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ABSTRACT

In this paper, Perfect Root-of-Unity Codes (PRUCs) with en-

tries in αp = {x ∈ C | xp = 1} where p is a prime are

studied. A lower bound on the number of distinct phases in

PRUCs over αp is derived. We show that PRUCs of length

L ≥ p(p − 1) must use all phases in αp. It is also shown

that if there exists a PRUC of length L over αp then p divides

L. We derive equations (which we call principal equations)

that give possible lengths of a PRUC over αp together with

their phase distribution. Using these equations, we prove for

example that the length of a 3-phase perfect code must be of

the form L = 1
4

(
9h2

1 + 3h2
2

)
for (h1, h2) ∈ Z

2 and we also

give the exact number of occurences of each element from α3

in the code. Finally, all possible lengths (≤ 100) of PRUCs

over α5 and α7 together with their phase distributions are pro-

vided.

Index Terms— Perfect codes, Root-of-unity codes, Peri-

odic autocorrelation, Phase distribution

1. INTRODUCTION

Perfect Root-of-Unity Codes (PRUCs), also known as per-

fect N -phase [1] or polyphase [2] codes, are unimodu-

lar codes with entries in αN = {x ∈ C | xN = 1}
and the property that all their out-of-phase periodic auto-

correlations are equal to zero. These codes are of inter-

est in several applications including communication sys-

tems for Frequency-Hopping Spread-Spectrum Multiple-

Access (FH/SSMA) and Direct-Sequence Spread-Spectrum

Multiple-Access (DS/SSMA) [3]. Other applications in-

clude pulse compression for continuous-wave radars [3], fast

startup equalization and channel estimation [1].

Due to implementation issues it is usually desirable that

the entries of the code are from a small alphabet. With this

fact in mind, it is interesting to note that 4, 6 and 11 out

of the first 8, 16 and 32 natural numbers, respectively, are

prime. The study of PRUCs with prime-size alphabets is im-

portant not only because of this relatively high density of

prime numbers in small alphabet sizes, but also because of
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the role of prime numbers as building blocks of natural num-

bers. A similar building block property can be seen in the

PRUC case: let n = mk where m and k are co-prime and as-

sume that there exist PRUCs u = (u0, · · · , um−1) and v =
(v0, · · · , vk−1) with alphabet size m† and k† respectively;

then w = (w0, · · · , wn−1) where wl = u(l mod m)v(l mod k)

is a PRUC with alphabet size n† = m†k†. This construction

is known as Chinese Remainder Theorem (CRT) construction

or simply as the direct product [4].

A general computational method to find perfect (or

almost-perfect) codes is proposed in [5]. In [3], a unified ap-

proach covering all known construction methods of PRUCs

was derived. Besides construction methods, some publi-

cations (e.g. [1]) have introduced and used the following

necessary condition on PRUCs: if x = {xl}L−1
l=0 is a PRUC

of length L then ∣∣∣∣∣
L−1∑
l=0

xl

∣∣∣∣∣ = √
L (1)

This necessary condition follows directly from the fact that

the DFT of a PRUC has a constant magnitude (note that the

DFT value at zero frequency is the sum of the code).

In this work, PRUCs with a prime-size alphabet are stud-

ied. In Section 2, the phase distribution of PRUCs over αp

is discussed. We show that if there exists such a code over

αp then p must divide the code length. Furthermore, a set

of equations (which we call the principal equations) are de-

rived that can be used to show the non-existence of PRUCs

for some lengths and to give the exact phase distribution for

possible lengths. As an example for the geometrical solution

of the principal equations introduced in Section 2, the case of

p = 3 (leading to 3-phase codes) is discussed in some detail.

Finally, section 3 concludes the paper.

Notation: We use bold lowercase letters for vectors/codes

and bold uppercase letters for matrices. (.)T and (.)∗ de-

note the vector/matrix transpose and complex conjugate re-

spectively. 1n is the all one vector of length n. e
(n)
l is the

lth standard basis vector in R
n. ‖x‖n or the ln-norm of the

vector x is defined as (
∑

k |x(k)|n)
1
n where {x(k)} are the

entries of x. N, Z, R and C represent the set of natural, in-

teger, real and complex numbers respectively. Zn represents

the set {0, 1, · · · , n − 1}. Finally, p denotes a prime number

throughout the paper.

3136978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011



2. PHASE STUDY

In this section, we study the phase distribution of PRUCs

over the alphabet αp of prime size. Let x = {xl}L−1
l=0 ={

ej
2π
p kl

}L−1

l=0
be an L-length PRUC over αp. All kl are in Zp

and we call them the integer phases of the code. The periodic

autocorrelation of x at lag u ∈ ZL is defined as

Ru =

L−1∑
l=0

ej
2π
p (kl−kl+u) =

{
L u = 0
0 u ∈ ZL − {0} (2)

where the indices of {kl} are used in a periodic manner (i.e.

mod L). It is interesting to note that Ru is a summation of

terms which are also in αp. Theorem 1 paves the way for

using this observation:

Theorem 1. If
∑p−1

k=0 ake
j 2π

p k = 0 for some ak ∈ Z and
prime p, then all ak must be identical.

Proof: We prove a more general form of the theorem by

using some results from the theory of algebraic numbers and

minimal polynomials: a number is called algebraic iff it is a

root of a polynomial with rational coefficients. The minimal

polynomial Pmin(x) of an algebraic number x0 is the poly-

nomial with rational coefficients, minimum degree and the

leading coefficient equal to 1 which satisfies Pmin(x0) = 0.

It is known [6] that the minimal polynomial of the primitive

pth root of unity, p prime, is of the unique form
∑p−1

k=0 x
k.

We conclude that if P (ej
2π
p ) = 0 for a polynomial P (x) with

rational coefficients and degree d = p− 1 then P (x) must be

equal to w
∑p−1

k=0 x
k for some rational scalar w. This implies

that all coefficients of P (x) must be equal, which completes

the proof. �
The next two corollaries follow directly from the above

theorem:

Corollary 1. If there exists a PRUC of length L over αp then
p|L.

Proof: Let u ∈ ZL − {0}. Then it follows from (2) and

Theorem 1 that Ru = m
∑p−1

k=0 e
j 2π

p k = 0 where m = L/p
must be an integer. �

In the sequel we use the notation L = mp, m ∈ N, for the

length of PRUCs over αp.

Corollary 2. Let x =
{
ej

2π
p kl

}mp−1

l=0
be a PRUC of length

L = mp over αp. Then for every s ∈ Zp and u ∈ ZL −
{0}, there exist exactly m distinct integers {l} such that kl ≡
kl+u + s (mod p).

Proof: We only need to observe that, according to The-

orem 1, all sums in (2) for {Ru}u∈ZL−{0} must have exactly

m terms equal to ej
2π
p s for every s ∈ Zp . �

According to Corollary 2, for every u ∈ ZL − {0}, there

exist exactly m distinct integers {l} such that kl = kl+u. Let

Φx be the circulant matrix made from integer phases {kl} of

the code x,

Φx =

⎛⎜⎜⎜⎝
k0 k1 · · · kmp−1

kmp−1 k0 · · · kmp−2

...
...

. . .
...

k1 k2 · · · k0

⎞⎟⎟⎟⎠ (3)

For the lth column of Φx, consider the location of the en-

tries which are equal to kl (l = 0, · · · , p − 1). Considering

these locations for all columns, we build an mp×mp equiva-

lence matrix Φe whose entries in the mentioned locations are

1; otherwise they are 0. Based on Corollary 2, all rows of

Φe have exactly m ones except the first row whose all entries

are one. If μk represents the number of times that ej
2π
p k oc-

curs in the sequence then
∑p−1

k=0 μk = mp. As we discussed

above, by considering the rows of Φe, we conclude that there

are mp + m(mp − 1) ones in Φe. On the other hand, since

every integer phase k ∈ Zp gives μk columns with μk ones in

each of them, the number of ones in Φe is equal to
∑p−1

k=0 μ
2
k

and therefore
∑p−1

k=0 μ
2
k = mp+m(mp− 1). Now let us as-

sume that t of {μk} are nonzero. From the Cauchy-Schwarz

inequality we have
∑p−1

k=0 μ
2
k ≥ 1

t

(∑p−1
k=0 μk

)2

which im-

plies

m2p+m(p− 1) ≥ (mp)2

t
(4)

and as a result

t ≥ mp2

(m+ 1)p− 1
(5)

The above lower bound shows that as m increases, a larger

number of phases from αp are needed to build a PRUC of

length L = mp. For sufficiently large values of m we need

all phases:

Corollary 3. For m ≥ p − 1, all phase values must be used
in a PRUC.

Proof: This is a direct result of the lower bound in (5).

�
Interestingly, the length condition of Corollary 3 covers codes

of length p2 over αp obtained from construction methods such

as Frank, P1, P2 and Px [7].

Now, for every s ∈ Zp − {0}, let us build the Φe matrix1

as follows: by finding the locations of the entries kl′ in the

lth column of Φx such that kl′ ≡ kl + s (mod p), we repre-

sent these locations in Φe by 1, and by 0 otherwise. Based on

Corollary 2, for every u ∈ ZL − {0}, there exist exactly m

1The dependency of {Φe} matrices on s is not explicitly shown for nota-

tional simplicity.
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p Length (L) Phase distribution {μk}p−1
k=0

5 (2, 1, 2, 0, 0) (2, 2, 0, 1, 0)
20 (6, 4, 6, 2, 2) (6, 6, 2, 4, 2)
25 (6, 6, 6, 6, 1) (9, 4, 4, 4, 4)

5 45 (12, 9, 12, 6, 6) (12, 12, 6, 9, 6)
55 (16, 12, 10, 10, 7) (16, 10, 12, 7, 10)

(15, 6, 10, 12, 12) (15, 12, 6, 12, 10)
80 (20, 16, 20, 12, 12) (20, 20, 12, 16, 12)
100 (28, 18, 18, 18, 18) (22, 22, 22, 22, 12)

7 (2, 2, 1, 0, 0, 2, 0)
28 (6, 6, 4, 2, 2, 6, 2) (7, 5, 5, 2, 5, 2, 2)

7 49 (13, 6, 6, 6, 6, 6, 6) (8, 8, 8, 8, 8, 8, 1)
56 (11, 10, 10, 5, 10, 5, 5) (11, 11, 6, 11, 6, 6, 5)
63 (12, 12, 9, 6, 6, 12, 6)
98 (17, 17, 17, 10, 17, 10, 10) (18, 18, 11, 18, 11, 11, 11)

Table 1. All possible lengths (less than or equal to 100) of

PRUCs over αp for p = 5 and 7 together with phase distribu-

tions.

distinct integers {l} such that kl+u ≡ kl + s (mod p). There-

fore the Φe matrix has exactly m ones in each of its rows

except for the first row which is all zero. This implies that Φe

has m(mp− 1) ones. On the other hand, the number of ones

in Φe is equal to
∑p−1

k=0 μkμk+s as it equals the number of all

pairs with the property kl+u ≡ kl + s (mod p). Therefore,

all out-of-phase correlations {∑p−1
k=0 μkμk+s}s∈Zp−{0} of the

{μk} sequence are equal to m(mp− 1).
If we define rk = μk − m, we obtain a set of equations

which we call the principal equations:⎧⎨⎩
∑p−1

k=0 rk = 0∑p−1
k=0 r

2
k = m(p− 1)∑p−1

k=0 rkrk+s = −m, s ∈ Zp − {0}
(6)

It is interesting to note that if {rk} is a solution to (6), then

{−rk}, {r−k} and {rk+l} where l ∈ Zp are also valid so-

lutions to (6). In other words, the set of principal equations

induces a certain type of equivalence class on its solutions.

Next, we note that the unimodular perfect codes enjoy a simi-

lar set of equivalence properties: let x be a unimodular perfect

code, then x∗ and ejφx (where φ can be chosen arbitrarily)

are also unimodular perfect codes. This shows that given a

solution {rk} to the principal equations, the solutions {r−k}
and {rk+l} do not lead to new PRUCs. In contrast, the solu-

tion {−rk} might lead to new codes. Table 1 shows all feasi-

ble lengths (less than or equal to 100) and their corresponding

phase distribution obtained from the principal equations for

p = 5 and 7. Using the equivalence properties of PRUCs, the

{μk} sequences are circularly shifted such that μ0 take the

maximum value among all {μk}. The following discussion is

devoted to a geometrical study of the problem.

Let r0 = (r0, · · · , rp−1)
T

and also let rk represent the

circularly shifted version of r0 by k ∈ Zp. The principal

equations can be rephrased as follows over all vectors {rk}:⎧⎨⎩
1T
p rk = 0

‖rk‖2 =
√
m(p− 1)

rTk rl = −m, k �= l

(7)

The angle between each pair of vectors {(rk, rl)}k �=l is

θ = arccos

(
rTk rl

‖rk‖2‖rl‖2

)
= arccos

( −1

p− 1

)
(8)

Therefore, {rk}k∈Zp , form a set of p vectors lying in a (p−1)-
dimensional space which is the hyperplane orthogonal to 1p

and the angle between each pair of them is the value given in

(8). We further note that the structure made by connecting all

vertices pointed by {rk} is a known multi-dimensional ob-

ject called a Regular Simplex [8]. Such structures are shown

in Fig. 1 for one, two and three dimensions. The reference

Fig. 1. (a-c) Regular Simplexes in one, two and three dimen-

sional space. In n dimensions they can be characterized with

n+ 1 vectors with the same l2-norm and also the same angle

between them as described in Eq. (8).

[8] suggests {e(p)k } (i.e. the standard basis) as vertices of a

regular simplex of edge
√
2 lying in the hyperplane 1T

p x = 1.

Therefore, a regular simplex characterized by some vectors

{r̃k} with its center at origin and points with l2-norm equal

to
√
m(p− 1) lying in the hyperplane 1T

p x = 0 can be ob-

tained from {e(p)k } by a translation and scaling. As every two

regular simplexes with their center at origin can be obtained

from each other by a set of rotations, we can find {rk} vec-

tors by rotations of {r̃k} such that their end lie at the integral

lattice. Note that as the regular simplex made by {r̃k} is in a

(p− 1)-dimensional space, its rotation could be parametrized

with (p − 2) angles ψ0, · · · , ψp−3 and as a result the vectors

{rk} could be written as a function of sinψk and cosψk for

k ∈ Zp−2. Taking into consideration the fact that {rk} are

integral, this gives a closed form solution for m (and as a re-

sult a closed form solution for the code length) and also for

the phase distribution.

As an example for using the regular simplex to solve the

principal equations we study the case of p = 3: for 3-phase

perfect codes, the {rk} make a two dimensional regular sim-

plex orthogonal to 13, which has 3 vectors and each two of
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them have an angle of 2π
3 . The structure of this regular sim-

plex is shown in Fig. 1(b). Let R13 be the unitary rotation

matrix which maps 13 to
√
3e

(3)
3 . Also let

r′k =
√
2m

(
cos

(
2kπ

3
+ ψ

)
, sin

(
2kπ

3
+ ψ

)
, 0

)T

(9)

for k ∈ Z3 and ψ ∈ [0, 2π). Therefore, rk is equal to R−1
13

r′k
for some ψ. This implies that rk ∈ Z

3 is of the form

√
2m

⎛⎜⎝
√
2
2 cos

(
2kπ
3 + ψ

)− √
6
6 sin

(
2kπ
3 + ψ

)
√
6
3 sin

(
2kπ
3 + ψ

)
−

√
2
2 cos

(
2kπ
3 + ψ

)− √
6
6 sin

(
2kπ
3 + ψ

)
⎞⎟⎠

for k ∈ Z3. As {rk} are the circularly shifted versions

of each other, it is sufficient to study one of them. For

k = 0, we infer that both h1 = 2
√

m
3 sinψ (which is

the second entry of r0) and h2 = 2
√
m cosψ (which is

the difference between the first and the third entry of r0)

must be integers. We conclude that 3h2
1 + h2

2 = 4m and

r0 = 1
2 ((h2 − h1), 2h1,−(h2 + h1))

T
. Therefore, the code

length must be of the form L = 1
4

(
9h2

1 + 3h2
2

)
and the phase

distribution is given by

1

4

(
3h2

1 + h2
2

)
13 +

1

2

⎛⎝ (h2 − h1)
2h1

−(h2 + h1)

⎞⎠ (10)

for integers h1 and h2.

Finally, let S be the sum of entries of a PRUC, i.e. S =∑mp−1
l=0 ej

2π
p kl . For {rk} satisfying the principal equations:

p−1∑
k=0

rkrk+s =

(
p−1∑
k=0

r2k

)
−mp = −m, s ∈ Zp − {0} (11)

We have |S|2 =
∣∣∣∑p−1

k=0 μke
j 2π

p k
∣∣∣2 =

∣∣∣∑p−1
k=0 rke

j 2π
p k

∣∣∣2 and

as a result of (11),

|S|2 =

p−1∑
s=0

(
p−1∑
k=0

rkrk+s

)
ej

2π
p s = mp (12)

which shows that satisfaction of the principal equations im-

plies the necessary condition in (1).

3. CONCLUDING REMARKS

Perfect root-of-unity codes with prime-size alphabets have

been studied. A lower bound on the number of distinct phases

which must be used in a PRUC over αp was derived. The

lower bound was used to show that for PRUCs of length L ≥
p(p− 1) over αp, the code must use all phase values. Guide-

lines to find possible lengths (L) of PRUCs over αp were

given. It was shown that p must divide L and there should

exist a phase distribution {μk} (introduced in Section 2) sat-

isfying the principal equations for which
∑p−1

k=0 μk = L. A

geometrical analytical method to solve the principal equations

was introduced for a specific p using the regular simplex. It

was shown that satisfaction of the principal equations implies

satisfaction of the previously known necessary condition (1),

and therefore that the latter condition is weaker than the prin-

cipal equations.

We conclude the paper with two remarks. First of all, sat-

isfaction of the principal equations is necessary but not suf-

ficient for a PRUC. The necessity induced by the principal

equations guarantees that if a code exists over αp then it will

have a specific length and phase distribution. To the best of

our knowledge, these new results can be used to show the

impossibility of some lengths and to significantly reduce the

size of search space of PRUCs in general. Finally, although

Theorem 1 shows that a uniform distribution of phases leads

to perfect codes, for almost-perfect codes we can focus on

almost-uniform distributions. A clear possibility here can be

outlined as follows: for lengths for which a perfect code does

not exist, one can try to build codes with a phase distribution

which approximately satisfies the principal equations.
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