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In this paper, we introduce a fast computational frequency-domain approach for

designing complementary sets of sequences. Following the basic idea of CAN-based

algorithms, we propose an extension of the CAN algorithm to complementary sets of

sequences (which we call CANARY). Moreover, modified versions of the proposed

algorithm are derived to tackle the complementary set design problems in which low

peak-to-average-power ratio (PAR), unimodular or phase-quantized sequences are of

interest. Several numerical examples are provided to show the performance of CANARY.
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1. Introduction

An active sensing device such as a radar system,
transmits suitable waveforms into its surrounding that
enable it to measure useful properties (e.g. location or
speed) of peripheral objects. The transmit waveforms are
generally formulated by using discrete-time sequences
(see e.g. [1]). Let x¼ ðxð1Þ, . . . ,xðNÞÞT represent such a
sequence (to be designed). The aperiodic and, respec-
tively, periodic autocorrelations of x are defined as

rðkÞ ¼
XN�k

l ¼ 1

xðlÞxnðlþkÞ ¼ rnð�kÞ, 0rkr ðN�1Þ, ð1Þ

cðkÞ ¼
XN

l ¼ 1

xðlÞxnðlþkÞmod N ¼ cnð�kÞ, 0rkr ðN�1Þ: ð2Þ

In general, transmit sequences x with small out-of-phase
(i.e. ka0) autocorrelation lags lead to a better
. All rights reserved.

ax: þ46 18 511925.

. Soltanalian).
performance of an active sensing system. As a result,
there exists a rich literature on designing such sequences
(see e.g. [1–22] and the references therein).

In order to avoid non-linear side effects and maximize
the efficiency of power consumption at the transmitter,
unimodular sequences (with 9xðlÞ9¼ 1) are desirable.
Moreover, for cases with more strict implementation
demands, phase-quantized unimodular sequences must
be considered. For unimodular sequences it is not possible
to make all f9rðkÞ9g much smaller than r(0) (depending on
the application, the needed ratio can be around 10�5 or
even smaller). For instance, it can be easily observed that
9rðN�1Þ9¼ 1, no matter how we design the sequence x. In
contrast with this, unimodular sequences with zero out-
of-phase (i.e. perfect) periodic autocorrelation can be
obtained for example via construction algorithms [4].
However, even by considering the periodic correlation,
finding phase-quantized unimodular sequences with per-
fect periodic autocorrelation is a hard task. The difficulties
in designing sequences with good autocorrelation encour-
aged the researchers to consider the idea of complemen-
tary sets of sequences (CSS). A set X ¼ fx1,x2, . . . ,xMg
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containing M sequences of length N is called complemen-
tary iff the autocorrelations of fxmg sum up to zero at any
out-of-phase lag, i.e.

XM
m ¼ 1

rmðkÞ ¼ 0, 1r9k9r ðN�1Þ, ð3Þ

where rm(k) represents the kth autocorrelation lag of xm.
Consequently, to measure the complementarity of a
sequence set fxmg one can consider the integrated side-
lobe level (ISL) or the peak sidelobe level (PSL) metrics
defined by

ISL¼
XN�1

k ¼ 1

XM
m ¼ 1

rmðkÞ

�����
�����
2

,

PSL¼max
k

XM
m ¼ 1

rmðkÞ

�����
�����

( )
, ð4Þ

as well as the ISL-related merit factor (MF), i.e.

MF¼ E2=ð2ISLÞ, ð5Þ

where E denotes the sum of the energy of the sequences.
Complementary sets containing M¼2 sequences, which
are known as complementary pairs, form a special case of
CSS. Complementary pairs with binary (i.e. 71) elements
were first studied in [5] and are usually referred to as
Golay pairs (GP).

CSS have been applied to radar pulse compression [7],
multiple-input–multiple-output (MIMO) radars [8], ultra-
sonic ranging [9], synthetic aperture imaging [10], and
ultrasonography [11]. In addition to active sensing sys-
tems, CSS have applications in code-division multiple-
access (CDMA) communication schemes [12], ultra wide-
band (UWB) communications [13], orthogonal frequency-
division multiplexing (OFDM) [14,15], channel estimation
[16], and data hiding [17]. Due to such a wide range of
applications, the construction of CSS has been an active
area of research during the last decades. The majority of
research results on CSS have been concerned with the
analytical construction of GP or CSS for restricted
sequence lengths N. For example, it is shown in [18] that
GPs exist for lengths of the form N¼ 2a10b26g where a,b
and g are non-negative integers. Some conditions on
the existence of CSS can be found in [19] and [20].
Furthermore, Ref. [20] considers the extension of GP to
general CSS. A theoretical as well as computational
investigation of feasible GPs of lengths No100 is accom-
plished in [21].

In contrast to analytical constructions, a computa-
tional design of CSS does not impose any restriction on
the sequence length N or the set cardinality M. Further-
more, a computational algorithm for designing CSS can
provide plenty of CSS without the need for user-tuned
parameters of analytical constructions. Such algorithms
can also be used to find almost (i.e. sub-optimal) com-
plementary sets of sequences for (N,M) values for which
no CSS exists. A computational algorithm (called ITROX)
for designing CSS was introduced in [9]. In this paper, we
propose an extension of the CAN algorithm [23] for
designing complementary sets of sequences (which we
call CANARY). The proposed algorithm works in the
frequency domain, and is generally faster than ITROX.
This is due to the fact that ITROX is based on certain
eigenvalue decompositions with OðMN2

Þ complexity,
whereas CANARY relies on fast Fourier transform
(FFT) operations with OðMN logðNÞÞ complexity (the
difference in computational burdens between the two
algorithms can be clearly observed in practice when N

grows large).
The rest of this work is organized as follows. Section 2

presents the CANARY algorithm for CSS design. The
extension of the CANARY algorithm to phase-quantized
(and other constrained) CSS is studied in Section 3.
Section 4 is devoted to numerical examples, whereas
Section 5 concludes the paper.

Notation: We use bold lowercase letters for vectors and
bold uppercase letters for matrices. ð:ÞT , ð:Þn and ð:ÞH

denote the vector/matrix transpose, the complex conju-
gate, and the Hermitian transpose, respectively. 1 and 0
are the all-one and all-zero vectors/matrices, respectively.
JxJn or the ln-norm of the vector x is defined as
ð
P

k9xðkÞ9
n
Þ
1=n where fxðkÞg are the entries of x. The

Frobenius norm of a matrix X (denoted by JXJF) with
entries fXðk,lÞg is equal to ð

P
k,l9Xðk,lÞ92

Þ
1
2, whereas the

l1-norm of X (denoted as JXJ1) is given by
P

k,l9Xðk,lÞ9. The
matrix ejX is defined element-wisely as ½ejX �k,l ¼ ej½X�k,l .
argð:Þ denotes the phase angle (in radians) of the vector/
matrix argument. The symbol � stands for the Hadamard
(element-wise) product of matrices. C represents the set
of complex numbers. Finally, dk is the Kronecker delta
function which is equal to one when k¼0 and to zero
otherwise.

2. CANARY

It is well-known that for any sequence x of length N

with aperiodic autocorrelation lags frðkÞg (see e.g. [24])

FðoÞ9
XN

n ¼ 1

xðnÞe�jon

�����
�����
2

¼
XN�1

k ¼ �ðN�1Þ

rðkÞe�jok ð6Þ

where FðoÞ is the ‘‘spectrum’’ of x. Consider a comple-
mentary set X ¼ fx1,x2, . . . ,xMg containing M sequences of
length N. It follows from the Parseval equality that

2ISL¼
XN�1

k ¼ �ðN�1Þ

XM
m ¼ 1

rmðkÞ�MNdk

�����
�����
2

¼
1

2N

X2N

p ¼ 1

XM
m ¼ 1

FmðopÞ�MN

" #2

ð7Þ

with FmðopÞ representing the spectrum of the mth
sequence at the angular frequency op ¼ 2pp=ð2NÞ. There-
fore, the minimization of the ISL metric in (4) can be
accomplished by minimizing the following frequency-
domain metric:

X2N

p ¼ 1

XM
m ¼ 1

XN

n ¼ 1

xmðnÞe
�jopn

�����
�����
2

�MN

2
4

3
52

: ð8Þ

Inspired by the basic idea of the CAN algorithm in [23]
that considers (8) with M¼1, we propose a cyclic
algorithm (which we call CANARY) for designing CSS.
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Let X9ðx1x2 . . . xMÞ and let AH represent the 2N � 2N DFT
matrix given by

½AH
�p,n ¼

1ffiffiffiffiffiffiffi
2N
p e�jnop ,ðp,nÞ 2 f1,2, . . . ,2Ng2: ð9Þ

The design problem associated with the frequency-
domain metric in (8) can be dealt with conveniently via
considering the following minimization problem:

min
Z,S

JAHZ�SJF ð10Þ

s:t: ðS � Sn
Þ1M ¼MN 12N , ð11Þ

Z ¼
X

0N�M

 !
, ð12Þ

where S is an auxiliary matrix variable.
For fixed Z (equivalently fixed X), the minimizer S of

(10) can be obtained as follows. Since the constraint (11)
is imposed row-wise, we can consider the optimization of
the entries in each row of S independently. Suppose that
sT represents a generic row of AHZ. Then the goal is to find
a vector s that solves the optimization problem

min
s

Js�sJ2
2

s:t: JsJ2
2 ¼MN: ð13Þ

The solution to (13) is simply given by

s¼
ffiffiffiffiffiffiffiffi
MN
p s

JsJ2
: ð14Þ

In sum, let sT
k (k¼ 1, . . . ,2N) denote the kth row of

S ¼ AHZ. Then the minimizer S of (10) can be obtained as

S ¼
ffiffiffiffiffiffiffiffi
MN
p

sT
1=Js1J2

sT
2=Js2J2

^

sT
2N=Js2NJ2

0
BBBBB@

1
CCCCCA: ð15Þ

Next we study the optimization of (10) with respect to
Z. For cases in which the sequences fxmg are not con-
strained, the minimizer Z of (10) is given by

½Z�n,m ¼
½AS�n,m, 1rnrN,

0, n4N:

(
ð16Þ

However in many practical applications, the sequences
are constrained (see the discussion on this aspect in the
Introduction). Particularly, we will consider unimodular-
ity constraints as well as more general peak-to-average-
power ratio (PAR) constraints. For unimodular X, the
minimizer Z of (10) can be expressed as

½Z�n,m ¼
ej arg½AS�n,m , 1rnrN,

0, n4N:

(
ð17Þ
Table 1
The CANARY algorithm.

Step 0: Initialize Z using a random X 2 CN�M

Step 1: Compute the minimizer S of (10) using (15)

Step 2: Depending on the constraint imposed on the sequences fxmg, compu

Step 3: Repeat steps 1 and 2 until a stop criterion is satisfied, e.g. JXðlþ1Þ
�X

obtained at the lth iteration)
On the other hand, the minimizer Z of (10) for PAR
constraint set, viz.

PARðxmÞ ¼
JxmJ

2
1

1

N
JxmJ

2
2

rg, 1rmrM ð18Þ

can be obtained by solving the optimization problem

min
Z

JZ�ASJF

s:t: JxmJ
2
1rg, 1rmrM,

JxmJ
2
2 ¼N, 1rmrM,

Z ¼
X

0N�M

 !
: ð19Þ

Interestingly, the problem (19) can be tackled using an
efficient recursive algorithm suggested in [25]. Briefly,
first we note that (19) can be solved via a separate
optimization with respect to the sequences fxmg (i.e. the
columns of X), and that for each sequence xm (19) boils
down to a ‘‘nearest-vector’’ problem with PAR constraint.
Let xm denote the vector containing the first N entries of
the mth column of AS. If the magnitudes of the entries of
xm are below

ffiffiffigp then xm ¼
ffiffiffiffi
N
p

xm=JxmJ2 is the solution.
Otherwise, the entry of xm corresponding to the entry of
xm (say xmax) with maximal magnitude is given byffiffiffigp ej argðxmaxÞ; and the other entries of xm are obtained
solving the same type of ‘‘nearest-vector’’ problem but
with the remaining energy, i.e. N�g.

Based on the previous analysis, the CANARY algorithm
for designing CSS is summarized in Table 1. Note that
each iteration of CANARY is computationally efficient as it
is based solely on FFT operations. As a result, the CANARY
algorithm can be used for large values of N and M (e.g.
MN� 106 or even larger).

We conclude this section with two remarks.

Remark 1. To make the paper as concise as possible, we
only derived the CANARY algorithm for aperiodic auto-
correlations. However, the main ideas of CANARY can also
be used to design CSS with good periodic correlations. In
the latter case, CANARY can be useful when single
sequences with perfect periodic correlation do not exist
(such as in the certain design example in the next
section). Let ~A

H
denote the N�N DFT matrix. It is

straightforward to verify that the design of CSS with good
periodic correlations can be formulated as the following
optimization problem:

min
X, S

J ~A
H

X�SJF

s:t: ðS � Sn
Þ1M ¼MN1N , ð20Þ

which can be tackled in the same manner as proposed
for (10). &
te the minimizer Z (equivalently X) of (10) using (16), (17), or (19)
ðlÞJF rE for some pre-defined E40 (where XðlÞ denotes the matrix X
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Remark 2. An alternative approach to designing CSS is to
use the weighted CAN (WeCAN) algorithm in [23]. To see
how this can be done, let y9ðxT

1,0T
N�1,xT

2,0T
N�1, . . . ,xT

M ,0T
N�1Þ

be an auxiliary sequence of length Mð2N�1Þ. Note that the
first N aperiodic autocorrelation lags of y (denoted by
fRðkÞg) can be written as

RðkÞ ¼
XM

m ¼ 1

rmðkÞ, 0rkr ðN�1Þ: ð21Þ

Therefore, the sequence set fxmg is complementary if and
only if y has a zero correlation zone (ZCZ) for lags in the
interval 1rkrðN�1Þ. Such a ZCZ design (with the given
sequence structure) can be carried out using the WeCAN
algorithm. However, this approach is computationally
expensive compared to the CANARY algorithm. &

3. Phase-quantized CSS design

A sequence x of length N is phase-quantized (with
phase quantization level L) iff

arg ðxðnÞÞ 2 0,
2p
L
ð1Þ, . . . ,

2p
L
ðL�1Þ

� �
ð22Þ

for all 1rnrN. In particular, x is a phase-quantized
unimodular sequence (with phase quantization level L)
iff for any 1rnrN

xðnÞ 2 f1,ejð2p=LÞð1Þ, . . . ,ejð2p=LÞðL�1Þg: ð23Þ

The CANARY algorithm can be used to try to find (unim-
odular) phase-quantized CSS (or sub-optimal CSS when-
ever a perfect CSS does not exist) for arbitrary N and M;
however, a certain modification is needed. Let QLðjÞ
denote the closest element in the set of quantized levels
in (22) to a given j. Also let vn,m ¼ 9vn,m9ejjn,m ¼ ½AS�n,m.
For unimodular phase-quantized CSS (with phase quanti-
zation level L), the minimizer Z of (10) is given by

½Z�n,m ¼
ejQLðjn,mÞ, 1rnrN,

0, n4N

(
ð24Þ

and for just phase-quantized CSS by

½Z�n,m ¼
9vn,m9cos ðjn,m�QLðjn,mÞÞ e

jQLðjn,mÞ, 1rnrN,

0, n4N:

(

ð25Þ

However, for small values of L, unimodular (or low PAR)
sequences with practically optimal correlation properties
are rare. In addition, we note that the objective function in
(10) is highly multi-modal in such cases (i.e. it may have
multiple local optima). Therefore, although using (24) (or
(25)) monotonically decreases the objective function in
(10), the algorithm might end up in a poor local optimum.
To tackle this issue (which was noted in many other
publications such as [2,9,4]), we consider a penalized
version of (10) in the following.

We relax the unimodularity constraint to a penaliza-
tion of the distance between the magnitudes of fxmðnÞgm,n

and 1. Therefore, consider the optimization problem
ðfor l40Þ

min
X,S

JAHZ�SJ2
FþlJðX � Xn

Þ�1N�MJ1
s:t: ðS � Sn
Þ1M ¼MN 12N ,

Z ¼
X

0N�M

 !
,

all fxmg are phase-quantized as in ð22Þ: ð26Þ

The solution S of (26) is identical to that of (10). Let v

be a generic element in the N�M upper sub-matrix of AS.
To obtain the solution X (and Z) of (26), we note that
solving (26) for X can be dealt with in an element-wise
manner, and hence it can be reduced to the optimization
problem

min
x

9x�v92
þl99x92

�19

s:t: x is phase-quantized as in ð22Þ, ð27Þ

where x denotes a generic entry of X. Now let x¼ 9x9ejjx ,
v¼ 9v9ejjv , and note that the minimizer jx of (27) is
simply given by jx ¼QLðjvÞ. Given jx, we can rewrite the
criterion in (27) as

9x�v92
þl99x92

�19

¼ 99x9�9v9ejðjv�jxÞ92
þl99x92

�19

¼ Const1þð9x9�9v9cosðjv�jxÞÞ
2
þl99x92

�19|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f ð9x9Þ

: ð28Þ

Note that f ð9x9Þ is both continuous and lower bounded (by
zero), and thus has at least one global minimum. A global
minimum 9x9 of f ð9x9Þ satisfying 9x941 should minimize

f ð9x9Þ ¼ ð1þlÞ9x92
�29x99v9cos ðjv�jxÞþConst2, ð29Þ

which implies that 9x9¼ 9v9cosðjv�jxÞ=ð1þlÞ. Other-
wise, a minimizer 9x9 of f ð9x9Þ satisfying 9x9o1 should
minimize

f ð9x9Þ ¼ ð1�lÞ9x92
�29x99v9cosðjv�jxÞþConst3, ð30Þ

which implies 9x9¼ 9v9cosðjv�jxÞ=ð1�lÞ. In sum, the
minimization of (27) with respect to 9x9 yields the
following soft-thresholding type of solution (see [26] for
a similar result):

9x9¼

9v9cosðjv�jxÞ

1�l
9v9o

1�l
cosðjv�jxÞ

,

1
1�l

cosðjv�jxÞ
r9v9r

1þl
cosðjv�jxÞ

,

9v9cosðjv�jxÞ

1þl
9v94

1þl
cosðjv�jxÞ

:

8>>>>>>>><
>>>>>>>>:

ð31Þ

4. Numerical examples

In this section, we provide numerical examples to
illustrate the performance of the CANARY algorithm. The
required computational times (on a PC with Intel Core i5
2.8 GHz CPU and 8.0 GB memory) are reported. We use
CANARY to design unimodular as well as low PAR CSS of
length N¼256 with M¼1 (in which case the CSS design
becomes a single sequence design), M¼2 (i.e. a comple-
mentary pair), and M¼3. We stopped the algorithm
when the stop criterion was satisfied with E¼ 10�15.
The computational times for designing unimodular CSS
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with M¼1, 2, and 3 were approximately 3, 175, and 254 s,
respectively. The results are shown in Fig. 1(a). The
autocorrelation sums are normalized and expressed in dB

autocorrelation level ðdBÞ ¼ 20 log10

PM
m ¼ 1 rmðkÞ

��� ���PM
m ¼ 1 rmð0Þ

: ð32Þ

To examine CANARY when dealing with more general PAR
constraints, Fig. 1(b) depicts the results of a similar design
problem but now the constraint PARr2. The needed
computational times were 6, 143, and 78 s for M¼1, 2,
and 3, respectively. As expected, the CSS designed for M 2

f1,2g and PARr2 have better MF values compared to
their corresponding CSS with PAR¼1 (i.e. unimodular
CSS). Note that increasing M provides more degrees of
freedom for CSS design. In particular, it can be observed
from the figure that for M¼3 the autocorrelation sums of
the sequences achieve values which are virtually zero (i.e.
MF approaches þ1).
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Fig. 1. Unimodular and low PAR CSS design for N¼256 and M 2 f1,2,3gwith

the constraints: (a) PAR¼1 (i.e. unimodular entries) and (b) PARr2. The

autocorrelation sums achieve practically zero values as M increases to 3. The

MF values corresponding to M¼1,2,3 in (a) and (b) are given by ð15:9,1:0�

106 ,4:0� 1029
Þ and ð6:0� 104 ,9:6� 108 ,4:1� 1028

Þ, respectively.
As indicated earlier, CANARY can be used to obtain
almost (i.e. sub-optimal) CSS for cases in which no CSS
exists. It is known that there is no binary GP of length N¼82
[20]. With this in mind, we employ the CANARY algorithm to
design a sub-optimal GP for N¼82. Using the relaxed
formulation of CANARY in (26) five hundred times (with
l¼ 0:5), we have designed real-valued complementary pairs
with low PAR. Next we clipped the resultant sequences to
obtain sub-optimal GP and chose the best sequence pair
with respect to the ISL metric. The two sequences obtained
in this way are shown in Fig. 2(a). The average autocorrela-
tion of the obtained binary sequences, viz.

1

2

X2

m ¼ 1

rmðkÞ

�����
�����, �81rkr81 ð33Þ

is presented in Fig. 2(b). The obtained sub-optimal GP
achieves a MF value of 19.88. A computational time of 41 s
was required on the PC to accomplish the task. As another
example, we use the same approach to design a QAM (i.e.
with L¼4) almost complementary pair of length N¼82. The
results are shown in Fig. 2(c)–(d). For the convenience of the
reader, the resultant sequences of both binary and QAM
examples are provided in Table 2. The obtained QAM CSS has
a MF equal to 21.08. As expected the MF corresponding to
the obtained QAM CSS is larger than that of the binary
example; however, the binary CSS has a smaller PSL. This can
be explained by the fact that CANARY is an ISL minimizer (or
equivalently a MF maximizer) and not a PSL minimizer. The
PAR values of the resultant sequences (before clipping) in the
binary and QAM cases are (1.05,1.04) and (1.18,1.15),
respectively. As the inner-product (or the distance) of the
sequences in the CSS is of interest in some applications, we
also report the inner-product values achieved for the above
examples. The inner-product metric can be defined as
9xH

1 x29=N, where x1 and x2 are the sequences in the obtained
complementary pairs (both with energy N). The inner-
product metric values corresponding to the binary and
QAM examples above are 0.024 and 0.039, respectively.

Finally we provide an example to show that CANARY can
find known GPs in the search space. Specifically,
we consider finding a binary GP of length N¼520. We
perturb the entries of the binary GP by zero-mean i.i.d.
Gaussian random variables with a standard deviation s that
take values in the set f0:15,0:25,0:5,0:75,0:85g, and then we
use the so-obtained perturbed non-binary sequences to
initialize CANARY; furthermore we will do this for 1000
times to compute the average statistics. Similar to the
previous example, we set l¼ 0:5. For each s, the number
of the cases in which CANARY finds the original GP to the
total number of tests (i.e. 1000) can be interpreted as the
empirical probability p of finding the known GP. The results
are reported in Table 3, and the empirical p decreases
apparently gracefully and slowly as s increases.
5. Concluding remarks

The problem of CSS design has been formulated and a
fast algorithm (called CANARY) for generating CSS has
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Fig. 2. Design of a sub-optimal GP and an almost CSS (of length 82) using CANARY. (a) Depicts the entries of the binary sequences (shown by n) and the

resultant sequences of (26). (c) Plots the absolute values of the obtained QAM sequences (shown by n) as well as the resultant sequences of (26). In both (a) and

(c), a bias of þ3 and �3 is used to distinguish the sequences. The average autocorrelations of the obtained binary/QAM sequences are shown in (b)/(d).

Table 2
The obtained binary and QAM almost complementary pairs.

Alphabet Sequence pair

Binary �1,1,�1,�1,1,�1,�1,�1,�1,1,�1,�1,1,�1,1,1,�1,�1,�1,�1,�1,�1,1,1,1,�1,1,�1,�1,�1,�1,1, -

�1,1,1,�1,1,1,�1,�1,�1,�1,�1,1,�1,�1,1,�1,1,1,1,�1,1,1,�1,�1,�1,1,�1,�1,�1,1,1,1,�1, -

�1,1,1,1,1,1,�1,�1,1,1,�1,1,�1,1,�1,1,�1

1,�1,�1,1,1,�1,�1,�1,1,�1,�1,1,1,�1,1,�1,�1,�1,�1,1,1,�1,�1,1,�1,1,1,�1,�1,1,�1,1,1,1, -

�1,1,1,1,1,1,1,1,�1,1,1,1,�1,�1,�1,�1,�1,�1,�1,1,1,�1,�1,�1,1,�1,1,1,�1,1,�1,�1,�1,1, -

�1,1,�1,1,�1,�1,1,�1,1,�1,�1,�1,�1,1

QAM j,�1,j,�1,� j,1,� j,1,1,�1,� j,�1,j,1,j,j,j,1,j,�1,j,1,j,�1,j,1,� j,�1,� j,�1,j,1,j,�1,j,1,j,�1, -

� j,1,j,1,j,1,j,1,j,�1,j,�1,� j,1,� j,�1,j,�1,� j,�1,� j,1,� j,�1,� j,�1,j,1,� j,�1,j,�1,j,1,j,1, �j;1; j;1;�j;1; j;1

j,1,j,1,j,1,j,�1,j,�1,j,�1,� j,�1,j,1,j,�1,j,1,j,�1,� j,1,� j,1,j,� j,� j,�1,j,1,j,1,� j,�1,� j,1,� j, -

�1,� j,1,j,�1,j,1,j,1,� j,�1,� j,�1,� j,�1,� j,�1,j,1,j,�1,� j,�1,j,�1,j,1,� j,1,j,�1,� j,�1,� j,1, �j;1; j;�1;�j;�1; j;1
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been proposed. The main results can be summarized as
follows:
�
 The design of CSS was formulated as a cyclic
minimization of (10). Several variations of this minimi-
zation problem were proposed for different sequence
design constraints (depending on the application).
The discussed cases were: (i) a given PAR, (ii) unim-
odularity of the entries of the sequences, (iii) phase-
quantized sequences, and (iv) sequences with unimodu-
lar entries and quantized phase values.

�
 The steps of CANARY are computationally efficient,

which enables usage for large (N,M). Moreover, as the
sequence design problems are usually solved off-line,



Table 3
The empirical probability p of finding the known GP for various

perturbation levels s.

s 0.15 0.25 0.5 0.75 0.85

p 1 1 1 0.95 0.70
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the computational efficiency of CANARY can be lever-
aged to perform an efficient search of CSS when only a
single set is not enough.

�
 The formulation in this paper can be exploited to deal

with the CSS design for good periodic correlation
properties as well. Detailed derivations were not pre-
sented for the sake of brevity.

�
 Numerical examples were provided to examine the

performance of CANARY when dealing with different
CSS design problems.

We conclude this paper by returning to the fact that
CANARY is a scheme that attempts to minimize the ISL.
We note that one can generally make the PSL metric
‘‘small’’ by minimizing the ISL. However, a direct mini-
mization of the PSL metric appears to be more compli-
cated and remains a topic for future work.
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