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ABSTRACT

In this paper, we study the problem of optimal pulsed-radar

transmit code design for detection of moving targets in the

presence of clutter. To this end, a new data modeling is intro-

duced and optimal detectors for known and unknown target

Doppler shift are presented. In the case of unknown Doppler

shift, the expressions of the optimal detector and its perfor-

mance metrics are too complicated to be amenable for code

design. Therefore, we consider a substitute metric whose

maximization results in maximization of a lower bound on

the J-divergence. For a known target Doppler shift, the metric

directly determines the performance of the optimal detector.

In order to solve the emerging highly non-convex code de-

sign problem, we devise a computational framework (which

we call CADCODE) that lays the ground for an optimal code

design via a cyclic minimization. As low peak-to-average-

power ratio (PAR) codes are of interest in many applications,

we apply the CADCODE framework to obtain such codes.

Several numerical examples are provided to illustrate the per-

formance of the proposed algorithm.

Index Terms- Clutter, target detection, radar code design

1. INTRODUCTION

Radars as well as many other active sensing systems face

the simultaneous effects of signal-dependent and indepen-

dent interferences. The signal-dependent interference, known

as clutter, is the echo of the transmitted signals produced

by uninteresting obstacles. On the other hand, the signal-

independent interferences include various types of noise,

jamming, and other unwanted emissions. Doppler shifts of

the moving targets play an important role in distinguishing

the targets from the background clutter. However, the target

Doppler shift is usually unknown at the transmitter. Consid-

ering such an ambiguity along with the presence of clutter,

and the practical implementation demands for low peak-to-

average-power ratio (PAR) make the transmit code design a

challenging task.

This work was supported in part by the European Research Council

(ERC) under Grant #228044, and the Swedish Research Council.
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3912450; Fax: (+98) 311-3912451; Email: mm naghsh@ec.iut.ac.ir

The signal design for radar performance improvement has

been an active area of research in the last decades; however,

the majority of previous works have considered either station-

ary target or clutter-free scenarios. The effect of clutter has

been considered in early studies for stationary targets, or tar-

gets with known Doppler shifts (see e.g. [1]). In [2], optimal

energy spectral density of the transmit signal has been ob-

tained for stationary targets. A related problem to that of [2]

has been considered in [3] with PAR constraint. The unknown

Doppler shift of the target has been taken into account in [4]

with PAR constraint in the absence of clutter. In this paper, we

study the radar signal design for detection of a moving target

in the presence of clutter. To this end, optimal detectors for

both cases where target Doppler shift is known and unknown

are presented. For unknown Doppler shift, the expressions

of the optimal detector and its performance metrics appear to

be too complicated for utilization in code design. Therefore,

we consider a metric whose maximization results in maxi-

mization of a lower bound on the J-divergence. For known

target Doppler shifts, the metric directly determines the per-

formance of the optimal detector. The raised optimization

problem is highly non-convex, and to the best of our knowl-

edge, designing codes for improving detection performance in

such scenarios has not been addressed in the literature prior to

this work. To tackle the problem, a computational framework

based on a Cyclic Algorithm for Direct COde DEsign (which

we call CADCODE) is proposed to carry out the code design

via a cyclic minimization. The PAR constraint is also taken

into account in the design.

The rest of this paper is organized as follows. In Sec-

tion 2, we present the data modeling and optimal detectors

for known and unknown target Doppler shifts. The code op-

timization is discussed in Section 3. Section 4 considers the

PAR constrained code design. Numerical examples are pro-

vided in Section 5. Finally, Section 6 concludes the paper.

2. DATA MODELING AND OPTIMAL DETECTOR

We consider a narrow-band pulsed-radar system using a train

of pulses. The baseband transmit signal can be formulated as

s(t) =

N−1∑

n=0

an φ(t− nTPRI) (1)

EUSIPCO 2013 1569744055

1



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

where φ(.) is the basic unit-energy transmit pulse, TPRI is the

pulse repetition interval, and {an}
N−1
n=0 are the weights that

are to be optimally designed. At the transmitter, the baseband

signal is modulated by a carrier frequency ωc. The backscat-

tered signal from a point-like moving target can be expressed

as

r(t) = αts(t− τ)ej(ωc+ν)(t−τ) + c(t) + w(t) (2)

where αt is the amplitude of the target echo (accounting for

target reflectivity and channel effects), τ and ν denote the tar-

get delay and Doppler shift, respectively, c(t) is the clutter

component, and w(t) represents the signal-independent inter-

ferences. We assume that both c(t) and w(t) are Gaussian

random processes. In particular, we assume that the clutter

component is the signal echo produced by many individual

point scatterers (distributed across the delay and Doppler do-

mains) which are statistically independent. Under such an

assumption, c(t) can be formulated as [1]

c(t) =

Nct∑

k=1

Ncd∑

l=1

ρkls(t− τk)e
j(ωc+ωl)(t−τk) (3)

where Nct and Ncd are the number of clutter scatterers in

the delay and Doppler domains, respectively, and ρkl is the

amplitude of a specific clutter scatterer at time delay τk and

Doppler shift ωl (due to the internal clutter motion).

At the receiver, the matched filter φ∗(−t) is usually ap-

plied to the downconverted received signal (i.e. r(t)e−jωct)

and the output of the matched filter is then sampled at the

time delays corresponding to the range-cell under test, i.e.

t = nTPRI + τ for 0 ≤ n ≤ N − 1. The discrete-time

received signal r for the range-cell corresponding to the time

delay τ can be written as

r = α a⊙ p+ a⊙ c+w (4)

where α = αte
−jωcτ , a , [a0 a1 . . . aN−1]

T is the

code vector (to be designed), p , [1 ejω . . . ej(N−1)ω ]T

with ω being the normalized Doppler shift of the target, c is

the vector corresponding to the clutter component, the vec-

tor w represents the signal-independent interferences, and the

symbol ⊙ denotes Hadamard product (see [4] for a similar

modeling and its derivation).

Using (4), the target detection problem can be cast as the

following binary hypothesis test:

{
H0 : r = a⊙ c+w

H1 : r = αa⊙ p+ a⊙ c+w
(5)

Note that the covariance matrices of c and w (denoted by C

and M) can be assumed to be priori known (e.g. they can

be obtained by using geographical, meteorological, or pre-

scan information) [5]. For a known target Doppler shift and

the target with Swerling-I model (α ∼ CN (0, σ2)), using the

derivation in [6] in the case of (5) yields the following optimal

detector:

|rH
(
M+ACAH

)−1
(a⊙ p)|2

H0

≶
H1

η (6)

where η is the detection threshold and A , Diag(a). The

performance of the detector in (6) is a monotonically increas-

ing function of the following criterion [6]:

λ = σ2(a⊙ p)H
(
M +ACAH

)−1
(a⊙ p). (7)

The target Doppler shift ω is usually unknown at the trans-

mitter. In such cases, the optimal detector for the detection

problem in (5) with unknown ω can be obtained by consider-

ing the pdf of ω. The distribution of the vector r is no longer

Gaussian and the optimal detector does not lead to a closed-

form expression. The optimal detector for unknown ω can be

obtained using the results of [6] as:

∫

Ω

f(ω)

1 + λ
e

(

σ
2|rH (M+ACAH )−1(a⊙p)|2

1+λ

)

dω
H0

≶
H1

η′ (8)

where Ω = [ωl, ωu] denote the considered interval for the

target Doppler shift ω and f(ω) denote the pdf of ω. It is

worth mentioning that the pdf of ω and the values of ωl and

ωu can be obtained in practice using a priori knowledge about

the type of target as well as employing cognitive methods [5].

3. CODE OPTIMIZATION

The code design to improve detection performance of the sys-

tem when the target Doppler shift ω is known can be dealt

with by maximization of the following metric for a given ω:

(a⊙ p)H
(
M+ACAH

)−1
(a⊙ p) (9)

= tr
{
AH(M+ACAH)−1AppH

}
.

In cases where target Doppler shift is unknown, the expres-

sions for optimal detector and its performance metrics are too

complicated to be used for code design. In such a circum-

stance, we consider the following average metric:

tr
{
AH(M+ACAH)−1AW

}
(10)

where W = E{ppH}. Interestingly, it can be shown that

maximizing the above metric results in maximization of a

lower bound on the J-divergence associated with the detection

problem for unknown ω. More precisely, the J-divergence as-

sociated with the binary hypothesis test is given by

J = E{log(L)|H1} − E{log(L)|H0} (11)

whereL represents the likelihood ratio of the problem. There-

fore, for the detection problem in (5) with unknown ω, we

obtain J = E{J |ω} where

J |ω =
λ2

1 + λ
. (12)
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Consequently, using Jensen inequality we conclude

J = E

{
λ2

1 + λ

}
≥

(E{λ})2

1 + E{λ}
. (13)

As the right-hand side of the above inequality is a monotoni-

cally increasing function of E{λ}, maximization of the metric

leads to maximization of a lower bound on J-divergence (see

e.g. [2] for connections of J-divergence and the performance

of a hypothesis test). Therefore, the code optimization prob-

lem under an energy constraint can be cast as the following

problem:

max
A

tr
{(

A−1MA−H +C
)−1

W
}

(14)

subject to tr
{
AAH

}
≤ e

where e denotes the total transmit energy. In the follow-

ing, we devise the CADCODE framework to tackle the non-

convex problem (14).

We begin by noting that as W � 0 there must exist a full

column-rank matrix V ∈ CN×δ such that W = VVH . As a

result,

tr
{
AH(M+ACAH)−1AW

}
(15)

= tr
{
VHAH(M+ACAH)−1AV

}
.

Let Θ , θI−VHAH(M+ACAH)−1AV, and

θ ≥
λmax(W)

1
e
λmin(M) + λmin(C)

(16)

which ensures Θ ≻ 0. Note that the optimization problem

(14) is equivalent to the minimization problem

min
A

tr{Θ} subject to tr{AHA} ≤ e. (17)

Now define

R ,

[
θI VHAH

AV M+ACAH

]
(18)

and observe that for U , [Iδ 0N×δ]
T we have

UHR−1U = Θ−1. (19)

To tackle (17) let g(A,Y) , tr{YHRY} (with Y being

an auxiliary variable), and consider the following minimiza-

tion problem:

min
A,Y

g(A,Y) (20)

subject to YHU = I

tr{AHA} ≤ e.

For fixed A, the minimizer Y of (20) can be obtained using

Result 35 in [7, p. 354] as

Y = R−1U(UHR−1U)−1. (21)

On the other hand, for fixed Y, the minimization of g(Y,A)
w.r.t. A yields the following quadratically-constrained

quadratic program (QCQP):

min
a

aH
(
(Y2Y

H
2 )⊙CT

)
a+ 2ℜ(dHa) (22)

subject to aHa ≤ e

where Y , [Y1 δ×δ Y2 N×δ]
T and d , diag(V∗Y∗

1Y
T
2 ).

Note that the positive semi-definiteness of (Y2Y
H
2 ) ⊙ CT

guarantees the convexity of (22). The QCQP in (22) can be

solved efficiently using the Lagrange multiplier method.

It is straightforward to verify that at the minimizer Y of

(20), we have g(Y,A) = tr{Θ}. From this property, we con-

clude that each step of the cyclic minimization of (20) leads

to a decrease of tr{Θ}. Indeed, let f(A) = tr{Θ} and note

that

f
(
A(k+1)

)
= g

(
Y(k+2),A(k+1)

)
≤ g

(
Y(k+1),A(k+1)

)

≤ g
(
Y(k+1),A(k)

)
= f

(
A(k)

)

where the superscript k denotes the iteration number. The

first and the second inequality in (3) hold true due to the mini-

mization of g(A,Y) w.r.t. Y and A, respectively. As a result,

CADCODE converges to a stationary point of (14). It is worth

noting that the minimization steps of CADCODE (which are

summarized in Table 1) can be solved either analytically or

using standard interior-point methods.

Table 1. CADCODE for Optimal Radar Code Design

Step 0: Initialize the code vector a using a random vector in CN , and

form R as defined in (18).

Step 1: Compute Y = R−1U(UHR−1U)−1.

Step 2: Solve the optimization problem (22) to obtain the code vector a.

Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion is satisfied,

e.g. ‖a(k+1) − a
(k)‖ ≤ ǫ for some ǫ > 0.

4. CONSTRAINED CODE DESIGN

In order to use the power resources efficiently and to avoid

non-linear effects at the transmitter, unimodular or low PAR

sequences are of practical interest in many applications. It

is possible to use the CADCODE framework to deal with an

arbitrary PAR constraint, viz. PAR(a) =
max
m

{|am|2}

1
N

‖a‖2 ≤ ζ.

In order to design low-PAR codes via the CADCODE

framework, the minimization of g(Y,A) in (20) w.r.t. a low-

PAR code vector a can be accomplished using the optimiza-

tion problem

min
a

aH
(
(Y2Y

H
2 )⊙CT

)
a+ 2ℜ(dHa) (23)

subject to max
m=0,··· ,N−1

{|am|2} ≤ ζ

‖a‖2 = N.

3
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We note that (23) is a non-convex QCQP with PAR constraint,

which can be equivalently written as

min
a

ãHJ ã (24)

subject to max
m=0,··· ,N−1

{|am|2} ≤ ζ

‖a‖2 = N

where ã = [a 1]T , and

J =

[
(Y2Y

H
2 )⊙CT d

dH 0

]
.

For any λ > λmax(J) we can reformulate the latter prob-

lem as

max
a

ãHK ã (25)

subject to max
m=0,··· ,N−1

{|am|2} ≤ ζ,

‖a‖2 = N

with K = λIN+1 − J. Interestingly, derivation of the power-

method like iterations in [8] can be extended to the case of

PAR-constrained a in (25). More precisely, the code vector a

of the (l + 1)th iteration (denoted by a(l+1)) can be obtained

from the last estimate of a, i.e. a(l), via solving the optimiza-

tion problem

max
a(l+1)

‖a(l+1) − â(l)‖ (26)

subject to max
m=0,··· ,N−1

{|a(l+1)
m |2} ≤ ζ

‖a(l+1)‖2 = N

where â(l) represents the vector containing the first N en-

tries of K ã(l). The optimization problem (26) is a “nearest-

vector” problem with PAR constraint. Such PAR constrained

problems can be solved efficiently using a recursive algorithm

proposed in [9]. Finally, we note that as a scaling does not

affect the PAR metric, the low-PAR codes obtained by CAD-

CODE framework can be scaled to fit any desired level of

energy.

5. NUMERICAL EXAMPLES

Numerical results will be provided to examine the perfor-

mance of the proposed method. We consider the performance

of the uncoded system (with a =
√

e
N
1) as the bench-

mark. In the numerical examples, we assume that the signal-

independent interference can be modeled as a first-order auto-

regressive process with a parameter equal to 0.5, as well as a

white noise at the receiver with variance equal to 0.01. Fur-

thermore, for clutter we let Cm,n = ρ(m−n)2 , 1 ≤ m,n ≤ N

with ρ = 0.8. The extension of the CADCODE framework

to the case of unimodular code (i.e. with PAR=1) design is

referred to as CADCODE-U.

An example of code design for a Doppler shift interval

Ω = [ωl, ωu] = [−1, 1] is considered for code lengthN = 16.

The results are depicted in Fig. 1. Fig. 1(a) shows the val-

ues of the obtained metric corresponding to the code obtained

by CADCODE, CADCODE-U, and also the uncoded system.

It can be observed from Fig. 1 that, as expected, a coded

system employing CADCODE or CADCODE-U possesses

larger values of metric than that of the the uncoded system.

It is also practically seen that the performance obtained by

randomly generated codes is similar to that of the all-one

code used in the uncoded system. Moreover, Fig. 1 reveals

that the quality of the codes obtained via constrained designs

is very similar to that of unconstrained designs. However,

there are minor degradations due to imposing the unimodu-

larity constraint. We also observe the saturation phenomenon

in Fig. 1(a). More precisely, for sufficiently large values of the

transmit energy (i.e., e), the increase in the average metric is

negligible. Note that, the value of the metric (for non-singular

C) asymptotically converges to:

lim
e→∞

tr
{(

(AHM−1A)−1 +C
)−1

W
}
= tr{C−1W}.

The performance of the devised algorithms w.r.t. the receiver

operating characteristic (ROC) of the optimal detector for un-

known target Doppler shift is studied in Fig. 1(b). The detec-

tor is implemented via numerically evaluating the integral in

(8). The simulated ROC is illustrated in Fig. 1(b) for σ2 = 3
and e = 10 by considering 10000 sets of random generated

data. Similar behaviors to that of Fig. 1 can be seen in this fig-

ure. Precisely, the performance of the system using the opti-

mal codes outperforms that of the uncoded system. Minor dif-

ferences exist in the ROC corresponding to CADCODE and

CADCODE-U.

The effect of the code length N on the values of the metric

is illustrated in Fig. 2 for a fixed transmit energy e = 10. It

can be seen that as N grows large, the quality of the proposed

coding schemes improves substantially. This is due to the fact

that for a large N the code design problem has more degrees

of freedom.

6. CONCLUDING REMARKS

The problem of optimal code design for moving target de-

tection in the presence of clutter was considered. A new

discrete-time formulation was introduced in (4) for moving

target detection using pulsed-radars in the presence of clut-

ter. To handle the unknown Doppler shift of the target, max-

imization of a metric was considered that leads to maximiza-

tion of a lower bound on J-divergence. A Cyclic Algorithm

for Direct COde DEsign, referred to as the CADCODE, was

suggested to tackle the arising non-convex code optimization

problem. In CADCODE, the code design objective function

is iteratively minimized via a cyclic minimization of an aux-

iliary function of the code matrix. The convergence of CAD-

4
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Fig. 1. The design of optimal codes of length N = 16. (a) depicts the values of the metric for CADCODE and CADCODE-U

methods as well as the uncoded system vs. the transmit energy. (b) plots the ROC of the optimal detector (unknown ω) for

σ2 = 3 and transmit energy= 10.
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CODE was studied. Finally, the derivations of CADCODE

was extended to tackle PAR constrained problems.
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