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Joint Design of the Receive Filter and Transmit
Sequence for Active Sensing
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Abstract—Due to its long-standing importance, the problem of
designing the receive filter and transmit sequence for clutter/in-
terference rejection in active sensing has been studied widely in
the last decades. In this letter, we propose a cyclic optimization
of the transmit sequence and the receive filter. The proposed ap-
proach can handle arbitrary peak-to-average-power ratio (PAR)
constraints on the transmit sequence, and can be used for large di-
mension designs (with variables) even on an ordinary PC.

Index Terms—Clutter rejection, peak-to-average-power ratio
(PAR), probing signal, receive filter.

I. INTRODUCTION AND PROBLEM FORMULATION

A KEY design problem in cognitive active sensing is to
jointly optimize the probing sequence and the receive

filter (using apriori knowledge on clutter/interference) in order
to minimize the estimation error of the target parameters. Let

denote the transmit sequence which is
used to modulate the train of pulses [1]. In the following, we
adopt the discrete model in [2] to formulate the problem. Par-
ticularly, we assume that the received baseband signal satisfies
the following equation:

(1)

with
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(2)

(3)

where are the scattering coefficients of different range
cells, and denotes the signal independent interference. We also
assume that

(4)
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where the interference covariance matrix , and the average
clutter power are given (e.g., they are obtained by some pre-
scan procedures [3]), and that and have zero mean and
are independent of each other. The estimation of the scattering
coefficient of current interest can be accomplished using
a matched filter. However, an estimate of with generally
smaller mean square error (MSE) can be obtained via a suitable
mismatched filtering (MMF) of the received data. The MMF es-
timate of is given by where
is the MMF vector. The MSE of the above estimate of can
be expressed as

(5)

where

(6)

and are the shifting matrices defined by

(7)

where denotes the Kronecker delta function. The principal
objective of the cognitive receiver and waveform (CREW) de-
sign of and is to minimize the MSE of (see e.g. [2] for a
review of the relevant literature of this design). In the following
section, a new approach to CREW is presented.

II. CREW(CYCLIC)

In this section, we propose a cyclic minimization of the MSE
criterion in (5). For fixed , the minimization of (5) with respect
to (w.r.t.) results in the closed-form expression:

(8)

to within a multiplicative constant. For fixed , the minimizing
transmit code of (5) can be obtained as follows. Note that

(9)

As a result, the design metric in (5) can be rewritten as

(10)
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where . We observe that both the numerator and
denominator of (10) are quadratic in . To deal with the min-
imization of (10), we exploit the idea of fractional program-
ming [4]. Let , and note
that for MSE to be finite we must have . Moreover,
let and suppose that denotes
the current value of . We define
and . It is straightforward to verify that

. Consequently, we have that
which implies

(11)

as . Therefore, can be considered as a new vector
which decreases . Note that for (11) to hold, does not
necessarily have to be a minimizer of ; indeed, it is enough
if is such that .
For a given MMF vector , and any of the minimizer of

(10) we have (assuming ):

(12)

where . Now, let be a real number
larger than the maximum eigenvalue of . Then the minimiza-
tion of (10) w.r.t. unimodular can be cast as the following uni-
modular quadratic program (UQP) [5]:

(13)

in which is positive definite. Note that (13) is
NP-hard in general (see, e.g., [6]). A possible approach to
deal with (13) is to employ the semi-definite relaxation (SDR)
method which is widely used in the literature. However, SDR
is based on a core semi-definite program (SDP) which makes
it computationally expensive as grows large. To tackle (13)
efficiently, in [5] a set of power method-like iterations was
introduced that can be used to monotonically increase the
criterion in (13) (or equivalently decrease ); namely, the
vector is updated using the nearest-vector problem

(14)

The solution of (14) is simply given by .
A proof of monotonically increasing behavior of the associated
UQP objective function through the above power method-like
iterations is presented in Appendix A.
In many applications, unimodularity (i.e., unit PAR) is not re-

quired for the transmit sequence . As a result, one can consider
a more general PAR constraint, viz.
for designing . In such a situation, a similar formulation as

in the case of unimodular can be used. More concretely, a
decrease of the MSE criterion in (10) for a PAR constrained
can be achieved via increasing the objective function of the fol-
lowing optimization problem:

(15)

TABLE I
CREW (CYCLIC)

where is defined as in (13). To this end, we note that the
derivation of the power method-like iterations in [5] can be con-
veniently generalized to the case with a PAR constraint. In par-
ticular, one can increase the objective function of (15) by up-
dating using the nearest-vector problem

(16)

which can be solved efficiently via a recursive algorithm sug-
gested in [7].
The CREW(cyclic) algorithm derived above is summarized

in Table I. Note that the matrices and can be computed ef-
ficiently by employing fast Fourier transform (FFT) operations.
We refer the interested reader to Appendix B for the derivation
of such an efficient computational scheme.

III. DISCUSSION AND NUMERICAL EXAMPLES

In this section, we examine the performance of
CREW(cyclic) by comparing it with three methods previ-
ously devised in [2]; namely CAN-MMF, CREW(gra) and
CREW(fre). The CAN-MMF method employs the CAN
algorithm in [8] to design a transmit sequence with good
correlation properties. As a result, the design of the transmit
waveform is independent of the receive filter. The receive
filter of CAN-MMF is obtained by (8). Note that no prior
knowledge of interference is used in the waveform design of
CAN-MMF. CREW(gra) is a gradient based algorithm for
minimizing (5) which can only deal with the unimodularity
constraint. Moreover, a large number of iterations is needed
by CREW(gra) until convergence and, in each iteration, the
update of the gradient vector is time consuming. CREW(fre) is
a frequency-based approach that yields globally optimal values
of the spectrum of the transmit waveform as well as the receive
filter for a relaxed version of the original waveform design
problem, and hence in general does not provide an optimal
solution to the latter problem. Like CAN-MMF, CREW(fre)
can handle both unimodularity and PAR constraints. Moreover,
it can be used to design relatively long sequences due to the
leveraged FFT operations.
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Fig. 1. MSE values obtained by the different design algorithms for a spot jam-
ming with normalized frequency , and the following PAR constraints
on the transmit sequence: (a) (unimodularity constraint), (b)
.

We adopt the same simulation examples as in [2]. Particularly,
we consider the following interference covariance matrix:

(17)

where and are the jamming
and noise powers, respectively, and the jamming co-
variance matrix is given by where

can be obtained by an in-
verse FFT (IFFT) of the jamming power spectrum at
frequencies . We set
the average clutter power to . Furthermore, the Golomb
sequence is used to initialize the transmit code for all the
algorithms.
As the first example, we consider a spot jamming located at

a normalized frequency , with a power spectrum given
by

(18)

Fig. 1 shows the MSE values corresponding to CAN-MMF,
CREW(fre), CREW(gra), and CREW(cyclic), under the uni-
modularity constraint, for various sequence lengths. In order to
include the CREW(gra) algorithm in the comparison, we show

Fig. 2. MSE values obtained by the different design algorithms for a barrage
jamming in the normalized frequency interval and the
following constraints on the transmit sequence: (a) (unimodularity
constraint), (b) .

its MSE only for since CREW(gra) is computation-
ally prohibitive for on an ordinary PC. Fig. 1(b) de-
picts the MSE values obtained by the different algorithms under
the constraint on the transmit sequence. One can ob-
serve that CREW(cyclic) provides the smallest MSE values for
all sequence lengths. In particular, CREW(cyclic) outperforms
CAN-MMF and CREW(fre) under both constraints. Due to the
fact that both CREW(gra) and CREW(cyclic) are MSE opti-
mizers, the performances of the two methods are almost iden-
tical under the unimodularity constraint for . On the
other hand, compared to CREW(gra), the CREW(cyclic) algo-
rithm can be used to design longer sequences (even more than

) owing to its relatively small computational burden.
Furthermore, CREW(cyclic) can handle not only the unimodu-
larity constraint but also more general PAR constraints.
Next we consider a barrage jamming located in the normal-

ized frequency band , and with a power
spectrum given by

(19)

Fig. 2(a) plots the MSE values obtained by CAN-MMF,
CREW(fre), CREW(gra) and (CREW)cyclic under the uni-
modularity constraint. Similar to the previous example, the
performances of CREW(gra) and CREW(cyclic) are almost
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Fig. 3. CPU time of CREW(fre) and CREW(cyclic) for the barrage jamming,
and various sequence lengths , under the constraint of .

identical for , and the CREW(cyclic) algorithm
outperforms the other algorithms for all the sequence lengths.
Fig. 2(b) presents the MSE values provided by CAN-MMF,
CREW(fre) and CREW(cyclic) for the constraint on
the transmit sequence. It can be observed that CREW(cyclic)
yields a lower MSE than the other algorithms for all lengths.
According to Fig. 3, although an iteration of CREW(fre)

is more computationally efficient than an iteration of
CREW(cyclic), the overall CPU time of CREW(fre) until
convergence is comparable to that of CREW(cyclic) due to
the fact that CREW(fre) generally needs more iterations than
CREW(cyclic) until convergence. The results leading to Fig. 3
were obtained using a PC with Intel Core 2 Duo T5250 1.5 GHz
CPU, and 1.5 GB memory.

APPENDIX A
EFFECTIVENESS OF THE POWER METHOD-LIKE

ITERATIONS IN (14) AND (16)

We show that the power method-like iterations in (14) and
(16) yield a monotonic increase of the objective functions of
the associated UQPs. Let be an update of the vector
obtained by the aforementioned power method-like iterations.
Note that for fixed , the update vector is the minimizer
of the criterion

(20)

or, equivalently, the maximizer of the criterion
in the search space satisfying the

constraints. We have that

(21)

which implies

(22)

as .

APPENDIX B
EFFICIENT COMPUTATION OF AND

We have that

(23)

The entries of are nothing but the aperiodic autocorrela-
tions of

(24)

where

(25)

for . Note that the aperiodic autocorrelations
of are identical to the periodic autocorrelations of the

sequence where denotes the all-zero vector.
As a result, one can obtain by calculating the Inverse FFT
(IFFT) of , where the sequence is the FFT of .
Once are calculated, the matrix can be obtained using
(23)–(24).
In order to compute the matrix , we note that

(26)

which implies that by using the variable in lieu of , the matrix
can be obtained via the same technique as devised above for

the computation of .
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