proof is concluded.

Bhattacharyya distance: For , substituting of
(38) into the objective function of (37) leads to the following
expression for the objective function:

(43)

where

(44)
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A minorizer of the logarithmic term can be obtained immedi-

ately by employing Lemma 3 with
, and . To deal with the expression

in (43) conveniently, we use the convexity of the function
for which implies

(45)

As a result, a minorizer of can be obtained by

considering the above inequality for and
. Furthermore, by replacing the summation terms in (43) for

each with the obtained minorizers (using Lemma 3 and (45))
and removing the constants, the criterion in (43) turns to:

(46)

where

(47)

Yet, due to the non-concavity of the terms ,
dealing with the maximization of the criterion in (46) appears

to be complicated. However, can be minorized
using its supporting hyperplane at any given ; more precisely,

(48)

The above inequality holds true due to the convexity of the
function and the fact that the gradient of
is given by . Ultimately, by using (46) and (48)
as well as removing the constants, the optimization problem as-
sociated with the th iteration of Sv-MaMi for is
as follows:

(49)

where

(50)

Note that as and , the above problem is a
convex QCQP.

KL-Divergence: In the case of , using (37) and (38)
(and dropping the constants) leads to the following expression
for the corresponding objective function:

(51)

The logarithmic term in (51) can be handled via Lemma 3 by

setting and . Moreover,
the expression can be minorized using (48). Con-

sequently, using a similar approach as in the case of the Bhat-
tacharrya distance, the optimization problem associated with the

th iteration of Sv-MaMi for is given by:

(52)

where

J-Divergence: In this case, (37) boils down to the following
non-convex optimization problem:

(53)

with . Note that in contrast to the

case of Bhattacharyya distance and KL-divergence (see (43)
and (51)), the expression appears in a minimiza-

tion problem. We consider a majorization of the function
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TABLE I
THE SV-MAMI ALGORITHM FOR

(note that when

). One can derive a majorizer for the aforementioned
function via Lemma 1, viz.

(54)

Note that we have

which implies that (54) holds true for . Therefore, by

minorizing using (48), the following QCQP is ob-
tained for the th iteration of Sv-MaMi for :

(55)

where

(56)

Mutual Information: The derivation of the QCQP cor-
responding to is straightforward. In particular, using
Lemma 3 as well as (48) we obtain the following QCQP:

(57)

where

(58)

Table I summarizes the steps of Sv-MaMi. Note that the
convex QCQP of the first step can be solved very efficiently
(see e.g., [48]). Moreover, the derivations of Sv-MaMi al-
gorithm can be extended to tackle code design problems in

which a PAR-constrained code is required. Such an extension
is discussed in Section VI.
Remark 3 (Saturation Phenomenon): It might be of interest to

investigate the behavior of the considered information-theoretic
criteria when the transmit energy grows large. Let represent
the unit-norm version of (i.e., ) and note that:

(59)

In light of the above equality, one can observe that all informa-
tion-theoretic criteria for tend to con-
stant values in as . We refer to this behavior of the
considered metrics as the saturation phenomenon, meaning that
for sufficiently large values of the transmit energy , the perfor-
mance improvement obtained by choosing or by increasing
is negligible. Interestingly, it might still be reasonable to in-

crease the transmit energy of the system. Indeed our previous
arguments rely on the fact that a fixed radar cell is considered;
however, increasing extends the detection range (or coverage)
of the system.

V. CODE DESIGN USING MAMI AND RELAXATION

In this section, we propose another algorithm based on MaMi
to tackle the optimization problems formulated in (25). The sug-
gested algorithm (which we call Re-MaMi) employs a relax-
ation of the rank constraint on the code matrix such
that each iteration of MaMi can be handled as a convex opti-
mization problem. In particular, we have the following result:
Theorem 2. (Re-MaMi Algorithm): The solution code matrix

(with relaxed rank constraint) can be obtained itera-
tively by solving the following convex problem (at the th
iteration):

(60)

where denotes a concave function of (for
and will be given in explicit form below.

Inwhat follows,we present a proof of Theorem 2 and then dis-
cuss the synthesis of optimized from the obtained . First
note that using matrix inversion lemma, can be rewritten as

(61)
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where . As a result, using (61) and (36), the optimal
code matrix can be obtained iteratively via solving the
following optimization problem at the th iteration:

(62)

(63)

(64)

(65)

(66)

Note that the above problem is non-convex due to the
non-affine equality constraints in (63) and (66). Hereafter,
we relax the rank-one constraint (66). Moreover, when the
term is not concave (with respect to ), a further
minorization will be needed in order to make the problem
convex. Let (to be discussed shortly) denote a concave

function that minorizes (we let

when is concave itself).
Remark 4: Note that for of rank , there exists a

such that . As a result, considering (61)
we have

which implies that the argument of the function in (62)
remains positive even in the case in which no rank constraint on
is imposed. Moreover, note that is

a convex function of . Consequently,
is a concave function of as is an in-

creasing function (for all ).
Selecting a suitable function depends on the code

design metric:
Bhattacharyya distance: By substituting of (63) as well

as , the objective function in (62) for can be
rewritten (by omitting constants) as

where with
being the obtained at the th iteration. As mentioned in Re-
mark 4 the logarithmic term is concave; however, the second
term is convex with respect to (w.r.t.) , and hence a minoriza-
tion is needed to tackle the problem.
Lemma 4: Let . Aminorizer

of at is given by

Proof: See Appendix C.

By applying Lemma 4 to (67), we can recast themaximization
step at the th iteration of Re-MaMi for as follows:

(67)

where

(68)

KL-divergence: By substituting and in (62),
it can be easily verified that (62) includes the expression

with positive sign. Therefore, similar
to the case of Bhattacharyya distance, the following convex
problem can be derived (using Lemma 4) at the th
iteration of Re-MaMi for :

(69)

where

(70)

J-divergence: For the case of , the relaxed version of
the maximization in (62)–(66) is equivalent to the optimization
problem:

(71)

where and

.
Note that Remark 4 ensures that for all , and

hence (71) is a convex optimization problem due to the con-
vexity of w.r.t. . Note also that the optimiza-
tion problem in (71) can be recast as a semi-definite program
(SDP) by considering an SDP representation of the
minimization (see e.g., [49]).
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TABLE II
THE RE-MAMI ALGORITHM FOR

Mutual information: Using the relaxation of the rank-one
constraint for the case of , one obtains the following
form of the optimization problem in (62)–(66):

(72)

Note that the above relaxed version of the optimization in
(62)–(66) is a convex problem that can be solved in one
iteration of Re-MaMi (as no majorization is required, i.e.,

).
We end this section by discussing the synthesis stage re-

quired for Re-MaMi. Once the proposed Re-MaMi algorithm
converges to , the corresponding code can be obtained
as follows. If , the local optimum obtained for
the relaxed problem in (60) yields a local optimum of (25) via

. Otherwise, a synthesis loss is unavoidable due to
the rank of being larger than 1. The rank behavior of the
matrix obtained from the relaxed problem and the associated
rank-one approximations have been discussed in the literature
particularly for semi-definite relaxations (see e.g., [50], [51]
and references therein). Least-squares (LS) synthesis is a
common approach to synthesize the optimized codes [50]. The
LS criterion can be formulated as:

(73)

The solution to the above problem is simply given by
where is the principal eigenvector of . Inspired by the ran-
domization technique in the literature (see e.g., [50] and the ref-
erences therein), here we employ randomization as an alterna-
tive approach of code synthesis. In the randomization technique,
several feasible random vectors are generated (e.g.,
according to the distribution ) and is obtained as

(74)

where denotes the objective function in (60).
The steps of Re-MaMi algorithm are summarized in Table II.

Note that the first step of Re-MaMi (for all )
contains a convex problem which can be solved efficiently via
interior point methods [52]. Modification of Re-MaMi to obtain
optimized codes under a PAR constraint is discussed in the next
section.

VI. EXTENSIONS OF THE DESIGN METHODS

In this section we provide two extensions of the previous de-
sign methods to PAR-constrained codes and the case of mul-
tiple transmitters. In order to use the power resources efficiently
and to avoid non-linear effects at the transmitter, codes with low
PAR values are of practical interest in many applications [53],
[54]. To the best of our knowledge, no study of code design
with PAR constraints using information-theoretic criteria was
conducted prior to this work. This section also includes the ex-
tension of the design methods to deal with the case of multiple
transmitters with orthogonal transmission.

A. PAR-Constrained Code Design

In this subsection, we extend the derivations of Sv-MaMi and
Re-MaMi for code design with an arbitrary PAR constraint, viz.

(75)

For Sv-MaMi the PAR constrained problem that must be
solved is:

(76)

For Re-MaMi, one can consider the PAR constraint in the syn-
thesis stage, which for LS synthesis leads to the following opti-
mization problem:

(77)

Note that the QCQPs in (76) and (77) are non-convex optimiza-
tion problems and known to be NP-hard [53]. Also note that the
problem in (76) can be recast in a form similar to (77), viz.

(78)

where , and

Inwhat follows, wewill explain how to solve (76) but, of course,
(77) can be tackled in the same way. Let for
any . Next observe that the problem in (78) is
equivalent to:

(79)
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The above problem can be tackled using the power-method in
[55]. More precisely, the code vector at the th iteration
can be obtained from , via solving the optimization problem

(80)

where represents the vector containing the first entries
of . The optimization problem (80) is a “nearest-vector”
problem with PAR constraint. Such PAR constrained problems
can be tackled using an algorithm proposed in [56]. Note that
the codes obtained as above can be scaled to fit any desired level
of transmit energy as a scaling does not affect the PAR metric
(see (75)). We refer the interested reader to [53] for using the
randomization technique when a PAR constraint is imposed.

B. The Case of Multiple Transmitters

Here we discuss the extension of the design problem to the
case of multiple transmit antennas that emit orthogonal signals.
Let and denote the passband version and associated
code vector of the th transmit signal, respectively. Assume
that are well-separated in the frequency domain
such that the signal echoes corresponding to each transmitter
can be extracted at the th receiver. Then, the discrete-time
signal at the th receiver due to the th transmitter can be ex-
pressed as

(81)

where denotes the “amplitude” of the target return and
is associated with the clutter, both corresponding to the

th receiver and the th transmitter, and denotes the in-
terference at the th receive antenna corresponding to the th
frequency band. Making assumptions similar to those stated in
Section I leads to the following optimal detector:

(82)

with , and

(83)

(84)

Herein and denote the variance of and co-
variance matrix of , respectively.
It is now straightforward to verify that the code design

problem for the case of multiple transmitters can be dealt with
using a modified version of (25):

(85)

where denotes the maximum available transmit energy
for the th transmit antenna. Next observe that the above
optimization problem is separable w.r.t . Therefore, the
code design procedure associated with each transmitter can
be independently handled using the proposed methods in this
paper.

VII. SIMULATION RESULTS

In this section, we present several numerical examples
to examine the performance of the proposed algorithms. In
particular, we compare the system performance for coded and
uncoded (employing the code vector ) scenarios.
Comparisons between the computational costs of Sv-MaMi
and Re-MaMi are also included. Moreover, the behavior of the
information-theoretic criteria is assessed when varies.
Throughout this section, we assume the code length ,

the number of receivers , variances of the target com-
ponents given by (for ), and variances
of the clutter components given by

. Furthermore, we assume that the th inter-
ference covariance matrix is given by

. The ROC is used to evaluate the detection per-
formance of the system. Particularly, and are calculated
using their analytical expressions (see (32)–(34) in [14]). Then
the ROC is plotted by numerically eliminating the detection
threshold. The CVX toolbox [57] is used for solving the MaMi
convex optimization problems.
Fig. 1(a)–(d) show the ROCs associated with the coded

system (employing the optimized codes) as well as the un-
coded system for and . The plotted
ROCs correspond to the obtained codes using Sv-MaMi,
Re-MaMi with either randomization (with ) or LS,
and the uncoded system. Theses figures also show the re-
sults of PAR-constrained code design with (i.e.,
constant modulus) for Sv-MaMi and Re-MaMi (LS). It
can be observed that the performance of the coded system
(for all ) outperforms that of the uncoded system signifi-
cantly. Furthermore, the codes obtained by Sv-MaMi lead to
slightly better performance compared to the codes provided
by Re-MaMi as Sv-MaMi circumvents the synthesis loss.
Note also the superiority of synthesis via randomization when
compared to the LS synthesis. As to the constrained design, it
can be seen that imposing the PAR constraint leads to a minor
performance degradation (for all criteria) when compared to
the unconstrained design. The fact that Sv-MaMi
outperforms Re-MaMi complies with the related
observation for the unconstrained case. In this example, the
detection performances corresponding to various criteria are
similar. However, this behavior does not generally hold true
(see e.g., [21], [34], [35] and [18] for details on this aspect).
In Fig. 2(a)–(d), the error norm has been depicted versus the

iteration number for both Sv-MaMi and Re-MaMi. The error
norm for Sv-MaMi and Re-MaMi is defined as
and , respectively. It can be observed that
Re-MaMi converges much faster than Sv-MaMi. This observa-
tion can be explained by noting that in Sv-MaMi several ma-
jorizations have been applied successively. However, the com-
plexity per iteration of Sv-MaMi is less than that of Re-MaMi



5412 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 21, NOVEMBER 1, 2013

Fig. 1. ROCs corresponding to the obtained codes using Sv-MaMi and Re-MaMi (both PAR-constrained and unconstrained) as well as the uncoded system for
different design metrics: (a) , (b) , (c) , and (d) . For unconstrained design using Re-MaMi algorithm, results of both LS synthesis and randomization are
shown.

Fig. 2. Error norm versus iteration number for Sv-MaMi/Re-MaMi and different design metrics: (a) , (b) , (c) , and (d) . For the case of , Re-MaMi
converges in one iteration.

because each iteration of Sv-MaMi can be handled efficiently
by solving a convex QCQP. Another observation is that for the
metrics and , both algorithms require more iterations for

convergence when compared to and . This might be due
to the more complicated form of the objective functions associ-
ated with and . Note that for , Re-MaMi not only
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Fig. 3. Behavior of various information-theoretic criteria versus transmit energy for the coded and the uncoded systems: (a) , (b) , (c) , and (d) . Results
for Sv-MaMi with and with no PAR constraint are shown.

TABLE III
COMPARISON OF THE AVERAGE COMPUTATIONAL TIMES (IN SEC.) OF

SV-MAMI AND RE-MAMI ON A STANDARD PC

needs just one iteration to converge but also it provides the glob-
ally optimal solution to the relaxed optimization problem owing
to its convexity (see (72)).
The required computation time of Sv-MaMi and Re-MaMi

(employing randomization with ) for various criteria is
shown in Table III. Due to the fact that the convergence time
is dependent on the starting point as well as the stop criterion,
the reported times are averaged for 100 random starting points
on a standard PC (with Intel Core i5 2.8 GHz CPU and 8 GB
memory) assuming . It can be observed from this table
that for , Re-MaMi converges much faster than it
does in the case of . This can be explained by con-
sidering the required iteration numbers for different . Further-
more, the computational times of Sv-MaMi are almost the same
for all criteria. In sum, from a computational point of view, it
can be concluded that Re-MaMi is preferable for
whereas Sv-MaMi is more suitable for . It is also
practically observed that there is no considerable difference be-
tween computational time of Re-MaMi with either LS or ran-
domization with .
The behavior of various information-theoretic criteria versus

the transmit energy is investigated in Fig. 3(a)–(d) for the
coded system (using Sv-MaMiwith , andwithout PAR

constraint) as well as the uncoded system. This figure also illus-
trates the saturation phenomenon. We observe from Fig. 3 that a
saturation of the coded system always occurs before that in the
uncoded system, which was expected: employing an optimized
code enables the system to perform closer to the best possible
performance at lower values of . For all criteria, an approxi-
mate decrease of 14.5 dB in the required transmit energy of the
coded system (with ) is observed for as for
Fig. 1 (see above).

VIII. CONCLUSION

Multi-static radar code design schemes based on information-
theoretic criteria were considered in the presence of clutter. Two
general methods were proposed to tackle the highly non-linear
and non-convex design optimization problems using the Ma-
jorization-Minimization (MaMi) technique. The main results
can be summarized as follows:
• A discrete-time formulation of the problem as well as the
associated optimal detector were presented. Due to the lack
of analytical ROC, information-theoretic criteria were used
as design metrics, viz. the Bhattacharyya distance, KL-di-
vergence, J-divergence, and theMutual information. Using
these metrics, optimization problems corresponding to the
original code design problem were derived.

• A unified framework was proposed to describe all the
arising optimization problems. Two methods called
Sv-MaMi and Re-MaMi (based on the MaMi technique)
were devised to solve these optimization problems:
i) Sv-MaMi uses successive (linear as well as
quadratic) majorizations such that each iteration
of the algorithm can be handled using a convex
QCQP.
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ii) Re-MaMi consists of majorization steps, rank-one
constraint relaxation, and a synthesis stage. A
least-squares approach and a randomization tech-
nique were used for code synthesis.

• The proposed methods were extended to PAR-constrained
code design problems and to the case of multiple transmit-
ters (with orthogonal transmission).

• Numerical examples were provided to examine the pro-
posed methods. It was observed that Re-MaMi is computa-
tionally more efficient for . On the other hand,
for Sv-MaMi is preferable. The metric’s satu-
ration phenomenon, as the transmit energy increases, was
also investigated.

Note that stationary targets were considered in this work.
Optimal code design using information-theoretic criteria in the
case of moving targets can be an interesting topic for future
research.

APPENDIX A
DERIVATION OF THE DISCRETE-TIME MODEL

It follows from (1) and (2) that the th sample of the output
of the matched filter at the th receiver can be written as

(86)

Let denote the th integral in the right-hand side of the above
equation. Since are non-overlapping and
have unit energy, can be simplified as

(87)

Furthermore, we have that

(88)

where is the cross-correlation function of
and defined by

(89)

For unambiguous-range clutter scatterers (i.e., scatterers with
) [24], is zero for because

and are non-overlapping2.
Therefore, can be rewritten as

(90)

Note that represents the filtered version of the inter-
ference. Finally, we can simplify (86) as

According to Assumption 3, are
independent RVs, for . Consequently,

can bemodeled, using the central limit theorem [25],
as a zero-mean complex Gaussian RV with variance . Note
that can be calculated using and the distribution
of the [2].

APPENDIX B
MONOTONICALLY INCREASING BEHAVIOR OF THE FUNCTION

For , we have . Therefore, the
first-order derivative of is given by

(91)

Similarly, for the first-order derivative of we have

(92)

As to the J-divergence, one can easily verify that

(93)

Due to the fact that the right-hand side in (91), (92), and (93)
are non-negative for , the function is mono-
tonically increasing for in . Moreover, the case of

simply leads to the monotonically increasing function
.

APPENDIX C
PROOF OF LEMMA 4

First note that . In addition,
for every pair of positive semidefinite matrices
if

(94)

2Note that , otherwise corresponds to a blind range of the system
[24].
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Observe that .
Therefore, using the variables and

, one can rewrite the left-hand side of (94) as

Now it is straightforward to verify that the right-hand side of the
above equation is always positive semi-definite as and

.
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