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Designing Unimodular Codes Via Quadratic
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Abstract—The NP-hard problem of optimizing a quadratic form
over the unimodular vector set arises in radar code design sce-
narios as well as other active sensing and communication applica-
tions. To tackle this problem (which we call unimodular quadratic
program (UQP)), several computational approaches are devised
and studied. Power method-like iterations are introduced for local
optimization of UQP. Furthermore, a monotonically error-bound
improving technique (MERIT) is proposed to obtain the global
optimum or a local optimum of UQP with good sub-optimality
guarantees. The provided sub-optimality guarantees are case-de-
pendent and may outperform the approximation guarantee of
semi-definite relaxation. Several numerical examples are presented
to illustrate the performance of the proposed method. The exam-
ples show that for several cases, including rank-deficient matrices,
the proposed methods can solve UQPs efficiently in the sense of
sub-optimality guarantee and computational time.

Index Terms—Code design, radar codes, unimodular codes,
quadratic programming, peak-to-average-power ratio (PAR).

I. INTRODUCTION

U NIMODULAR codes are used in many active sensing and
communication systems mainly as a result of the their op-

timal (i.e., unity) peak-to-average-power ratio (PAR). The de-
sign of such codes can be often formulated as the optimization
of a quadratic form (see Sub-section I-A for examples). There-
fore, we will study the problem

(1)

where is a given Hermitian matrix, represents the
unit circle, i.e., and UQP stands for
Unimodular Quadratic Program(ming).
Notation: We use bold lowercase letters for vectors/se-

quences and bold uppercase letters for matrices.
and denote the vector/matrix transpose, the complex
conjugate, and the Hermitian transpose, respectively. and
are the all-one and all-zero vectors/matrices. is the th

standard basis vector in . or the -norm of the vector
is defined as where are the entries

of . The Frobenius norm of a matrix (denoted by )
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with entries is equal to . We use
and to denote the matrices obtained by collecting

the real parts, and respectively, the imaginary parts of the
entries of . The matrix is defined element-wisely as

. denotes the phase angle (in radians)
of the vector/matrix argument. stands for the expectation
operator. denotes the diagonal matrix formed by the
entries of the vector argument, whereas denotes the
vector formed by collecting the diagonal entries of the matrix
argument. represents the th maximal eigenvalue of .
The symbol stands for the Hadamard (element-wise) product
of matrices. The operator notation stands for the Minkowski
sum of the two sets. Finally, and represent the set of real
and complex numbers, respectively.

A. Motivating Applications

To motivate the UQP formulation considered above, we
present four scenarios in which a design problem in active
sensing or communication boils down to an UQP.

Designing codes that optimize the SNR or the CRLB: We
consider a monostatic radar which transmits a linearly encoded
burst of pulses. The observed backscattered signal can be
written as (see, e.g., [1]):

(2)

where represents channel propagation and backscat-
tering effects, is the disturbance/noise component,
is the unimodular vector containing the code elements,

is the temporal steering
vector with and being the target Doppler frequency and
pulse repetition time, respectively.
Under the assumption that is a zero-mean complex-valued

circular Gaussian vector with known positive definite covari-
ance matrix , the signal-to-noise ratio (SNR) is
given by [2]

(3)

where . Therefore, the problem of de-
signing codes optimizing the SNR of the radar system can be
formulated directly as an UQP. Additionally, the Cramer-Rao
lower bound (CRLB) for the target Doppler frequency estima-
tion (which yields a lower bound on the variance of any unbi-
ased target Doppler frequency estimator) is given by [2]

(4)
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where and
. Therefore the minimization of CRLB can

also be formulated as an UQP. For the simultaneous optimiza-
tion of SNR and CRLB see [2].

Synthesizing cross ambiguity functions (CAFs): The ambi-
guity function (which is widely used in active sensing applica-
tions [3], [4]) represents the two-dimensional response of the
matched filter to a signal with time delay and Doppler fre-
quency shift . The more general concept of cross ambiguity
function occurs when the matched filter is replaced by a mis-
matched filter. The cross ambiguity function (CAF) is defined
as

(5)

where and are the transmit signal and the receiver
filter, respectively (the ambiguity function is obtained from (5)
with ). In several applications and are
given by:

(6)

where are pulse-shaping functions (with the rectangular
pulse as a common example), and

(7)

are the code and, respectively, the filter vectors. The design
problem of synthesizing a desired CAF has a small number of
free variables (i.e., the entries of the vectors and ) com-
pared to the large number of constraints arising from two-di-
mensional matching criteria (to a given ). Therefore,
the problem is generally considered to be difficult and there
are not many methods to synthesize a desired (cross) ambiguity
function. Below, we describe briefly the cyclic approach of [5]
for CAF design.
The problem of matching a desired can

be formulated as the minimization of the criterion [5]

(8)

where is given, is a weighting func-
tion that specifies the CAF area which needs to be emphasized
and represent auxiliary phase variables. It is not difficult
to see that for fixed and , the minimizer is given by

. For fixed and , the crite-
rion can be written as

(9)

where and are given matrices in [5]. Due to prac-
tical considerations, the transmit coefficients must have
low PAR values. However, the receiver coefficients need

not be constrained in such a way. Therefore, the minimizer of
is given by . Similarly, for fixed and

, the criterion can be written as

(10)

where is given [5]. If a unimodular code vector
is desired then the optimization of is an UQP as can
be written as

(11)

where is a free phase variable.
Steering vector estimation in adaptive beamforming: Con-

sider a linear array with antennas. The output of the array at
time instant can be expressed as [6]

(12)

with being the signal waveform, the associated steering
vector (with ), and the vector ac-
counting for all independent interferences.
The true steering vector is usually unknown in practice, and

it can therefore be considered as an unimodular vector to be
determined [7]. Define the sample covariance matrix of
as where is the number of training data
samples. Assuming some prior knowledge on (which can be
represented by being in a given sector ), the problem
of estimating the steering vector can be formulated as [8]

(13)

hence an UQP-type problem. Such problems can be tackled
using general local optimization techniques or the optimization
scheme introduced in Section III.

Maximum likelihood (ML) detection of unimodular codes:
Assume the linear model

(14)

where represents a multiple-input multiple-output (MIMO)
channel, is the received signal, is the additive white
Gaussian noise and contains the unimodular symbols which
are to be estimated. The ML detection of may be stated as

(15)

It is straightforward to verify that the above optimization
problem is equivalent to the UQP [10]:

(16)

where

(17)

and where is a free phase variable.
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B. Related Work

In [11], the NP-hardness of UQP is proven by employing a
reduction from an NP-complete matrix partitioning problem.
The UQP in (1) is often studied along with the following (also
NP-hard) related problem in which the decision variables are
discrete:

- (18)

where . Note that the latter
problem coincides with the UQP in (1) as . The authors
of [12] show that when the matrix is rank-deficient (more
precisely, when behaves like with respect
to the problem dimension) the -UQP problem can be solved in
polynomial-time and they propose a -complexity
algorithm to solve (18). However, such algorithms are not ap-
plicable to the UQP which corresponds to .
Studies on polynomial-time (or efficient) algorithms for

UQP (and -UQP) have been extensive (e.g., see [9]–[22] and
the references therein). In particular, the semi-definite relax-
ation (SDR) related techniques have been the most appealing
approaches to the researchers. To derive an SDR, we note that

. Hence, the UQP can be
rewritten as

(19)

If we relax (19) by removing the rank constraint on then the
result is a semi-definite program:

(20)

The above SDP can be solved in polynomial time using inte-
rior-point methods [17]. The approximation of the UQP solu-
tion based on the SDP solution can be accomplished in several
ways. For example, we can approximate the phase values of the
solution using a rank-one approximation of . A more effec-
tive approach for guessing is based on randomized approxi-
mations (see [11], [18] and [19]). A detailed guideline for ran-
domized approximation of the UQP solution can be found in
[19]. In addition, we refer the interested reader to the survey of
the rich literature on SDR in [20].
In order to formalize the quality assessment of the UQP so-

lutions, let be the approximate solution to a given UQP. We
assume that is positive semidefinite (such an assumption can
be made without loss of generality, see Section II-A). Then the
approximation ratio associated with is given by

(21)

The approximation ratio is usually unknown, because the global
optimum of the problem is not known. However, an optimiza-
tion method may offer a sub-optimality guarantee , i.e., a
lower bound on the quality of the approximate solution:

(22)

Herein, we present the existing (analytically derived) sub-
optimality guarantee for SDR. Let be the expected value
of the UQP objective at the obtained randomized solution. Let

represent the optimal value of the UQP objective. We have

(23)

with the sub-optimality guarantee coefficient [11],
[21]. Note that the sub-optimality coefficient of the solution ob-
tained by SDR can be arbitrarily close to (e.g., see [21]).
For the sake of brevity, in the sequel the abbreviation SDR will
be used for semidefinite relaxations followed by the randomiza-
tion procedure.

C. Contributions of This Work

Besides SDR, the literature does not offer many other numer-
ical frameworks to tackle UQP. In this paper, a specialized local
optimization scheme for UQP is proposed. The proposed com-
putationally efficient local optimization approach can be used
to tackle UQP as well as improve upon the solutions obtained
by other methods such as SDR. Furthermore, a monotonically
error-bound improving technique (calledMERIT) is introduced
to obtain the global optimum or a local optimum of UQP with
good sub-optimality guarantees. Note that:
• MERIT provides real-time case-dependent sub-optimality
guarantees during its iterations. To the best of our
knowledge, such guarantees for UQPwere not known prior
to this work. Using MERIT one may obtain better perfor-
mance guarantees compared to the analytical worst-case
guarantees (such as for SDR).

• The provided case-dependent sub-optimality guarantees
are of practical importance in decision making scenarios.
For instance in some cases the UQP solution obtained by
SDR (or other optimization methods) might achieve good
objective values, and equivalently good approximation
ratios (this is indeed the case for some practical exam-
ples, see Section VI). However, unless the goodness of
the obtained solution is known (which can be determined
using the proposed bounds), the solution cannot be trusted.

• UsingMERIT, numerical evidence is provided to show that
several UQPs (particularly those with low rank) can be
solved efficiently without sacrificing the solution accuracy.

Finally, we believe that the general ideas of this work can be
adopted to tackle -UQP as the finite alphabet case of UQP.
However, a detailed study of -UQP is beyond the scope of
this paper.
The rest of this work is organized as follows. Section II

discusses several properties of UQP. Section III introduces
a specialized local optimization method that resembles the
well-known power method. Section IV presents a cone approx-
imation that is used in Section V to derive the algorithmic form
of MERIT for UQP. Several numerical examples are provided
in Section VI. Finally, Section VII concludes the paper.

II. SOME PROPERTIES OF UQP

In this section, we study several properties of UQP. The dis-
cussed properties lay the grounds for a better understanding of
UQP as well as the tools proposed to tackle it in the following
sections.
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A. Basic Properties

The UQP formulation in (1) covers both maximization and
minimization of quadratic forms (one can obtain the minimiza-
tion of the quadratic form in (1) by considering in lieu of
). In addition, without loss of generality, the Hermitian matrix
can be assumed to be positive (semi)definite. If is not posi-

tive (semi)definite, we can make it so using the diagonal loading
technique (i.e., where ). Note that
such a diagonal loading does not change the solution of UQP
as . Next, we note that if is a
solution to UQP then (for any ) is also a valid
solution. To establish connections among different UQPs, The-
orem 1 presents a bijection among the set of matrices leading to
the same solution.
Theorem 1: Let represent the set of matrices for

which a given is the global optimizer of UQP. Then
1) is a convex cone.
2) For any two vectors , the one-to-one mapping
(where )

(24)

holds among the matrices in and .
Proof: See the Appendix.

It is interesting to note that in light of the above result, the
characterization of the cone for any given leads
to a complete characterization of all , and thus
solving any UQP. However, the NP-hardness of UQP suggests
that such a tractable characterization cannot be expected. Fur-
ther discussions regarding the characterization of are de-
ferred to Section IV.

B. Analytical Solutions to UQP

There exist cases for which the analytical global optima of
UQP are easy to obtain. In this sub-section, we consider two
such cases which will be used in Section IV to provide an ap-
proximate characterization of . A special example is the
case in which (see the notation definition in the Intro-
duction) is a rank-one matrix. More precisely, let

where is a real-valued Hermitian matrix with non-
negative entries and . A simple special case of this ex-
ample is when is a rank-one matrix itself. In this case, it can be
easily verified that . Therefore, using Theorem
1 one concludes that i.e., yields the global op-
timum of UQP. As another example, Theorem 2 considers the
case for which the matrix has a repeated largest eigenvalue.
Theorem 2: Let be a Hermitian matrix with eigenvalue

decomposition . Suppose is of the form

(25)

and let be the matrix made from the first columns of .
Now suppose lies in the linear space spanned by the
columns of , i.e., there exists a vector such that

(26)

Then is a global optimizer of UQP.
Proof: If satisfies (24), then it belongs to the span of the
dominant eigenvectors of , and hence it is also a dominant

eigenvector of . This fact implies that is the global optimizer
of the quadratic optimization (even without the unimodularity
constraint) which completes the proof.
We end this section by noting that the solution to an UQP

is not necessarily unique. For any set of unimodular vectors
, we can use the Gram-Schmidt process

to obtain a unitary matrix the first columns of which span
the same linear space as . In this case, Theorem
2 suggests a method to construct a matrix (by choosing a
with identical largest eigenvalues) for which all
are global optimizers of the corresponding UQP.

III. POWER METHOD FOR UQP

Due to its NP-hard nature, UQP has in general a highly multi-
modal optimization objective. Finding the local optima of UQP
is not only useful to tackle the problem itself (particularly for
UQP-related problems such as (13)), but also to improve the
UQP approximate solutions obtained by SDR or other opti-
mization techniques. In this section, we introduce a computa-
tionally efficient procedure (to obtain a local optimum of UQP)
which resembles the well-known power method for computing
the dominant eigenvalue/vector pairs of matrices.
Assume that is positive definite and let be a

sequence of unimodular codes where is the minimizer of
the following criterion:

(27)

The minimizing vector of (27) is simply given by the
following power method-like iteration:

(28)

Note that

(29)

As a result, is equivalently the maximizer of the criterion
. Moreover, if we have that

(30)

which implies

(31)

as . Therefore, the UQP ob-
jective is increasing through the power method-like iterations
in (28). On the other hand, the UQP objective is upper bounded
by , and thus the said iterations are convergent in
the sense of the UQP objective value. We further note that the
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increase in the UQP objective is lower bounded (within a mul-
tiplicative constant) by the -norm of the difference of the uni-
modular codes in successive iterations, viz.

(32)

Due to the fact that the sequence is convergent,
(32) implies that is also converging to zero
through the iterations in (28).
It is also important to observe that the power method-like

iterations do not stop before reaching a local optimum or saddle
point of UQP. A limit point of (28) can be characterized by
the equation

(33)

where is real-valued and non-negative. On the other hand, the
stationary points of UQP (associated with ) may be charac-
terized as , where is real-valued (see Appendix B
for a detailed derivation). Therefore, the limit points of (28)
form a subset of the stationary points of UQP. We refer to the
subset of UQP stationary points satisfying (33) as the stable
points of UQP. A characterization of the UQP optima can also
be found in Appendix B. Namely, is a local maximum of UQP
if and only if , where . Due to the positive
definiteness of , the latter condition implies that for any local
maximum of UQP is non-negative. As a result, the set of the
local maxima of UQP (including its global optima) is simply a
subset of the stable points of UQP.
Remark 1: The application of the power method-like iter-

ations introduced above is not limited to the optimization of
quadratic forms over the unimodular vector set. If one can min-
imize the criterion in (27) for a particular constraint on ,
say , then all the arguments accompanying (27)–(32)
are valid and they yield an optimization of quadratic forms over
. An interesting practical example is the more general problem

of quadratic optimization over PAR constrained codes (see e.g.,
[19] and [23]) that can be cast as

(34)

where denotes the maximal tolerable PAR value. The related
power method-like iterations, namely

(35)

Fig. 1. An illustration of the result in Theorem 3. denotes the convex
cone of matrices with as a stable point of the associated UQPs.

are nearest-vector problems that can be solved efficiently via an
algorithm devised in [24].

IV. RESULTS ON THE CONE

While a complete tractable characterization of cannot be
expected (due to the NP-hardness of UQP), approximate char-
acterizations of are possible. The goal of this section is to
provide an approximate characterization of the cone which
can be used to tackle the UQP problem.
Theorem 3: For any given , let

represent the convex cone of matrices
where is any real-valued symmetric matrix with non-nega-
tive off-diagonal entries. Also let represent the convex cone
of matrices with being their dominant eigenvector (i.e., the
eigenvector corresponding to themaximal eigenvalue). Then for
any , there exists such that for all ,

(36)

The proof of Theorem 3 will be presented in several steps
(Theorems 4–7 and thereafter). As indicated earlier, a global op-
timum of UQP is also a stable point of UQP. In what follows,
we prove Theorem 3 by proving a more general result, namely
that (36) is also satisfied if is a stable point of UQP (character-
ized by (33)). However, since is the global optimum of UQP
for all matrices in and , the case of can occur
only when is a global optimum of UQP associated with .
An intuitive illustration of the result in Theorem 3 is shown in
Fig. 1.
Suppose is a stable point of UQP associated with a given

positive definite matrix , and let . We define
the matrix as

(37)
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where represents the set of all such that
. Now, let be a positive real number such that

(38)

and consider the sequence of matrices defined (in an
iterative manner) by , and

(39)

for . The next two theorems (whose proofs are given in the
Appendix) study some useful properties of the sequence .
Theorem 4: is convergent in at most two iterations:

(40)

Theorem 5: is a function of . Let and both satisfy
the criterion (38). At the convergence of (which is at-
tained for ) we have:

(41)

Using the above results, Theorems 6 (whose proof is given
in the Appendix) and 7 pave the way for a constructive proof of
Theorem 3.
Theorem 6: If is a stable point of the UQP associated with

then it is also a stable point of the UQPs associated
with and . Furthermore, is an eigenvector of
corresponding to the eigenvalue .
Theorem 7: If is a stable point of UQP for then

it will be the dominant eigenvector of if is sufficiently
large. In particular, let be the largest eigenvalue of which
belongs to an eigenvector other than . Then for any
is a dominant eigenvector of .
Proof: We know from Theorem 6 that is an eigenvector

of corresponding to the eigenvalue . However, if is
not the dominant eigenvector of , Theorem 5 implies that
increasing would not change any of the eigenvalues/vectors
of except that it increases the eigenvalue corresponding to
. As a result, for to be the dominant eigenvector of we
only need to satisfy or equivalently , which
concludes the proof.
Returning to Theorem 3, note that can be written as

(42)

For sufficiently large (satisfying both (38) and the condition
of Theorem 7) we have that

(43)

where and . The-
orem 3 can thus be directly satisfied using (43) with .
We conclude this section with two remarks. First of all, the

above proof of Theorem 3 does not attempt to derive the min-
imal . In the following section we study a computational
method to obtain an which is as small as possible. Secondly,
we can use as an approximate characterization of

noting that the accuracy of such a characterization can be
measured by the minimal value of . An explicit formulation
of a sub-optimality guarantee for a solution of UQP based on the
above approximation is derived in the following section.

V. MERIT FOR UQP

Using the previous results, namely the one-to-one mapping
introduced in Theorem 1 and the approximation of derived
in Section IV, we build a sequence of matrices (for which the
UQP global optima are known) whose distance from a given
matrix is decreasing. The proposed iterative approach can be
used to solve for the global optimum of UQP or at least to obtain
a local optimum (with an upper bound on the sub-optimality of
the solution). The sub-optimality guarantees are derived noting
that the proposed method decreases an upper bound on the sub-
optimality of the obtained UQP solution in each iteration.
We know from Theorem 3 that if is a stable point of the

UQP associated with then there exist matrices
and a scalar such that

(44)

Equation (44) can be rewritten as

(45)

where . We first consider the case of
which corresponds to the global optimality of .

A. Global Optimization of UQP (the Case of )

Consider the optimization problem:

(46)

Note that, as is a convex cone, the global optimizers
and of (46) for any given can be easily found. On

the other hand, the problem of finding an optimal for fixed
is non-convex and hence more difficult to solve

globally (see below for details).
Wewill assume that is a positive definite matrix. To justify

this assumption let and note that the eigen-
values of are exactly the same as those of , hence is pos-
itive definite. Suppose that we have

(47)

for some . It follows from (47) that

(48)

which implies that is also a positive definite matrix. The
conditions in (47) can be met as follows. By considering the
partial minimization of (46) only with respect to the component
of in (namely ) we observe that any positive (i.e.,
with ) diagonal loading of , which leads to the same
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diagonal loading of (as
), will be absorbed1 in . Therefore, a

positive diagonal loading of does not change but
increases by .We also note that due to being
monotonically decreasing through the iterations of the method,
if the conditions in (47) hold for the solution obtained in any
iteration, it will hold for all the iterations afterward.
In the following, we study a suitable diagonal loading of

that ensures meeting the conditions in (47). Next the optimiza-
tion of the function in (46) is discussed through a separate opti-
mization over the three variables of the problem.
Diagonal loading of : As will be explained later, we can

compute and , (hence ) for any initializa-
tion of . In order to guarantee the positive definiteness of ,
define

(49)

Then we suggest to diagonally load with
:

(50)

Optimization with respect to : We restate the objective
function of (46) as

(51)

Given , the partial minimization of (46) with respect to
can be written as

(52)

which is equivalent to

(53)

In [25], the authors have derived an explicit solution for the
optimization problem

(54)

The explicit solution of (54) is given by

(55)

1i.e., the optimal will be the same as before but with the same diagonal
loading.

Note that

(56)

which implies that except for the eigenpair , all
other eigenvalue/vectors are independent of . Let represent
the maximal eigenvalue of corresponding to an eigen-
vector other than . More interesting, the set of the op-
timal solutions of (54) for different form a line in de-
scribed as in (56). Therefore, (52) is equivalent to

(57)

It follows from (55) that

(58)

where and are the sum of the th row and, respectively,
the sum of all entries of . The that minimizes (58) is given
by

(59)

which implies that the minimizer of (57) is equal to

(60)

Finally, the optimal solution to (52) is given by

(61)

Optimization with respect to : Similar to the previous case,
(46) can be rephrased as

(62)

where . The solution of (62) is simply
given by

(63)

where .
Optimization with respect to : Suppose that and are

given and that is a positive definite matrix (see
the discussion on this aspect following (46)). Then we have

(64)

Note that only the third term of (64) is a function of . Moreover,
it can be verified that [26]

(65)

As is positive definite, we can employ the power
method-like iterations introduced in (28) to decrease the cri-
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TABLE I
THE MERIT ALGORITHM

terion in (46), i.e., starting from the current , a local
optimum of the problem can be obtained by the iterations

(66)

Remark 2: Note that the ability of using more general con-
straints (e.g., the PAR constraint) in the power method-like iter-
ations means that MERIT can deal with such generalized con-
straints. This is basically due to the fact that the optimization of
the MERIT criterion with respect to is accomplished via the
power method-like iterations.
Finally, the proposed algorithmic optimization of (46) based

on the above results is summarized in Table I-A.

B. Achieving a Local Optimum of UQP (the Case of )

There exist examples for which the objective function in (46)
does not converge to zero. As a result, the proposed method
cannot obtain a global optimum of UQP in such cases. However,
it is still possible to obtain a local optimum of UQP for some

. To do so, we solve the optimization problem,

(67)

with , for increasing . It is worth pointing
out that achieving a zero value for the criterion in (67) implies

. As a result, there exists a non-negative
such that

(68)

Consequently,

(69)

which implies is a stationary point of the UQP associated
with .
The optimization problem in (67) can be tackled using

the same tools as proposed for (46). In particular, note that
increasing decreases (67). To observe this, suppose that the
solution of (67) is given for an . The mini-
mization of (67) with respect to for
yields such that

(70)

where . The optimization of (67) with respect
to can be dealt with as before (see (46)) and it leads to a
further decrease of the objective function. Furthermore,

(71)

which implies that a solution of (67) can be obtained via op-
timizing (71) with respect to in a similar way as we described
for (46) provided that is such that

is positive definite. Finally, note that the obtained solution
of (46) can be used to initialize the corresponding

variables in (67). In effect, the solution of (67) for any can
be used for the initialization of (67) with an increased .
Based on the above discussion and the fact that small values

of are of interest, a bisection approach can be used to obtain
. The proposed method for obtaining a local optimum of UQP

alongwith the corresponding is described in Table I-B. Using
the proposed algorithm, the task of finding the minimal can
be accomplished within finite number of steps, see Appendix F.

C. Sub-Optimality Analysis

In this sub-section, we show how the proposed method can
provide real-time sub-optimality guarantees and bounds during
its iterations. Let (as a result ) and define

(72)

where and . By construction, the global
optimum of the UQP associated with is . We have that

(73)

Furthermore,

(74)
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As a result, an upper bound and a lower bound on the objective
function for the global optimum of (46) can be obtained at each
iteration. In accordance to what discussed earlier, as

(75)

if converges to zero we conclude from (73) and (74) that

(76)

and hence is the global optimum of the UQP associated with
(i.e., a sub-optimality guarantee of is achieved).
Next, suppose that we have to increase in order to obtain

the convergence of to zero. In such a case, we have that
and as a result,

or equivalently,

(77)

The provided case-dependent sub-optimality guarantee is thus
given by

(78)

The following section provides empirical evidence to the fact
that (78) can yield tighter sub-optimality guarantees than the
currently known approximation guarantee of for SDR.

VI. NUMERICAL EXAMPLES

In order to examine the performance of the proposed method,
several numerical examples will be presented. Random Hermi-
tian matrices are generated using the formula

(79)

where are random vectors in whose real-part and imag-
inary-part elements are i.i.d. with a standard Gaussian distri-
bution . In all cases, we stopped the iterations when

.
We use the MERIT algorithm to solve the UQP for a random

positive definite matrix of size . The obtained values of
the UQP objective for the true matrix and the approximated
matrix as well as the sub-optimality bounds (derived in (73)
and (74)) are depicted in Fig. 2 versus the iteration number. In
this example, a sub-optimality guarantee of is achieved
which implies that the method has successfully obtained the
global optimum of the considered UQP. A computational time
of 3.653 sec was required to accomplish the task on a stan-
dard PC. For the sake of comparison, we also use the power
method-like iterations discussed in Section III, and MERIT, as
well as the curvilinear search of [9] with Barzilai-Borwein (BB)
step size, to solve an UQP based on the same ini-
tialization. The resultant UQP objectives along with required
times (in sec) versus iteration number are plotted in Fig. 3. It
can be observed that the power method-like iterations approxi-
mate the UQP solution much faster than the curvilinear search
of [9]. On the other hand, both methods are much faster than
MERIT. This type of behavior, which is not unexpected, is due

Fig. 2. Different metrics versus the iteration number for an UQP solved by
MERIT. (a) the UQP objective corresponding to the true matrix , the ap-
proximated matrix and also the upper/lower bounds at each iteration. The
sub-optimality bounds are updated using (73)–(74). (b) the criterion

(it reaches values which are practically zero).

to the fact that MERIT is not designed solely for local optimiza-
tion; indeed, MERIT relies on a considerable over-parametriza-
tion in its formulation which is the cost paid for easily deriv-
able sub-optimality guarantees. In general, one may employ
the power method-like iterations to obtain a fast approxima-
tion of the UQP solution (e.g., by using several initializations),
whereas for obtaining sub-optimality guarantees one can resort
to MERIT.
Next, we approximate the UQP solutions for 20 full-rank

random positive definite matrices of sizes .
Inspired by [12] and [27], we also consider rank-deficient ma-
trices where are as in (79), but .
The performance of MERIT for different values of is shown
in Table II. Interestingly, the solution of UQP for rank-defi-
cient matrices appears to be more efficiently obtained than for
full-rank matrices. We also employ SDR [19] to solve the same
UQPs. Note also that given the solutions obtained by MERIT
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TABLE II
COMPARISON OF THE PERFORMANCE OF MERIT (SEE TABLE I) AND SDR [19] WHEN SOLVING THE UQP FOR 20 RANDOM

POSITIVE DEFINITE MATRICES OF DIFFERENT SIZES AND RANKS

Fig. 3. A comparison of power method-like iterations, the curvilinear search
of [9] with Barzilai-Borwein (BB) step size, and MERIT: (top) the UQP ob-
jective; (bottom) the required time for solving an UQP with same
initialization. The computation times for the three methods were

, and (all in sec), respectively.

and SDR as well as the sub-optimality guarantee of MERIT, a
case-dependent sub-optimality guarantee for SDR can be com-
puted as

(80)

This can be used to examine the goodness of the solutions ob-
tained by SDR. In this example, we continue the randomization
procedure of SDR until reaching the same UQP objective as for
MERIT. The results can be found in Table II. The results imply
that, although the average SDR time is less thanMERIT in some
cases, the average MERIT time appears to outperform that of
SDR for larger dimensions or lower matrix ranks .
As discussed earlier, the UQP formulation occurs in different

code design scenarios. An interesting code design problem
arises when synthesizing waveforms that have good resolution
properties in range and Doppler [3]–[5], [28]–[31]. In the

following, we consider the design of a thumbtack CAF (see the
definitions in Section I-A):

(81)

Suppose , let be the time duration of the total wave-
form, and let represent the time duration of each
sub-pulse. Define the weighting function as

(82)

where is the region of in-
terest and is the
mainlobe area which is excluded due to the sharp changes near
the origin of . Note that the time delay and the Doppler
frequency are typically normalized by and , respec-
tively, and as a result the value of can be chosen freely without
changing the performance of CAF design. The synthesis of the
desired CAF is accomplished via the cyclic minimization of
(8) with respect to and (see Section I-A). In particular,
we use MERIT to obtain a unimodular in each iteration. A
Björck code is used to initialize both vectors and . The Björck
code of length (where is a prime number for which

) is given by
, with denoting the Legendre symbol. Fig. 4 depicts

the normalized CAF modulus of the Björck code (i.e., the initial
CAF) and the obtained CAF using the UQP formulation in (11)
and the proposed method. Despite the fact that designing CAF
with a unimodular transmit vector is a rather difficult problem,
MERIT is able to efficiently suppress the CAF sidelobes in the
region of interest.

VII. CONCLUDING REMARKS

A computational approach to the NP-hard problem of opti-
mizing a quadratic form over the unimodular vector set (called
UQP) has been introduced. The main results can be summarized
as follows:
• Power method-like iterations were devised for local opti-
mization. The proposed method was shown to be useful not
only for the quadratic optimization over unimodular codes
but also for some other types of code constraints. The par-
ticular example of PAR constrained code design was dis-
cussed in some detail.
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Fig. 4. The normalized CAF modulus for (a) the Björck code of length
(i.e., the initial CAF), and (b) the UQP formulation in (11) and MERIT.

• It was shown that the set of matrices leading to
the same solution as the global optimum of UQP is a
convex cone. An one-to-one mapping between any two
such convex cones was introduced and an approximate
characterization of was proposed.

• Using the approximate characterization of , an itera-
tive approach (called MERIT) to the UQP was proposed.
It was shown that MERIT provides real-time case-depen-
dent sub-optimality guarantees during its iterations. The
available numerical evidence shows that the sub-opti-
mality guarantees obtained by MERIT may be better than
the currently known approximation guarantee of for
SDR.

We note that more rigorous efficiency assessments of the
method would be useful. It is clear that . A
possible approach would be to determine how large is the part

of that is “covered” by ; a research problem
which is left for future work. Furthermore, a study of -UQP
using the ideas in this paper will be the subject of separate
paper.

APPENDIX

A. Proof of Theorem 1

In order to verify the first part of the theorem, consider any
two matrices . For any two non-negative scalars

we have that

(83)

Clearly, if some is the global maximizer of both
and then it is the global maximizer of

which implies .
The second part of the theorem can be shown noting that

(84)

for all and . Therefore, if
then (for ) and vice versa.

B. Characterization of the Stationary Points and Optima of
UQP

Let and note that

(85)

To obtain the stationary points of UQP (associated with ) one
can write the following partial derivative equations for all

:

(86)

which implies that there exist such that

(87)

Considering the above set of equations for all yields
the characterization of the stationary points of as

(88)
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where . Based on the latter characterization of the sta-
tionary points, we study the optima of UQP by employing the
second derivatives of . For any we have that

(89)

For we can write

(90)

Therefore, the Hessian matrix associated with is given by
where . As a di-

rect consequence, is a local maximum of UQP iff , or
equivalently .

C. Proof of Theorem 4

It is worthwhile to observe that the convergence rate of
is not dependent on the problem dimension , as each

entry of is treated independently from the other entries
(i.e., all the operations are element-wise). Therefore, without
loss of generality we study the convergence of one entry (say

) in the following.
Note that in cases for which , the next

element of the sequence can be written as

(91)

which implies that the proposed operation tends to make
closer to in each iteration, and finally puts within
the distance from .
Let us suppose that , and that the latter

phase criterion remains satisfied for all . We have that

(92)

which yields

(93)

Therefore it takes only
iteration for to stand within the distance from .
Now, suppose that . For every

we can write that

(94)

Let . The first equality in (94) implies
that

(95)

On the other hand, the second equality in (94) implies that

(96)

for all . Note that in (95) and (96), is a complex
number having different phases. We conclude

(97)

which shows that the sequence is convergent in one it-
eration. In sum, every entry of the matrix will converge in at
most two iterations (i.e., at most one to achieve a phase value
within the distance from , and one iteration there-
after).

D. Proof of Theorem 5

We use the same notations as in the proof of Theorem 4. If
then

(98)

On the other hand, if we have that
. As a result,

which implies

(99)

Now, it is easy to verify that (41) follows directly from (98)
and (99).

E. Proof of Theorem 6

If is a stable point of UQP associated with then
we have that . Let where is a
non-negative real-valued vector in . It follows that

(100)
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or equivalently

(101)

which implies that

(102)

for all . Now, note that the recursive formula of the
sequence can be rewritten as

(103)

and as a result,

(104)

It follows from (104) that if is a stable point of the UQP as-
sociated with (which implies the existence of non-negative
real-valued vector such that ), then there ex-
ists for which and therefore,

(105)

Equation (105) can be rewritten as

(106)

As indicated earlier, being a stable point for assures that
the imaginary part of (106) is zero. To show that is a stable
point of the UQP associated with , we only need to verify
that :

(107)

Now note that the positivity of is concluded from (38).
In particular, based on the discussions in the proof of Theorem

4, for , there is no such that
and therefore for all . As a result,

(108)

which implies that is an eigenvector of corresponding to
the eigenvalue .

F. Finding the Minimal in Table I-B (Case of )
Requires a Finite Number of Steps

The results of Section IV provide a theoretical upper bound
on the minimal for which . Note
that is a convex cone, implying that any such
(for which ) would easily set the
objective function of (67) to zero. Equation (43) suggests that
any can serve as the upper bound for the minimal .
Theorem 7 suggests that any , where is the largest
eigenvalue of belonging to an eigenvector other than , can
be used to construct such an upper bound on the minimal .
Using the results of Theorems 5 and 6 along with (43) implies
that it is sufficient to consider

(109)

due to the definition of in (37). As a result, it is sufficient to
consider

(110)

as an upper bound on the values of for which the objective
function of (67) attains zero. It was shown in (70) that the objec-
tive function of (67) is monotonically decreasing with respect to
. Considering a step size for increasing , it takes at most

(111)

steps to achieve
in Step 4 of Table I-B, where the bisection procedure starts.
In each bisection, the step size will be divided by 2, until
reaching a priori given precision of the obtained . More
precisely, let us suppose where

. At the next step, the bisec-
tion approach uses the new pair

to check whether . If
then the bisection approach will be recursively applied for

. Otherwise, the algorithm con-
siders as the new candidate
for applying the bisection procedure. Therefore, the number of
steps required to obtain with a fixed precision is given by

(112)

The latter result proves the finiteness of required number of
steps for finding the minimal —thanks to the upper bound

on the required steps.
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